
Query Processing on Cubes Mapped from
Ontologies to Dimension Hierarchies

Carlos Garcia-Alvarado
University of Houston

Greenplum/EMC

Carlos Ordonez
University of Houston

Dept. of Computer Science

ABSTRACT
Text columns commonly extend core information stored as
atomic values in a relational database, creating a need to
explore and summarize text data. OLAP cubes can pre-
cisely accomplish such tasks. However, cubes have been
overlooked as a mechanism for capturing not only text sum-
marizations, but also for representing and exploring the hi-
erarchical structure of an ontology. In this paper, we focus
on exploiting cubes to compute multidimensional aggrega-
tions on classified documents stored in a DBMS (keyword
frequency, document count, document class frequency and
so on). We propose CUBO (CUBed Ontologies), a novel
algorithm, which efficiently manipulates the hierarchy be-
hind an ontology. Our algorithm is optimized to compute
desired summarizations without having to search all pos-
sible dimension combinations, exploiting the sparseness of
the document classification frequency matrix. Experiments
on large text data sets show CUBO can explore faster more
dimension combinations than a standard cube algorithm, es-
pecially when the cube has a large number of dimensions.
CUBO was developed entirely inside a DBMS, using SQL
queries and extensibility features.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing

General Terms
Algorithms, Experimentation, Measurement

Keywords
Data Cubes, Text, Hierarchies, DBMS, Ontologies

1. INTRODUCTION
Information retrieval has exhaustibly explored ontologies

for document indexing, query recommendation, and query
expansion, among many other information retrieval tech-
niques [13, 17, 3]. Moreover, ontology usage has been ex-
c© ACM, 2012 . This is the author’s version of the work. It is posted here

by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proc. ACM International Workshop on
Data Warehousing and OLAP (DOLAP, CIKM Workshop).
http://doi.acm.org/10.1145/2390045.2390055

tended to other domains such as social networks [14], ontology-
based databases [2], geographic information systems [6], and
even for XML Data and unstructured data analysis [5]. Spe-
cial interest has arisen in the latter due to the advantages
of analyzing the semantics of a set of documents (corpora)
beyond a set of keywords. This summarization tasks are re-
markably valuable in domains with existing ontologies, such
as the medical and digital libraries domains (e.g. ACM Digi-
tal Library), where the ability to explore efficiently in differ-
ent levels of granularity their large data sets of unstructured
data is a pressing need. As the amount of text data con-
tinues to grow in database management systems (DBMSs),
the data warehousing community has realized the potential
of existing methods, such as Online Analytical Processing
(OLAP), to provide efficient and compact data structures
for analyzing large amounts of data. While traditional ap-
plications of OLAP include business reports and financial
analysis [4], OLAP provides clear advantages for computing
efficient summarization structures that can manage the hi-
erarchical model that is the result of including an ontology.
This combination of OLAP techniques for analyzing text is
explored in only a few works [15, 16], that have proposed
extensions for adapting OLAP to summarize data sets and
take advantage of a given ontology. Unfortunately, the scala-
bility of the current proposals and adaptability of the sparse
nature of text data remains unexplored.

In this research, we propose CUBO (CUBed Ontologies),
a novel algorithm and data structure that integrate a mul-
tilevel data cube into a single data structure. The main
objective of CUBO is to allow an efficient summarization
of all the different levels that are part of a given ontology.
More specifically, we show that OLAP techniques can be
used to efficiently obtain the aggregations of classes, rep-
resented as dimensions (in OLAP terminology) in a set of
documents. As a result, the user will be able to obtain a data
cube containing aggregations (COUNT, SUM, AVERAGE,
MIN, MAX) on several measurements (e.g. term frequency,
number of documents) that are related to a set of classes
in different hierarchies. An example might be, a data cube
with the different levels of the hierarchy, as shown in Figure
1. This data cube represents a set of articles summarized
based on the ACM Computing Classification System with
a hierarchy of height three. Notice that within each level,
the resulting summarization can be seen as a smaller data
cube. This research formalizes and introduces algorithms
for processing text data that have not previously been pro-
posed, where summarization and hierarchies are not taken
into consideration. The resulting algorithm and data struc-

Figure 1: Data cube Q and Fact Table F based on The ACM Computing Classification System (1998) with
{D1 =Parallel processors, D2 =Array and vector processors, D3=Distributed databases}.

ture are a compact and efficient tool adapted to a database
management systems (DBMS) tailored for the sparse nature
of text corpora.

