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Abstract. We investigate collaborative multi-agent systems and how
they can use simple, scalable negotiation protocols to coordinate in a
fully decentralized manner. Specifically, we study multi-agent distributed
coalition formation. We summarize our past and ongoing research on
collaborative coalition formation and describe our original distributed
coalition formation algorithm. The present paper focuses on negotiation-
based view of coalition formation in collaborative Multi-Agent Systems
(MAS). While negotiation protocols have been extensively studied in the
context of competitive, self-interested agents, we argue that negotiation-
based approach may be potentially very useful in the context of collab-
orative agents, as well – as long as those agents, due to limitations of
their sensing and communication abilities, have different views of and
preferences over the states of the world. In particular, we show that
our coalition formation algorithm has several important, highly desir-
able properties when viewed as a negotiation protocol.
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1 Introduction and Motivation

We study autonomous artificial agents such as softbots, robots, unmanned ve-
hicles and smart sensors, that are fully autonomous and capable of interacting
and communicating with each other, and capable of self-organizing in order to
accomplish tasks that may exceed the abilities of the individual agents. We
are particularly interested in mechanisms that enable relatively large ensembles
of such autonomous agents to coordinate with each other in a fully decentral-
ized manner, and collaborate in order to jointly complete various tasks. This
kind of agents are often referred to as distributed problem solvers (DPS) in the
Distributed AI literature [2, 25, 26]. Coalition formation in DPS multi-agent do-
mains is an important coordination and collaboration problem that has been
extensively studied by the Multi-Agent Systems (MAS) community [1, 2, 11–14].
There are many important collaborative MAS applications where autonomous
agents need to form groups, teams or coalitions. The agents may need to form
coalitions in order to share resources, jointly complete tasks that exceed the
abilities of individual agents, or improve some system-wide performance metric
such as the speed of task completion [9, 15].



Among various interesting problems in distributed coordination and control
of such agent ensembles, we have been extensively studying the problem of gen-
uinely autonomous, dynamic and fully decentralized coalition formation [19–23].
So far, we have approached coalition formation from two perspectives common in
the MAS literature: one is the conceptual multi-agent coordination view of coali-
tion formation, and the other is the practical distributed graph algorithm design.
We have integrated these two aspects and proposed a novel, fully distributed,
scalable coalition formation graph algorithm named Maximal Clique based Dis-
tributed Coalition Formation (MCDCF for short) [19, 20]. In the present paper,
we build on the top of our earlier work on designing, analyzing, simulating and
optimizing the MCDCF algorithm, but this time we approach the coalition for-
mation in general, and the MCDCF coalition formation protocol in particular,
from a fresh, negotiation-focused perspective.

The rest of this paper is organized as follows. In Section 2, we summarize
our MCDCF algorithm for coalition formation among collaborative agents, em-
phasizing the graph algorithmic and coordination aspects of that algorithm. In
Section 3, we first motivate the negotiation view of coalition formation, and make
the case for usefulness of such approach even when applied to DPS agents that are
altruistic “by definition” (as opposed to self-interested), as long as those agents
are locally constrained in terms of their perceptions of and actions in the envi-
ronment [18, 21]. We then cast MCDCF in negotiation terms, and show that it
satisfies several highly desirable properties expected from good general-purpose
multi-agent negotiation protocols. Section 4 summarizes our main contributions
and outlines the future work.

2 The MCDCF Protocol and Its Main Properties

We address the problem of distributed coalition formation in the following set-
ting. We assume a multi-agent, multi-task dynamic and partially observable
environment. The tasks are assumed mutually independent of each other. Differ-
ent tasks may have different values or utilities associated with them; moreover,
the utility of a particular task may be differently perceived by different agents.
This problem setting is particularly appropriate for many applications involv-
ing team robotics and autonomous unmanned vehicles; see, e.g., [5, 20, 24]. Our
agents are assumed to be strictly collaborative, not selfish. The agents have cer-
tain capabilities that (may) enable them to service the tasks. Similarly, the tasks
have certain resource or capability requirements, so that no agent or coalition of
agents whose joint capabilities do not meet a particular task’s resource require-
ments can serve that task [13, 20, 21]. Each task is of a certain value to an agent.
Agents are assumed capable of communicating, negotiating and making agree-
ments with each other [2, 11, 14]. Communication is accomplished via exchanging
messages. This communication is not free: an agent has to spend time and ef-
fort in order to send and receive messages [21]. Our distributed maximal clique
based coalition formation algorithm is centered at the idea that, in a peer-to-peer
(in particular, leaderless) MAS, an agent would prefer to form a coalition with



