
Fast PCA Computation in a DBMS with
Aggregate UDFs and LAPACK

Carlos Ordonez Naveen Mohanam Carlos Garcia-Alvarado

Predrag T. Tosic Edgar Martinez

University of Houston
Houston, TX 77204, USA

ABSTRACT
Efficient and scalable execution of numerical methods in-
side a DBMS is difficult as its architecture is not suited
for intense numerical computations. We study computing
Principal Component Analysis (PCA) on large data sets via
Singular Value Decomposition (SVD). Given the difficulty
to program and optimize numerical methods on an existing
DBMS, we explore an alternative reusability approach: call-
ing the well-known numerical library LAPACK. Thus we
study several alternatives to summarize the data set with
aggregate User-Defined Functions (UDFs) and how to effi-
ciently call SVD numerical methods available in LAPACK
via Stored Procedures (SPs). We propose algorithmic and
system optimizations to enhance scalability and to push pro-
cessing into RAM. We show it is feasible to efficiently solve
PCA by first summarizing the data set with arrays incre-
mentally updated with aggregate UDFs and then pushing
heavy matrix processing in SVD to RAM calling LAPACK
via SPs. We benchmark our solution on a modern DBMS.
Our solution requires only one pass on the data set and it
exhibits linear scalability.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases

Keywords
Big data, LAPACK, linear algebra, numerical methods, SQL

1. INTRODUCTION
Most data mining, statistics and mathematical models

are based on linear algebra computations [3]. Programming
these numerical methods inside a DBMS is difficult and their
performance is generally bad. At a fundamental level, rela-
tional algebra and matrices [3] are quite different mathemat-
ical abstractions, requiring different programming languages
for their computation. There are good reasons to study the
integration of SQL and LAPACK [3]. Array support remains
limited in SQL, but it is now available within User-Defined
Functions (UDFs) and Stored Procedures (SPs) source code,

c© ACM, 2012 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in CIKM Conference 2012.
http://doi.acm.org/10.1145/

with the added benefit that it is unnecessary to modify inter-
nal DBMS source code. Moreover, such arrays are directly
allocated and manipulated in RAM, using a traditional pro-
gramming language. We believe DBMSs have the potential
to solve analytic tasks beyond data mining. In general, it is
beneficial to call numerical libraries (e.g. LAPACK, BLAS)
to avoid redeveloping and re-optimizing existing methods.
From a hardware perspective, it is critical to leverage com-
puting power in multi-core architectures, especially now that
CPU speeds have reached a clock speed threshold. Finally,
it is difficult, time-consuming and error-prone to change a
DBMS internal architecture and subsystems to support nu-
merical computations. LAPACK routines use BLAS to per-
form dense matrix operations such as LU decomposition (to
solve linear equations), QR decomposition (to solve least
square problems), and also singular value and eigen prob-
lems. These libraries exploit cache memory, RAM and mul-
ticore CPUs. Even though MapReduce is now becoming
a hype for so-called big data analytics, the need to analyze
data sets inside a DBMS remains a pressing challenge. Based
on such motivation, we study how to integrate LAPACK
with the DBMS, leveraging its SQL programming and ex-
tensibility mechanisms, especially UDFs and SPs. Thus our
contributions are memory-efficient scalable algorithms and
database-oriented optimizations to solve PCA on large data
sets. Our solution is based on data set summarization with
aggregate UDFs and solving SVD on its correlation matrix
calling the LAPACK library via SPs. Our optimized algo-
rithms can solve PCA problems inside a DBMS an order of
magnitude larger and two orders of magnitude faster than
existing state-of-the-art algorithms.

2. DEFINITIONS AND BACKGROUND

PCA and SVD
Let X = {x1, ..., xn} be the input data set with n points,
where each point has d dimensions. That is, X is a d × n
matrix, where the point xi is represented by a column vec-
tor (equivalent to a d × 1 matrix) and i and j are used
as matrix subscripts. Solving PCA on X is equivalent to
solving SVD on its variance-covariance matrix (commonly
called covariance matrix) or its correlation matrix. The cor-
relation matrix ρ is a d×d matrix, where the correlation
coefficients of ρ indicate the strength and direction of the lin-
ear relationship between two variables in the range [−1, 1]:



ρab = Vab/
√

VaaVbb, where V is the variance-covariance ma-
trix of X, a positive semi-definite matrix. There is a direct
relationship between PCA and SVD when principal compo-
nents are calculated from the correlation matrix ρ. We use
the correlation matrix ρ by default since ρ = XXT when
X is normalized with a z-score (zero mean, standard devia-
tion equals 1). We would like to emphasize our algorithms
generalize to the covariance matrix as well.