This paper is organized as follows: Section 2 presents the
notation used throughout this paper. Even though this pa-
per deals with ontologies, the entire notation is focused on
the OLAP common notation for mapping ontologies to di-
mension hierarchies. In addition to this, the main concepts
of ontologies and OLAP are described. Section 3 shows
our novel algorithm for building CUBO using ontologies.
Also, we present a complexity analysis of how the complex-
ity changes from a traditional OLAP data cube. In Section
4, the performance evaluation and scalability experiments
on two collections are presented. Section 5, discusses closely
related work. Finally, in Section 6, we make our final re-
marks and discuss future work.

2. DEFINITIONS
Let us focus on defining the required OLAP and ontol-

ogy notation that will be used to obtain a dimension hier-
archy. Due to the interdisciplinary nature of this research,
we propose a combination of data cubes and information
retrieval definitions. Let a collection, or corpus, of n doc-
uments, where each document ti is composed of a set of
dimensions {D1, D2, . . . Dj , . . . , Dk}, where k is the num-
ber of the dimensions required for building the data cube.
Examples of dimensions in a corpus are the topics “Parallel
Processor” or “Distributed Database”. Moreover, let every
set of dimensions in a document be accompanied by a set of
attributes {A1, A2, . . . , Am, . . . , Ae}, where e represents the
total number of attributes and Am is a specific attribute (e.g.
minimum common frequency of a set of attributes). More-
over, let the collection be stored in a relational table inside
a DBMS. Thus, F is a table defined as a vertical fact table
F (i,Dj , A1, . . . , Ae) of size e+2 by

∑n
i=1 |ti|, where i repre-

sents the document number, Dj is a dimension, and Am is a
summarization attribute. A1 to Ae are constant within ev-
ery Dj of a document to avoid generating a much larger fact
table. Notice that F differs from a traditional fact table for
OLAP, because the dimensions are not represented in a hor-
izontal manner and all the attributes are replicated within
every Dj . This is due to the sparse nature of text data and
the limitation of the number of columns that is present in a
traditional row store DBMS. Additionally, if the attributes

are not considered to be constant within the same document,
additional processing within a document must be performed
to obtain a unique aggregation measurement. The backbone
for OLAP data cubes is the dimensional lattice, which has
a size of 2k combinations for a set of dimensions, where k is
the number of dimensions. Furthermore, a user-query Q is
a subset of dimensions from F which builds an OLAP data
cube for every level in a given dimension hierarchy repre-
sented by the l subscript.

H0

H(1,1)

H(2,1)

...

H(h−2,1)

D1

H(1,2)

...

. . . H1,k1

H2,k2

...

H(h−2,kh−2)

Dk

Figure 2: Ontology.

An ontology O, on the other hand, is mapped to a dimen-
sion hierarchy as a tree-like structure where the nodes rep-
resent dimensions and the branches model the relationships
between them. In Figure 2, the k leaf nodes Dj represent
the ground level dimensions and Hh−2 to H0 represent the
parent dimensions, where h is the depth or height of the on-
tology. In addition, the number of dimensions per level kl
is always less than or equal to the following k(l+1). Lastly,
we will consider an ontology to have an overall H0 root class
(e.g “thing”), and every dimension to have only a single par-
ent (except for the root that has none). In relational terms,
every concept reference between levels (e.g. Dj and Hh−2)
can be seen as a dimension table. However, in this approach,
the entire data structure is kept in main memory (to be de-
tailed in sections to follow) as a tree during the execution of
the algorithm.

2.1 Ontologies

Figure 3: Ontology Example.

Ontologies embody formal representations of knowledge.
As such, several language proposals have been used to write
explicit formal conceptualizations of domain models [1]. These
proposals include the popular RDF/RDFS, as well as some
other representations such as DAML +OIL and OWL lan-
guages, among many others. RDF/RDFS allows some basic
knowledge representation. Despite this, features such as the
local scope of properties, the disjointness of classes, Boolean
combinations of classes, cardinality restrictions and special
characteristics or properties are left out of this language [1].
In order to model more complex relations between classes,
DAML+OIL took an object oriented approach [10]. Finally,
OWL was developed to standardize all the previous language
approaches in a more robust knowledge representation.