those agents that it can communicate with directly, and, moreover, where every
member of such potential coalition can communicate with any other member
directly [19]. That is, the preferable coalitions are (maximal) cliques. However,
finding a maximal clique in an arbitrary graph is NP-hard in the centralized
setting [4]. This implies the computational hardness that, in general, each node
in the graph faces when trying to determine the maximal clique(s) it belongs to.
However, if the degree of a node is sufficiently small, then finding all maximal
cliques this node belongs to can be expected to be feasible. If one a priori does
not know if all the nodes in a given MAS interconnection topology are of small
degrees, then one may need to impose additional constraints in order to ensure
that the agents are not attempting to solve an intractable problem [20].

The MCDCF algorithm originally introduced in [19, 20] is a distributed graph
algorithm. The underlying graph captures the communication network topology
among the agents, as follows. Each agent is a node in the graph. The necessary
requirement for an edge between two nodes to exist is that the two nodes be
able to directly communicate with one another. The group broadcast nature of
the adopted communication model is primarily due to the application domains
that drove the original MCDCF design, namely team robotics and autonomous
unmanned vehicles, in particular micro-UAVs [18, 21]. The basic idea behind
MCDCF is to efficiently and in a fully decentralized manner partition this graph
into (preferably, maximal) cliques of nodes. These maximal cliques would usually
also need to satisfy some additional criteria in order to form temporary coalitions
of desired quality. These coalitions are then maintained until they are no longer
preferred by the agents – that is, when they are no longer sufficiently useful. In
an actual MAS application, the MCDCF algorithm may need to be invoked a
number of times as a coordination subroutine [19, 20].

Agents form coalitions as follows. Each agent (i) first learns of who are its
neighbors, then (ii) determines the appropriate candidate coalitions, that the
agent hopes are (preferably maximal) cliques that it belongs to, then (iii) eval-
uates the utility value of each such candidate coalition, measured in terms of
the joint resources of all the potential coalition members, then (iv) chooses the
most desirable candidate coalition, and, finally, (v) sends this choice to all its
neighbors. This basic procedure is then repeated, together with all agents updat-
ing their knowledge of (a) what are the preferred coalitions of their neighbors,
and (b) what coalitions have been already formed. In a nutshell, MCDCF is a
distributed graph algorithm that defines a negotiation protocol among collabo-
rative, but locally constrained, autonomous agents. Each agent maintains some
simple data structures capturing what it knows about other, near-by agents.
These data structures include neighborhood lists, candidate coalitions, the cur-
rent coalition choice (i.e., the current proposal of a coalition), and some auxiliary
flags via which the most important aspects of the previous rounds of the proto-
col are summarized. As in any negotiation protocol, what an agent proposes to
some nonempty subset of other agents, may or may not get accepted by other
agents. In particular, MCDCF can be also viewed as a protocol that solves a
variant of distributed consensus problem [6, 25]: a coalition proposal becomes an



actual, agreed upon coalition only if all members of the proposed coalition agree
on that coalition, and moreover they do so at the same time – that is, during the
same round of the MCDCF execution. More details on distributed algorithmic
aspects on how MCDCF goes through its rounds until each agent has joined
some coalition can be found in our prior work [19, 20, 22, 23]. The negotiation
view of MCDCF is further elaborated upon in the rest of the present paper.

We have rigorously established elsewhere that MCDCF is guaranteed to con-
verge in a finite number of rounds, where an upper bound on that number of
rounds can be determined as a function of the total number of agents, N , and the
maximum neighborhood size in the underlying communication topology graph
[20, 21]. When it comes to defining optimality of a coalition structure, we have
adopted “the bigger, the better” principle – but always under the constraint that
each coalition has to be a clique, i.e., that all of its members need to be within
a single hop from each other. More details on the graph-theoretic assumptions
and the constraint optimization aspects of MCDCF can be found in [19–22].

3 The Negotiation View of Coalition Formation

Most of the existing literature on multi-agent negotiation assumes self-interested
agents [6, 25, 26]. Such agents may still want, in certain situations, to cooperate
with each other in various ways, including but not limited to forming teams
or coalitions with each other. However, the motivation behind such cooperation
is still selfish: so, in the context of coalition formation among self-interested
agents, an agent will join a coalition with one or more other agents only if
joining that coalition increases the agent’s expected individual utility (or some
other measure of that agent’s individual payoff) [20, 25]. Consequently, when
it comes to negotiation protocols for coalition formation among self-interested
agents, the protocol needs to specify how are the “spoils” of cooperation going
to be distributed among the agents. Algorithmic game theory has provided the
theoretical framework for systematically addressing these complex issues [6, 25].