The standard singular value decomposition [3] to solve
PCA is: XXT = UE2V T , where U and V T are eigenvectors
of d×d matrix and E2 is a d×d-matrix. Using the correlation
matrix for XXT , the problem is to find a set of eigenvectors
U and the set of eigenvalues λ2

i in the diagonal of E2.

SQL Extensibility and UDFs
Since SQL is rigid and slow to process non-relational data,
such as matrices, most DBMS provide capabilities to embed
code into SQL. These features include user-defined aggregate
functions (UDFs, also called user-defined aggregates) [4, 5],
stored procedures (SPs) and table-valued functions (TVFs)
[1] programmed in C-like languages (i.e., not SQL). UDFs
are called in the SELECT statement. In our case, UDFs
enable arrays and loops. Aggregate UDFs and SPs are pro-
cessed at runtime in a different manner. Aggregate UDFs
are processed in three phases and enable multi-threaded pro-
cessing, leaving thread management to the DBMS, while en-
joying the capability to interleave I/O with CPU processing.
On the other hand, SPs enable sequential processing on the
input table with a cursor interface (reader/writer) producing
several output tables, avoiding exporting data. In our case,
SPs help flexible matrix manipulation. Finally, User-defined
types (UDTs) simulate vectors.

LAPACK Numerical Library
The Linear Algebra PACKage (LAPACK) [3] is a well-known
open-source numerical library written in FORTRAN that
uses lower level routines from the BLAS (Basic Linear Al-
gebra System) library, which in turn performs basic matrix
operations. An alternative library called DotNumerics, is
the LAPACK source code rewritten in C# for the Microsoft
.NET environment. Therefore, we will study how to call
LAPACK and the DotNumerics C# source code libraries
via Stored Procedures (SPs). We emphasize that LAPACK
and BLAS are the standard libraries used underneath math-
ematical tools like MATLAB or the R package.

3. SOLVING PCA WITH SVD
Based on the state of the art [5], we know the best way

to solve SVD on statistical matrices from large data set is
to compute sufficient statistics in one pass on X in time
O(d2n) and then perform the rest of computations in time
O(d3) over the d × d correlation matrix. We take a fur-
ther step by splitting the manipulation of the correlation
matrix into two steps in order to reorganize matrix entries
in RAM. Therefore, we will defend the idea that the best
way to compute SVD, calling LAPACK in the DBMS, is to
perform these three steps:

1. Compute sufficient statistics: n, L, Q;

2. Compute correlation matrix ρ from n, L, Q and pass ρ
to LAPACK as one block in RAM;

3. Call SVD method from LAPACK library.

3.1 Compute Summarization Matrices
The correlation matrix ρ can be calculated in one pass

over X using summary matrices: n, L and Q (also called
sufficient statistics [5]). Let

L =
∑

i

xi, Q = XXT =
∑

i

xixi
T ,

where n is data set size, L is d×1 vector with the linear sum
of points and Q is the Quadratic sum of points in a d × d
matrix. In other words, Q is the sum of the cross-products
of each point dimensions (as a vector outer product with
itself). These summary matrices allow us to compute several
statistics efficiently, due to their small size compared to X
when d � n. The correlation ρab between dimensions a and
b is: ρab = (nQab − LaLb)/

√

nQaa − L2
a

√

nQbb − L2

b .
Summarization matrices L and Q can be computed with

three main methods in a DBMS: (1) with SQL queries only
(no UDFs, or SPs); (2) with Stored Procedures (SPs; similar
to reading a flat file); (3) with aggregate UDFs (similar to
MapReduce). X is assumed to be stored in a table with a
horizontal layout by default (d dimension columns per row),
to enable fast block-based I/O scans. Alternatively, X can
be stored with a vertical layout, with one dimension per row
for high d and a sparse matrix X. Refer to Section 2 for X
definition and an overview on UDFs and SPs.

Method (1) is the most portable and easiest to program.
Even though Method (1) is theoretically interesting and
portable, we will show it is quite slow. Also, method (1)
faces DBMS limitations on a maximum number of columns
when X has a horizontal layout.