Regardless of the ontology language, all these knowledge
representations rely on the specification of the main concepts
in a given context. The representation of every concept is
defined as a class with a set of properties and interactions
between the classes, subclasses, and their properties. A class
(e.g. owl:Class) is a classification of individuals that share
common characteristics. This class classification is obtained
through a taxonomy (hierarchy). In this work, CUBO is not
tied to a specific language, but on the classes (dimensions)
and their relationships. An example of a class taxonomy is
given in Figure 3, in which the ontology used for the data
cube example is shown. The first level corresponds to con-
cepts D1 =Parallel processors, D2 =Array and vector pro-
cessors, D3=Distributed databases; the second level to con-
cepts H(1,1) =Parallel processors and H(1,2) =Distributed
systems; and the root level (H0) is for the Computer Sci-
ence concept. Each node in the taxonomy is a class, and
the branches in the tree indicate a type of relationship (e.g.
subClassOf). The instances represented in the leaf classes
are specific to a particular class (which may or may not be
considered as part of the data cube).

2.2 OLAP
OLAP techniques are generally used to quickly process

complex queries involving multiple aggregations [9]. While
traditional applications of OLAP include summarizations in
the form of business reports and financial analysis of large
data sets [4], we believe that the OLAP dimensional lattice
can be used to efficiently summarize classes and their rela-
tions present within a corpus. The main benefit of OLAP
is the ability to analyze large amounts of data at various
levels of aggregation to obtain additional information. In
this case, the dimensions are represented by the collection
of classes, the attributes are measurements relating a docu-
ment and a class, while the level of aggregations (ontology)
allows us to obtain various combinations of the parents of
the leaf dimensions.

Figure 4: Hierarchies.

Traditional OLAP accepts inputs that are horizontal, which
means that each row contains all dimensions used in the
analysis. However, in our system, the fact table has a verti-
cal layout, which translates into each row containing a sin-
gle dimension. This presents a challenge for our algorithm
because we are unable to use normal techniques, such as
slicing, with the vertical layout. Despite this, we are only
analyzing a small subset (the subset of dimensions in Q)
of all dimensions in the corpus. It is nevertheless time con-
suming to pivot the dimension into a horizontal layout. This
is especially costly when the number of documents is large
and the dimensions are sparse. As a result, we developed an
algorithm that can obtain the necessary aggregations and
perform the required auxiliary computations by taking only
the desired dimensions. Likewise, the entire data cube for all
existing combinations is computed with no minimum thresh-
old required.

OLAP data cubes are able to capture hierarchies in the
data. These hierarchies can be described as flat, balanced,
or unbalanced (see Figure 4). The most basic type of hierar-
chy is the flat one, which is the one that we captured in our
early works where only the leaf nodes are present. A second
type of hierarchies is the balanced ones, where all the nodes
are present for every level of the tree. Finally, unbalanced
hierarchies are those that do not have nodes in every level
of the hierarchy. All these types of hierarchies are able to be
represented in an OLAP data cube. However, unbalanced
hierarchies require additional information in the ontology,
such as providing a hierarchy level for each class as a prop-
erty. Despite these advantages for managing hierarchies, it
is not possible to model every hierarchy variant, such as a
node with multiple parents. They cannot be represented in
a transparent manner. In this case, a separate hierarchy is
needed to model every parent-child relation.

3. CUBO
CUBO is an array of data cubes that contain only the

existing dimensions within the fact table F given Q. How-
ever, the notion of CUBO is based on the premise that a set
of documents does not contain all the dimensions in every
document. Thus, only a set of “on-demand” computations
of the dimensions are required for every document. More-
over, our algorithm takes advantage of this property when
computing the aggregation on superior levels in the hierar-
chy. In other words, CUBO has a lazy policy that waits to
perform the computations until it is absolutely necessary.
Furthermore, the algorithm avoids redundant computations
by focusing only on storing those dimensions that contain
attributes to aggregate. If the entire data cube is desired,
a post-processing phase can be executed to compute all the
missing combinations.