We observe, however, that a need for negotiation may arise among non-
competing agents, as well – provided that those collaborative, non-selfish agents
see the world differently. In particular, if different agents have different local
views of the relevant aspects of their environments (such as tasks, resources,
other agents, etc.), then it can be expected that these different agents will have
different preferences on how would they like the world to be, and what should be
the next step (action or sequence of actions) to bring about the most desirable
state of the world [26]. These remarks would hold even in purely collaborative,
distributed problem solving (DPS) settings where agents share a global objective
or global utility function to be optimized, and do not have individual utilities
per se [18, 20]. In other words, the need to negotiate might be due simply to
the fact that the agents see the world differently, not necessarily that they are
self-interested in the usual sense from economics or game theory. This is of con-
siderable practical importance, since in many collaborative MAS applications
involving the real-world software, robotic or other types of autonomous agents,



locally bounded sensing and communicating abilities, and hence “world-views”,
are a rule rather than an exception [21]. In such locally constrained MAS set-
tings, it is to be expected that different agents will perceive the world differently,
and hence have different preferences over the possible states of the world. Thus,
negotiation may be a useful methodology to reach distributed consensus among
strictly collaborative agents. Examples of distributed applications where nego-
tiation may be the way to go about reaching distributed consensus range from
aforementioned team robotics and unmanned vehicle applications [18, 24] to de-
centralized resource sharing in wireless communication networks [8] to enforcing
consistency in distributed databases or data warehouses [3].

Consider an application such as a large ensemble of unmanned aerial vehicles
(UAVs) deployed on a multi-task mission and spread across a sizable geographic
area [5, 24]. Assume these UAVs are truly autonomous, and in particular not
remotely controlled nor subject to centralized coordination. In such scenario, it
is quite likely that different UAV agents will detect different tasks (for exam-
ple, different regions or points of interest on which to perform surveillance), and
hence strive to form different coalitions based on those tasks’ estimated values
and resource requirements [18]. Moreover, two different UAVs may perceive the
same task differently – in terms of the expected utility from completing that
task, estimated resource requirements for the task completion, etc. In such sce-
narios, even though all UAVs work on behalf of the same organization and are
“team players” by design, they will still have different local preferences, and,
consequently, may want to form different coalitions with their counterparts. The
main lesson to be drawn from the general discussion, as well as the UAV ex-
ample of a collaborative MAS where negotiation may be quite useful, is that
sometimes the differences in agents’ perception and preferences, and not neces-
sarily their “selfishness”, drive the need for negotiation. With that in mind, we
turn to analyzing the MCDCF algorithm from a negotiation standpoint.

3.1 MCDCF from the Multi-Agent Negotiation Perspective

We outlined the generic problems of MAS coordination and cooperation, and
then narrowed down our discussion to the more specific problem of distributed
coalition formation. We then presented a distributed graph algorithm for multi-
agent coalition formation, viewed as a coordination subroutine in a fully de-
centralized MAS setting. We subsequently motivated the usefulness and appli-
cability of the negotiation approach to MAS distributed coalition formation –
even when the agents aren’t self-interested and can in general be expected to
share their objectives. After discussing the problem of coalition formation from
distributed graph algorithm design and MAS coordination viewpoints, we now
discuss that algorithm from a negotiation perspective. We do so at two lev-
els: (i) from the rules of encounter, that is, mechanism design perspective; and
(ii) from the perspective of negotiation strategies for each individual agent [26].
We will discuss (i) in detail in the next subsection. To address (ii), we revisit
how MCDCF works from a standpoint of a single agent, where, this time, the
algorithm is viewed as a negotiation protocol.



We recall that multi-agent negotiation is in general comprised of three ma-
jor components: the negotiation protocol, the object(s) of negotiation, and the
agents’ decision making models [6]. A negotiation protocol is a set of rules that
govern the interaction among agents, and will be discussed in more detail shortly.
Negotiation objects are a general concept capturing the range of issues over which
agents need to reach agreement. In our context, there is only one such object of
negotiation, namely, who will be forming a coalition with whom. Therefore, our
setting as discussed in Section 2 is of the simplest, single object of negotiation
nature, and this aspect of negotiation interaction need not be discussed further.
Lastly, agents’ decision making models have been defined as the decision-making
apparatus that the agents employ in order to ensure acting in accordance with
the negotiation protocol, so that they ensure satisfying their objectives (which,
in our case, is to form coalitions). In general, (i) different agents may have dif-
ferent decision making models, and (ii) each agent’s decision making model may
depend on the protocol in place, the nature of object(s) of negotiation, and the
range of operations that each agent is allowed to perform within the negotiation
protocol [6]. In case of MCDCF, agents exchange coalition proposals until an
agreement is reached. In particular, an agent engaging in a negotiation protocol
based on MCDCF needs to be able to determine (a) whether it should stick to
the current coalition proposal or change it to a different candidate coalition, (b)
in case of the latter, which among possibly several available candidates for the
new coalition proposal to adopt, and lastly (c) whether its coalition proposal has
been accepted by the neighboring agents to whom that proposal was sent [22].