Method (2), based on a SP, uses a reader() function to scan
X table rows, one at a time and calculates n, L, Q. The
SP runs sequentially on a single thread and it can create
lists, arrays, or any enumerable object, casting results as
relational tables. The SP approach is less portable compared
to an aggregate UDF, yet simpler in terms of programming.

Method (3) based on aggregate UDF, requires passing xi

as a user-defined type (UDT) where each dimension becomes
one attribute in the UDT (i.e., simulating a vector). We
emphasize this approach is cleaner and faster than previous
work passing xi as a string [5] (which requires parsing di-
mension values at runtime). The UDF allocates and updates
L, Q in arrays in RAM with multi-threaded processing. The
correlation matrix is returned with a second UDT to enable
an efficient call to LAPACK, explained in detail below.

We are not computing the outer product for Q with LA-
PACK routines. There is a good reason: we aim to exploit
the parallel multithreaded I/O capability of the DBMS to
compute the aggregate UDF and do a table scan on X.

3.2 Correlation Matrix
The correlation matrix is calculated with arrays in both

the SP and the aggregate UDF. The fundamental difference
between an aggregate UDF and the SP is the aggregate UDF
works in parallel with multiple threads and thus each thread
has its own local partition of n, L, Q. In the aggregate UDF,
once the values of n, L, Q are merged in the merge phase,
the correlation matrix is sequentially computed in the ter-
minate phase with the computed n, L, Q. Finally, the
correlation matrix ρ is returned as a UDT in the SVD call.

In order to call LAPACK the rows of the correlation ma-
trix ρ must be stored in contiguous memory (e. g. a single



block of RAM address space), obeying FORTRAN internal
array storage (column major order).

To guarantee block-based RAM storage, a one-dimensional
array of size d×d is created and for any given entry aij of an
A matrix of size d×d, the address is i∗d+j. Since ρ is a sym-
metric matrix, meaning ρij = ρji, the values stored in mem-
ory will be the same in column major order and row major
order. For instance, the“column major order”block for a 3×
3 A matrix is: [A11, A21, A31, A12, A22, A32, A13, A23, A33].

In FORTRAN’s column major order the second subscript
changes more slowly than the first one. Since both arrays are
in RAM and conversion from a bidimensional array into a
unidimensional array (i.e., a “flattened” matrix) takes place
in RAM, this reorganization takes negligible time.

3.3 Call SVD Method in LAPACK
We basically exploit a SP to receive ρ and produce the out-

put matrices with eigenvalues and eigenvectors. We present
two alternatives to call the LAPACK library: (1) FOR-
TRAN LAPACK: single threaded precompiled FORTRAN
code; (2) C# LAPACK: single threaded LAPACK source
code, compatible with Microsoft .NET environment.

The best system programming approach is to allow man-
aged code to run by itself (LAPACK Source code) and un-
managed code (Precompiled FORTRAN LAPACK library)
via a wrapper class as a way to interface the dynamic linked
library (DLL) calls. We explain unmanaged and managed
code management at runtime in the next subsection.

Alternative 1: LAPACK provides a version of the BLAS
which is not optimized for any CPU architecture. This refer-
ence BLAS implementation may be much slower than opti-
mized implementations, especially for matrix factorizations
like SVD and other computationally intensive matrix oper-
ations. The important steps required to call the LAPACK
SVD routine within DBMS are creating the wrapper class
that calls the LAPACK routine, adding the compiled li-
braries to the module, linking and invoking the SVD call
in the linked module being imported.

Alternative 2: This version uses C# source code (Dot-
Numerics) which is a faithful translation of the LAPACK
library originally written and tuned in Fortran. It simply
rewrites all the driver routines and numerical calls in the
LAPACK library for the .NET development platform. This
version is the easiest to integrate between the two versions
as there is no need to use a multiple language runtime in-
terface (.NET CLR in our case) to link the external library.
Thus this version is the simplest.

3.4 Runtime Processing
A LAPACK call can be managed by the running environ-

ment of the DBMS (managed/protected code) or directly
by the operating system (unmanaged/unprotected code) [1].
Therefore, the LAPACK C# code implementation is “man-
aged” and the LAPACK (Fortran object code) libraries are
“unmanaged”. The decision on which runtime environment
manages this call is related to the approach taken for the in-
tegration. The pros of managing a routine inside the DBMS
is that the thread memory is protected by the system and
the data structures passed along the modules do not need
any marshaling. On the other hand, if a routine is called as a
dynamic library (e.g. DLL in Windows), the operating sys-
tem (OS) is in charge of managing the call. An immediate
disadvantage of such scenario, aside from the need to mar-