Algorithm 1: CUBO

Input: O,F ,Q,T ,{A1, . . . }
Output: R
R ← ∅;
O ← LoadOntologyFromOWL();

F̂ ← {ti|ti ∈ F ∧ ∃Dj s.t.Dj ∈ ti ∧Dj ∈ Q} ;
t ← ∅;
while row in F̂ do

if document changed then
R ← R ∪ BuildCube(t,O,T,R,{A1, . . . });

end
t ← t ∪ {Dj}; /* Dj ∈ row. */

end
BuildCube(t,O,T,R,{A1, . . . });/* Adds last doc. */

The algorithm for obtaining the CUBO given an ontology
O, fact table F , dimensions Q and a maximum ontology
depth T is shown in Algorithm 1. The result is temporar-
ily stored in R that contains a level, combination of classes
(combo) and the aggregation measurements. Furthermore,
the entire computation of all the data cubes is computed
through a single scan over the filtered data set. CUBO is
composed of three major steps: load ontology, computa-
tion of on-demand combinations and the data cube aggre-
gation. The final step of our algorithm stores the resulting
data cubes into a relational table. Example 2: for an on-
tology with h = 3, k3 = 2, k2 = 1, and given that all
the dimensions share parent H(1,1). The resulting CUBO is
{{{D1, D2}, {D1}, {D2}}, {{H(1,1)}}, {{H0}}}.

3.1 Load Ontology
Loading the ontology in main memory is the initial step

for our algorithm. The format of the ontology is language-
specific (in our case we use OWL). However, our algorithm
builds a balanced internal tree-like representation of the
given ontology stored as a set of linked lists (every node
has a parent pointer). This in-memory loading is important
for avoiding joins with dimension tables and allows a fast
hierarchy traversal. Due to the fact that we are only inter-
ested in capturing class and relationships, all the properties
and types of relationships are ignored in this process. On-
tologies that are equivalent to flat or balanced hierarchies
are easy to capture and traverse. By counting the number
of parents, it is possible to know the level. However, an un-
balanced ontology must be captured in a tree representation
that preserves the level for each node in the tree. Otherwise,
the algorithm will return incorrect results by pairing dimen-
sions that are not within the same level. In order to avoid
this problem, dummy nodes must be included in the tree
data structure, and must be ignored during the combination
computation and aggregation. For example, if a dimension
D1 does not have a parent in the immediate superior level
h−2, in which dimension D2 has parent H(h−2,1), a dummy
parent node must be added for D1 in order to allow our al-
gorithm to traverse the tree all the way to the root. As a
result, if the user desires to support unbalanced ontologies,
the given ontology should have a way to provide a property
that specifies the level of a dimension in the tree. In this al-
gorithm, hierarchies with multiple parents are not covered,
but it is possible to extend our algorithm to handle such

cases. Extensions to our algorithm also include adding a
new indirection level in the h− 1 level of the R structure to
manage the summarization of instances.

3.2 On-demand Combinations
The lazy-policy of only working with those combinations

that are present in the data set is critical for efficient per-
formance in a space data set. Once the ontology has been
loaded into main memory, the fact table F is filtered to
only focus on those dimensions that are in Q. A single scan
through the data set is performed to read all the entries
containing a document ti and a dimension Dj . In order to
process a document ti, all the dimensions must be collected
before proceeding. With all the dimensions of a document
collected, our algorithm computes the combinations possi-
ble with this set of dimensions and stores them in a list
for accumulating all the desired measurements. The incom-
ing attributes are always sorted in order to guarantee that
the combination will be unique when storing the resulting
combination in R. The sorting, as well as the combination
computations, are relatively inexpensive operations due to
the limited amount of dimensions to consider per document.
However, if the data set is dense, these tasks will represent
the bottleneck of the algorithm.

3.3 Data Cube Aggregation
The data cube aggregation will cover storing every combo

in the corresponding data cube (level) and traversing the
loaded hierarchy all the way to the root H0. This function
is covered in the BuildCube function shown in Algorithm 2.

The BuildCube algorithm takes the result of the on-demand
combinations of each document and stores the result in main
memory. Then, it will traverse for every dimension Dj in ti
the ontology tree. The corresponding combinations are ac-
cumulated in R, in which if a corresponding combo does not
exist, a new entry will be created. Otherwise, the corre-
sponding measurements are aggregated. For each Dj that
exists in each document, all the superior H are extracted,
and their combinations are computed and stored in s0,...,h−2.
Finally, the corresponding value is accumulated for each ex-
isting combination in every level. The CombosForOntolo-

gyLevel function is a recursive function that will stop after
a certain number of levels T has been reached, or the parent
is null. Due to the fact that we always consider balanced
trees, it is possible to perform this operation in a simple
manner. Support for dummy nodes should be considered in
this section of the algorithm. Once the resulting data cube
R is computed, R can be stored as relational tables inside a
database management system.