From a negotiation perspective, MCDCF is a distributed negotiation proto-
col that is carried out in several rounds. In each round, every agent, based on
the history of the previous rounds and simple internal logic described in detail
in [20–22] makes a coalition proposal to some nonempty subset of its neighbors.
This coalition proposal may either be the same as what the agent proposed in
the previous round, or it may be different; in case of the latter, the new coali-
tion proposal is required to be fresh, i.e., to be a coalition that this agent has
not proposed in any of the prior rounds. Whether an agent that has not joined
a coalition yet ought to propose a new coalition or stick to its current choice
is determined based on the internal logic that uses the ChoiceFlag and Neigh-
borFlag information, as well as the proposals (and values of appropriate flags)
received from the neighboring agents [19, 20]. We make the important obser-
vation that there is no explicit dependence on the messages (that is, coalition
proposals) received from the neighbors during the previous rounds. That is, in
each round, based on the proposals (and some additional information, captured
by the appropriate flag values) received from the neighbors, an agent appropri-
ately updates its internal state and, at the next round, updates the information
about its neighbors. The decision flag is used to keep track, which among the
neighbors have already joined a coalition in the prior rounds, and which are still
engaging in negotiation. These properties ensure modest memory requirements
of each agent: an agent only needs to keep a brief summary of the past rounds,
not their detailed history.



In summary, each agent keeps negotiating from one round to the next, until
eventually one of the following conditions is met:

– either a coalition proposal made to some of the agent’s neighbors in a
given round actually coincides with what each of those neighbors is proposing
in that same round, in which case the agreement is detected and immediately
established,

– or else, the agent has traversed its list of candidate coalitions and has
arrived to the singleton coalition as the only still available option; in that case,
the agent recognizes this “exit criterion”, notifies the remaining neighbors (if
any) of this situation, and forms a singleton coalition, whereupon it changes its
DecisionFlag to 1 and exists the further negotiation.

In [21], we carefully prove that, under certain assumptions about sparseness
of the underlying network topology, the amounts of communication, computation
and storage per agent, per round of MCDCF are all reasonably modest. We have
also established that the number of rounds is guaranteed to be finite regardless
of the underlying topology, and polynomially bounded for sufficiently sparse
network topologies.

3.2 The Mechanism Design View of MCDCF

We now turn attention to some desirable properties of negotiation protocols in
general, and how well MCDCF viewed as a negotiation protocol for coalition for-
mation measures up with respect to those properties. We first briefly review the
basic concepts of the underlying theoretical framework for formulating desirable
properties of negotiation protocols; that framework is provided by a sub-area of
game theory, called mechanism design [6, 10, 25]. In the context of multi-agent
systems, mechanism design addresses how to define the rules of multi-agent in-
teraction in general, and of negotiation protocols, in particular [10]. Specifically,
mechanism design for negotiation protocols defines the principles and policies so
that, if a given negotiation protocol obeys them, and all the agents involved in
negotiation “play by the rules” of the protocol, then certain properties can be
guaranteed at the system level, regardless of the exact details of the negotiation,
what kind of agreement (if any) is the negotiation going to result in a particular
scenario, and the like. Following T. Sandholm in [25], we outline some of the
highly desirable properties of a multi-agent negotiation protocol, and then dis-
cuss how well our MCDCF algorithm performs with respect to those properties.

– Guaranteed success: a negotiation algorithm holds this property if it en-
sures that, eventually (meaning, after finitely many negotiation rounds), an
agreement is certain to be reached.

– Pareto efficiency: an outcome, Op, of a negotiation protocol is Pareto effi-
cient if there is no other outcome that would make one or more agents better
off than in Op, without making at least one other agent worse off.

– Individual rationality: a negotiation protocol is individually rational if fol-
lowing the protocol (as opposed to “cheating” or not engaging in it at all) is
in the best interest of negotiation participants.