Table 1: Time and Cost Analysis
Summary matr. Comp/pass Call SVD

metric n, L, Q corr matrix ρ LAPACK

FLOPS nd2/2 10d2 8

3
d3 + 12d3

Time O(nd2) O(d2) O(d3)
I/O cost n 0 d + d2

Table 2: Hardware and Software Specifications.
Baseline Server Default Server

Dual Core Quad Core
Intel Xeon E3110 X3210
No of Cores 2 4
Clock Speed 3 GHz 2.13 GHz
RAM 4 GB 4 GB
Disk 1 TB 1 TB
OS Wind Serv ’03 32bit Win XP ’02 32bit
Mem. allocated by OS 4 GB 3.50 GB
DBMS SQL SERVER 08 SQL SERVER 08

shal the data structures across modules, is that the DBMS is
unable to control the stability of the system, especially with
memory leaks (common with new code). Despite this risk,
an unmanaged function call is able to take full advantage of
a variety of optimizations specific to a particular hardware
architecture. Regardless of the running environment, man-
aged code and unmanaged code support multithreaded pro-
cessing. However, the threads of managed code (which have
to be explicitly defined) have to reside within the DBMS
space. Instead, thread support for unmanaged code is pro-
vided entirely by the operating system.

The number of floating point operations (FLOPs), big O()
(based on d and n) and I/O cost for the three steps are shown
in Table 1. The first column has the number of FLOPS re-
sulting from the n, L, Q computation. The second column
shows the time to needed to convert a bidimensional array
to a single block with a unidimensional array. The last col-
umn has the number of FLOPS for SVD solved on ρ and
it includes an intermediate step from the dgesvd() function
that reduces the general matrix into a bidiagonal matrix.

4. EXPERIMENTAL EVALUATION
We present benchmarking experiments on the three main

steps: summarization matrices, getting the correlation ma-
trix and solving SVD. Time to write SVD result matrices at
the end is not considered. We compare processing times on
three hardware configurations: true Dual core, true Quad
core and “virtual” Dual core, as explained below. We record
times from seven runs, eliminating the maximum and mini-
mum, getting the average of the remaining five. The DBMS
server memory (buffers) is cleared before each run. Accuracy
(numerical precision) is not measured because LAPACK is
a reference library. Times are given in seconds.

We conducted experiments on two rack servers having
Dual and Quad core CPUs, respectively, shown in Table
2. We conducted experiments deactivating two cores out of
four cores in the true Quad core machine by making use of
SQL Server 2008 DBA management interface (I/O and CPU
affinity) and make it run as a simulated Dual core server with
every other setting of hardware and software configurations
being the same. This virtual Dual core was our default base-
line configuration. Our Dual-core and Quad-core machines
differ with respect to CPU clock speeds, cache memory and



Table 3: Comparison to compute PCA (d = 100).
n Bulk PCA PCA PCA PCA

Exp. R queries SP AggUDF+LAPACK
100k 43 143 2411 27 4

1M 188 1440 4030 149 41

10M 1890 14430 14173 1343 400

Table 4: Comparison for PCA steps (d = 100).
n NLQ NLQ NLQ SVD SVD SVD

query SP AggUDF query SP LAPACK
100k 132 13 4 2279 14 0.1
1M 1127 132 41 2903 17 0.1

10M 11290 1326 400 2518 17 0.1

bus speeds. Hence, to overcome these configuration differ-
ences, we normalized measured execution times in the true
Dual core machine and the true Quad core machine consid-
ering CPU clock speed.

We used the ISOLET data set from the UCI Machine
Learning repository. The original data set had d=617 at-
tributes and n = 7797 data points. Data sets varying d and
varying n (keeping the other size fixed) were created out of
the ISOLET data set using replication to reach the desired
d and n sizes. The data set X is stored on a DBMS table
with d columns with double precision in order to get highest
accuracy and work with the same precision as LAPACK.

4.1 Time Complexity and Overall Time
We ran these experiments on the Quad core server. We

set d = 100, which represents high dimensionality, produc-
ing large matrices. We emphasize again that RAM (DBMS
buffers) is cleared before each run to make sure X is read
from disk. We compare the R statistical package, SQL
queries, SPs and UDFs.