3.4 Complexity
The complexity of our algorithm is given by the time it

takes to compute all the combinations of the dimensions
for each document n2k. Moreover, because our ontology
representation is always the result of balanced hierarchies
(remember the introduction of dummy nodes), the time it
takes to traverse an entire branch of the tree for each di-
mension requires h steps. Thus, the total complexity of our
algorithm is O(n2kh). Despite the time complexity of our
algorithm being larger than the traditional data cube com-
putation that has a complexity of hn2k (because there is a
need to compute a data cube for every level), in practice,
the average size of k per document is small (around 1 or 2)

Algorithm 2: BuildCube

Input: t,O,T ,R,{A1, . . . }
Output: R
sh ← Combos();
/* Aggregate all the existing combos of the h-1

level. */

foreach combo do
R ← R ∪ {1, combo, {A1, . . . }};

end
/* Recursive function to extract all unique

concepts by level h-2 to 0. */

s0,...,h−2 ← CombosForOntologyLevel(s,O,T);
/* Increments found combos by level. */

foreach l in s0,...,h−2 do
foreach combo in sl do

R ← R ∪ {l, combo, {A1, . . . }};
end

end
return R;

and h is almost always small (less than 5). This results in a
faster performance because there is no need to concentrate
on computing dimensions that are not within the data set.

The space complexity of our algorithm is limited only by
the number of dimensions per level in h. If the data set
is dense, the space required by our algorithm is given by∑h

l=0 2kl , where kl is the number of dimensions per level.
Therefore, in the worst case scenario, the space complexity
of our algorithm is of the order O(2k).

3.5 Integration with a DBMS
We assume that the fact table F and the filtered table are

cluster indexed by i. This is an important assumption for
guaranteeing that all the dimensions of a document are con-
tiguous in one block. Extending a relational database man-
agement system to support our algorithm requires injecting
our algorithm as a routine programmed in a procedural lan-
guage (e.g. C or C#). In order to do so, database extensibil-
ity mechanisms (e.g stored procedures or table-valued func-
tions) can be used to achieve this goal. The main advantage
of using an extensibility mechanism is that it is possible
to maintain the ontology, as well as the CUBO structure,
in main memory. They provide a framework to hold data
structures in main memory while scanning a data set in a
cursor fashion. Unlike other types of user-defined functions,
such as user-defined aggregates (UDAs), a stored procedure
or table-valued function that requires processing every row
will not offer the parallelism that is native to UDAs by de-
fault. In Figure 5, we show a stored procedure call to execute
the CUBO algorithm in a DBMS.

EXEC CUBO ’D:\ontology.owl’, ’dataset’,’D1,D2,D3’

Figure 5: Stored Procedure SQL Call.

The extensibility mechanism contains a SELECT state-
ment that filters the fact table F using a WHERE/IN clause
to consider only those dimensions in Q. This will be the
only pass through the data set. Notice that this query is
represented as two steps in the algorithm. The backbone
data structure R that contains all the aggregated attributes

Table 1: TPCH Corpora.
n Avg k Max k Min k Total k

1K 1 3 1 1038
10K 1 3 1 6589

100K 1 5 1 9702
1M 1 5 1 9702

10M 1 5 1 9702

Table 2: dbpedia Corpora.
n Avg k Max k Min k Total k

1K 2 9 1 156
10K 2 14 1 231

100K 2 16 1 263
1M 2 26 1 302

10M 2 46 1 308

A1, . . . , Ae for all the levels in the hierarchy is an array list
of hash tables, where each hash table contains a data cube.

Unfortunately, there are limitations associated with every
relational database management system (which limits the
portability of a stored procedure or user-defined function
implementation). For example, the amount of data that can
be maintained in main memory at a time, the ability to
access and read external files (used to load the ontology),
or the possibility to create and store the resulting data in a
relational table.

Table 3: Performance of Traditional Cube and
CUBO (* unable to compute)

d Traditional Single Level CUBO
2 36 5
4 36 8
8 37 9

16 * 15
32 * 44
64 * 96

4. EXPERIMENTS
To verify that our algorithm performs better than a tra-

ditional approach, as well as to scale to large datasets and
dimensions, we tested our algorithm on two databases. Our
experiments were run on an Intel Xeon E3110 server at 3.00
GHz with a 750 GB in hard drive and 4 GB of RAM. The
server was running an instance of SQL SERVER 2005. The
application was developed entirely as a stored procedure
in C#, as part of an extensibility mechanism from SQL
SERVER 2005.