– Stability: a negotiation protocol is stable if all agents have an incentive to
follow a particular strategy allowed by the protocol; that is, while there may
be “legal” ways to deviate from a particular strategy, an agent that would
choose such a way to deviate would, in general, be worse off than sticking to
the stable strategy. In game theory, various notions of equilibria have been
introduced to capture this notion of stability. The best known such notion
is that of Nash equilibrium.

– Simplicity: a protocol is simple if each participant who is using the protocol
can easily (i.e., computationally tractably) determine its stable or optimal
strategy among the allowable strategies.

– Distribution: a protocol should be robust and fault-tolerant, esp. with re-
spect to “single points of failure”.

The guaranteed success property in our case amounts to guaranteed conver-
gence after finitely many rounds. We have established the convergence proper-
ties of our MCDCF algorithm in [19, 20]. Hence, this property of MCDCF when
viewed as a negotiation protocol holds. Similarly, since an agent cannot be worse
off than remaining alone, engaging in coalition formation process results in at
least as desirable an outcome as not engaging in coalition formation at all, and
is therefore, in general, individually rational thing to do. (Discussion on how to
properly evaluate, and possibly trade-off, the cost of engaging in MCDCF proto-
col in hope of joining some nontrivial coalition, versus saving oneself the trouble
and the cost – and staying on one’s own, is beyond our current scope; we do
assume that the nature of tasks necessitates that agent join coalitions whenever
possible.)

More interesting is Pareto efficiency of MCDCF. While we have not formally
established Pareto optimality in our prior work, the simulations with the original,
“baseline” version of MCDCF in practice always resulted in Pareto-optimal final
coalition structures. However, the subsequent modifications and optimizations,
especially those related to how each agent traverses a lattice of its candidate
coalitions [22], while in general ensuring faster convergence once we scaled up
our implementation from dozens to several hundreds of agents, also in certain
cases may “hurt” the Pareto efficiency. Further modifying the algorithm so as
to ensure Pareto efficiency, and then formally establishing that highly desirable
property, are the subject of our ongoing work.

When it comes to simplicity, the MCDCF protocol is indeed fairly simple,
and (unlike most negotiation protocols found in the literature) actually proven
to be scalable to dozens or even hundreds of agents; this scalability holds under
the single but critically important assumption of relative sparseness of the under-
lying graph, as discussed in earlier sections. We point out that this assumption
indeed often holds in practice, and can be imposed by the system designer when
it naturally does not hold, as we discuss in detail in [19–21]. Our protocol is very
simple in terms of the communication language required for carrying out the
negotiation process: the agents need to exchange tuples that encode the current
coalition proposal and a few extra bits of auxiliary information (cf. the deci-
sion, choice and neighbor flags discussed earlier). For more details on the exact



content of coalition proposal messages that agents exchange, see [21]. Lastly, as
discussed earlier, MCDCF is a fully decentralized, genuinely distributed peer-
to-peer algorithm; as such, when viewed as a negotiation protocol, it is robust
to single points of failure and, in particular, satisfies the distribution property
above.

4 Summary and Future Work

This paper has three main objectives: it (i) summarizes some aspects of our
research on distributed coalition formation, (ii) motivates extending the nego-
tiation paradigm from the traditional, game-theoretic competitive multi-agent
domains to collaborative, distributed problem solving agents that are locally con-
strained and hence have different local preferences, and lastly (iii) discusses our
coalition formation protocol and its properties from a negotiation standpoint.
While the original motivation behind MCDCF was admittedly somewhat differ-
ent, we have argued that our approach to coalition formation actually provides
a simple and elegant negotiation protocol that has many desirable properties
– and is demonstrably scalable to much larger collaborative MAS than what
is commonly found in the existing game theoretic and negotiation-centric MAS
literature. This scalability is to a considerable extent due to two particular prop-
erties of MCDCF: (1) it is a local algorithm, in that each agent only directly
interacts with its immediate, one-hop neighbors; and (2) the messages exchanged
during the course of the protocol execution are of a very simple nature.

Our plans for the future work include both some short-term, specific prob-
lems and a longer-term, broader research agenda. In the short term, we would
like to determine whether our coalition formation protocol can be made Pareto
efficient via relatively simple modifications to the coalition proposal exchange
process. Insofar as the longer-term research agenda is concerned, we are inter-
ested in further expanding on various distributed and highly scalable negotiation
protocols for coordination and cooperation in MAS, and investigating the poten-
tial benefits of multi-tiered reinforcement learning to more effective coordination
and coalition formation.
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