Table 3 compares several alternatives to compute PCA
varying n keeping d fixed. We can observe the time to ex-
port the data set with the fastest available mechanism out-
side the DBMS (bulk export) is a bottleneck. In fact, that
time is greater than the time to process the data set with
SPs or UDFs. We can see the R package is quite slow. No-
tice that R works in RAM and since X does not fit in RAM
it must be processed in blocks of 100k rows to derive the
correlation matrix. The second slowest alternative are SQL
queries. In this case the algorithm becomes faster than the
R package with the largest n, but overall they exhibit similar
speed. However, considering export times SQL queries beat
the R package. Then we can see SPs become an order of
magnitude faster than SQL queries. Finally, our proposed
solution combining UDFs and LAPACK is an order of mag-
nitude faster than SPs, which we consider an achievement.
The gap between UDF/LAPACK and SP becomes signifi-
cant when n =10M. Moreover, this alternative shows clean
linear scalability. In short, our solution is much faster than

Table 5: Time complexity for d (n=1M).
d NLQ NLQ SVD SVD

SP Agg UDF SP LAPACK
100 132 41 17 0.1
200 460 121 196 0.4
400 1314 432 2683 3.4
800 3646 1731 12974 20.9

0

2000

4000

6000

8000

10000

12000

14000

0 200 400 600 800 1000

P
ro

c.
 ti

m
e 

(s
ec

s)

Dimensionality (d)

Dual_NLQ_CORR_SP
Quad_NLQ_CORR_SP

Dual_NLQ_CORR_AggUDF
Quad_NLQ_CORR_AggUDF

Figure 1: Computing matrices L, Q with n=1M
(Dual core vs. Quad core).

the rest and it takes a small fraction of the time to export
the data set (20%).

Table 4 provides a breakdown of PCA into two main steps:
getting sufficient statistics n, L, Q and solving SVD on the
correlation matrix. Trends are consistent with the overall
time to compute PCA. Most of the time is spent summariz-
ing X, which is both I/O intensive (a full table scan) and
CPU intensive O(d2) flops. The UDF is much faster than
the SP to compute n, L, Q, which is explained by parallel
I/O and aggregation. Solving SVD is more CPU intensive.
Given such high d the time to compute SVD with queries is
significant: queries are inefficient for matrix computations.
On the other hand, SPs are fast to solve SVD, but not the
fastest. Since LAPACK works at peak performance, the
time to solve SVD in LAPACK is negligible compared to
the time to compute n, L, Q.

Since we proved aggregate UDFs are much faster than the
R package and SQL queries it in unnecessary to analyze their
scalability on d. Table 5 shows time as d varies while keeping
n constant for the fastest mechanisms to solve PCA: UDFs
to summarize X and SPs to call LAPACK. Due to DBMS
limitations, d = 1600 could not be handled by the UDF, but
d = 800 produces very large matrices. Time grows O(n2) for
n, L, Q matrices and SVD. Times for LAPACK now become
noticeable for high d (barely above one second), but they are
still orders of magnitude smaller than the time to summarize
X with n, L, Q. The aggregate UDF is also much faster
than the SP, but the difference compared to time in n is
less significant, highlighting O(n2) flops. Clearly, UDFs and
LAPACK are a winning combination.

4.2 Time per Step

Step 1: Compute Summarization Matrices
The summarization matrices and correlation matrix com-
puted using the reader function and arrays in a SP took
more time on both Dual and Quad core machines compared
to the other approach using the aggregate UDF as we see in
Figure 1. The functions in CLR SP works sequentially in a
single thread and thus no parallelization is exploited here.
A table scan takes place sequentially on a large intermediate
file; thus there are no performance benefits with more cores.

In case of aggregate UDFs, the Quad core runs much faster
than the Dual core by exploiting parallel processing of mul-
tiple cores as shown in Figure 1. The table data is read
in parallel scans with multiple threads on the accumulate
phase, computing the corresponding n, L, Q on each thread.



Table 6: Computing SVD on correlation matrix
(Dual vs. Quad core; times in secs).

d LAPACK C# LAPACK C#
Dual Dual Quad Quad

16 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0
64 0.0 0.1 0.0 0.0

128 0.1 0.2 0.1 0.2
256 0.9 1.4 0.9 1.4
512 7.6 10.5 7.6 10.5

Table 7: Profiling steps with n = 1M (times in secs).
d = 256 Dual % Quad %
Summary matr. 456.0 99.9 216.0 99.9
Compute/pass corr mat 0.0 0.0 0.0 0.0
Call SVD/LAPACK 0.9 0.1 0.9 0.1
Overall 457.0 100.0 217.0 100.00

We can observe that Quad core performed almost twice as
fast as the Dual core server to process the aggregate UDF
(linear speedup). Therefore, an aggregate UDF to compute
summarization matrices is the best mechanism when using
multiple cores.