The databases that we used for testing our application
included an ontology in OWL format and a real and a syn-
thetic data set stored in a relational table F . The synthetic
data set is a materialized view from the TPCH data set.
The view is the result of Lineitem ./ Part, where each row
represents a dimension in a document (in fact, a document
can be seen as a transaction). The real data set is the db-
pedia project, which contains 3 million abstracts with 308

Figure 6: Varying Corpus Size.

dimensions extracted from the Wikipedia project. Every Dj

in this project represents a classification topic for each doc-
ument in dbpedia. Furthermore, A1 was assigned to be one
for all the Dj as our purpose is to count the number of docu-
ments per topic. This data set was preprocessed and stored
in a relational table F . The preprocessing time required al-
most two days to extract the classes existing in the original
abstracts. Both databases were given an OWL ontology of
2MB and 1MB in size, respectively. Both ontologies had a
depth of 3 levels. A full description of the databases is given
in Table 1 and Table 2. All the performance experiments
were repeated five times and the results were averaged after
removing the upper and lower quantities. The dimensions
in Q were obtained randomly for every run from the pool of
all possible classes in the h− 1 level of the ontology. In ad-
dition, the default databases for testing our algorithms were
the original 3M dbpedia data set and the 10M TPCH data
set. All the times are in seconds unless otherwise specified.

Initially, we focused on studying the performance of our
algorithm as compared to the traditional cube implemen-
tation from SQL SERVER 2005. In order to perform this
experiment, the vertical dbpedia data set F had to be modi-
fied to have the classes as column names and the documents
as rows. Hence, the experiments were set to use this hori-
zontal layout for the traditional cube operator and the ver-
tical layout was used for CUBO. In addition, the traditional
cube was only performed in the lowest hierarchical level due
to the lack of native support for hierarchies. Obtaining a
similar result with the cube (or SQL queries) will require
loading the ontology in a star schema that should be known
upfront, and then running the cube operator several times
for every level. The results, presented in Table 3, show that
our algorithm performs an order of magnitude better than
the traditional data cube operator in only the lowest level of
the hierarchy (level h − 1). Moreover, the traditional data
cube operator cannot scale to a larger number of dimensions
to compute. This is due to the fact that the traditional data
cube is also computing those dimensions that have zeroes.
We did not perform this experiment in the TPCH data set
because this data set exceeds the maximum number of di-
mensions allowed in a relational table.

Figure 7: Varying Number of Dimensions.

Figure 8: CUBO Size when Varying Number of Di-
mensions.

In Figure 6, we present scalability experiments by varying
the size of the corpus in the synthetic and real databases.
The size of Q was fixed to ten, and the corpora included
a range of collections from 1K to 10M of documents. The
experiments showed that CUBO scales linearly based on the
number of documents in the collection. However, the speed
of the increase is related to the average number of dimen-
sions per document. Therefore, a data set with a smaller
average of dimensions per document will be processed faster
than one with a larger average of dimensions.

Additional scalability experiments for our algorithm in-
clude modifying the number of dimensions in Q. In Figure
7, we show the results for the TPCH and dbpedia databases.
The results perform as expected in the complexity analysis
discussed in subsection 3.4. The plot shows an exponential
increase related to the average number of dimensions per
document. Hence, dbpedia has a larger exponential growth
than the TPCH data set. This is due to the larger average
number of sparse dimensions per document in dbpedia than
TPCH. A lower number of average dimensions per docu-
ment results in an avoidance to compute large combos and

a decrease in the exponential growth (shown in the TPCH
data set). The inflection point of the function is the result
of the selectivity of dimensions in the corpora, hence, this
point depends on each data set.

Experiments showing the space complexity of our algo-
rithm were also run. Figure 8 presents the results of this
experiment for both collections. Notice that the axes have
different scales due to the sparsity of the databases (TPCH
is more sparse). The dbpedia data set shows a clear expo-
nential growth of the data structure size. In a similar man-
ner, TPCH has a similar growth that is almost undetectable
due to the sparsity of the data set. We also found that
the maximum k that we were able to compute was around
100 dimensions and an ontology input file of around 2 MB.
However, this limitation is DBMS-specific.