Step 2: Compute and Pass Correlation Matrix to UDF
Since the correlation matrix computation is the same in-
side the aggregate UDF and the SP, the execution time is
the same on both and it is negligible compared to the time
taken for computing n, L, Q and SVD. The time to convert
the correlation matrix in two dimensions into a block is neg-
ligible.

Step 3: Call SVD Method from LAPACK Library
The LAPACK (precompiled Fortran) version runs faster than
the LAPACK C# code version, as shown in Table 6. We
must mention d = 1024 cannot fit in RAM allocated by the
UDF. The difference is one order of magnitude at highest d
(ten times slower). The reason is, the standard LAPACK
library is single threaded and hence no matter how many
cores are available for the DBMS, they are not exploited.

Table 7 shows relative importance of each step. Evi-
dently I/O is the bottleneck because the entire table must
be scanned. Since this matrix summarization step is I/O
bound and already using parallel multithreaded processing,
it seems difficult to accelerate it further. In short, these ex-
periments prove our solution effectively exploits a multicore
CPU, especially for data set summarization.

5. RELATED WORK
To the best of our knowledge, there is not an efficient one-

pass algorithm to solve PCA that can work in parallel and
that can interact with the LAPACK library. More specifi-
cally, we are not aware of previous attempts to call LAPACK
via SPs manipulating matrices in RAM, which is more diffi-
cult and useful than calling LAPACK in the internal DBMS
source code. On the other hand, there has been interest on
incorporating arrays into SQL [1]. Most of prior research
has been in the direction of calling LAPACK outside the
DBMS running on multi-core CPU architectures [2].

6. CONCLUSIONS
We showed the best way to compute PCA is to do it

in three phases: data set summarization with an aggre-
gate UDF, building and reorganizing correlation matrix as
a block, and calling the SVD numerical method in the LA-
PACK library, passing the matrix in block form in RAM.
We showed it is feasible and efficient to call the numeri-
cal library LAPACK within a UDF, avoiding matrices being
exported to external files. The key mechanism that enables
calling LAPACK functions is to reorganize the input matrix
into column major order, departing from row-based stor-
age, into one block. Processing the matrix and calling SVD
are quite efficient because they work in RAM. Pre-compiled
FORTRAN code is the most efficient code for matrix compu-
tations. For a large correlation matrix (one thousand dimen-
sions) SVD is solved in seconds; SQL queries are orders of
magnitude slower. The DBMS internal parallel threaded ar-
chitecture, memory manager and the LAPACK library are
treated as black boxes, providing an abstract component-
based architecture. Even though internally integrating LA-
PACK with a DBMS could potentially achieve greater per-
formance, we believe it is not a plausible idea due to the
programming effort and marginal performance gain. Our
optimized UDF-based algorithms can help solve PCA an or-
der of magnitude faster than SQL queries and the R package.
In summary, we presented a solution to call the LAPACK
linear algebra library in a modern DBMS, based on UDFs,
achieving linear scalability on data set size, crunching large
matrices and working at peak CPU speed.

There are several important research issues. We need to
study parallel processing in depth. We want to study if the
same UDF/LAPACK combined approach is applicable to
other linear models. We will develop DBMS mechanisms to
handle large matrices in LAPACK, especially when they can-
not fit in RAM. We will study tradeoffs between UDTs and
recent array extensions in SQL. Finally, we intend to create
mechanisms to call LAPACK during a table scan through
scalar UDFs that can further accelerate aggregate UDFs.

Acknowledgments
This work was supported by NSF grant IIS 0914861.

7. REFERENCES
[1] J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire,

and C. Kleinerman. .NET database programmability
and extensibility in Microsoft SQL Server. In Proc.
ACM SIGMOD Conference, pages 1087–1098, 2008.

[2] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra.
Parallel tiled QR factorization for multicore
architectures. Concurrency and Computation: Practice
and Experience, 20(13):1573–1590, 2008.

[3] J.W. Demmel. Applied Numerical Linear Algebra.
Society for Industrial and Applied Mathematics, 1997.

[4] C. Luo, H. Thakkar, H. Wang, and C. Zaniolo. A native
extension of SQL for mining data streams. In Proc.
ACM SIGMOD Conference, pages 873–875, 2005.

[5] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.