Table 4: Varying Ontology Levels in dbpedia (time
in seconds).

n ALL MAX 2 MAX 1
1K 2 2 1

10K 2 3 1
100K 2 3 1

1M 7 6 5
10M 36 28 25

Table 5: Varying Ontology Levels in TPCH (time in
seconds).

n ALL MAX 2 MAX 1
1K 2 2 2

10K 2 2 2
100K 2 2 2

1M 3 2 2
10M 7 7 7

Further experimental analysis of complexity of the algo-
rithm is shown in Tables 4 and 5. These tables show the
performance results of modifying the number of levels that
are taken into consideration from both ontologies and data-
bases. The results showed that in both databases, the over-
all impact of modifying the level in the hierarchy is minimal
when the average k is small in all the text collections. How-
ever, there is an almost linear increase for the real data set
in the largest of the collections. It is then possible to observe
that our experimental results support our theoretical upper
bound of O(n2kh), in which there is an exponential growth.
Due to our lazy policy of only computing those dimensions
that are present, in practice, the complexity of the algorithm
is followed by an almost constant performance (e.g. there
are no combinations involving all the k dimensions).

Finally, a profiling analysis of our algorithm in both da-
tabases is shown in Tables 6 and 7. The experiments are
consistent regardless of the data set and show that obtain-
ing the combinations is the least expensive step, along with
storing the results in the hash table. However, reading and
building the ontology in main memory takes longer than
building the actual CUBO. As expected, the majority of the
processing is spent in access to secondary storage.

Table 6: Profiling dbpedia (time in seconds).
Task Time Percentage
Load Ontology 0.017 0%
On-demand Combinations 0.030 1%
Data Cube Aggregation 0.061 1%
I/O 5.891 98%
Total 6.000 100%

Table 7: Profiling TPCH (time in seconds).
Task Time Percentage
Load Ontology 0.068 1%
On-demand Combinations 0.001 0%
Data Cube Aggregation 0.010 0%
I/O 6.921 99%
Total 7.000 100%

5. RELATED WORK
Using OLAP for summarizing text corpora has been pre-

sented in several works [11, 12, 18]. Early in [11], the au-
thors presented an approach to load all the documents in-
side a DBMS. The documents were all loaded into a star
schema that allowed the users to use traditional OLAP al-
gorithms in this scenario. The computations were focused
on keyword frequency. The main disadvantage of this early
work is the requirement to load all the data in a predefined
schema that will allow exploring using traditional OLAP
techniques. This approach is prohibitive when we have a
data set with a large number of dimensions unlike our ver-
tical layout approach that allows storing large dimensional
data sets. In [12], the authors propose Text Cube. This
approach focuses on computing a partial cube by using only
a partial materialization. Their algorithms are focused on
obtaining “on-demand” OLAP queries with the optimal pro-
cessing cost using a greedy algorithm. Unlike our approach,
we focus on computing all the existing dimensions of the
data cube at once by taking advantage of the text sparsity.
More recently in [18], Topic Cube is proposed to obtain a
more complex analysis than just data summarization. The
purpose of this new OLAP model is to extract dimensions
for existing text data using the probabilistic latent semantic
analysis. Despite the fact that their model and results are
interesting for generating a possible ontology, the authors do
not to propose a new data structure for the multidimensional
data cube (they compute the SQL queries as required), and
focus on the quality of the built hierarchy.

In [7] and [8], we were able to adapt a traditional OLAP
data cube to efficiently process a sparse vertical fact table.
However, we were only computing a set of dimensions, and
the scalability of the algorithm was limited to only a few
dimensions. In addition, the papers were focused on the
aggregation of several measurements inside text corpora to
produce the most frequent cuboids for generating an unsu-
pervised ontology. This ontology was the result of a post-
processing phase on the resulting cuboids. In this paper, we
assume a given ontology, and it is used to summarize a set
of documents. Thus, the main contributions of this research
focus on a new algorithm that integrates the hierarchy given
by an ontology into a single data structure called CUBO. In

addition, we formalize and study in depth, the theoretical
and experimental complexity of our algorithm. Finally, our
new algorithm considers a way to manage several types of
hierarchies that can be present in an ontology.

6. CONCLUSIONS
In this paper, we proposed a novel approach, CUBO, for

summarizing text corpora based on a given ontology using
OLAP data cubes. CUBO represents an efficient, compact,
and scalable data structure and algorithm that generates a
data cube for every level of an ontology. Unlike traditional
OLAP approaches, CUBO takes advantage of the sparsity of
text corpora and generates the combinations for only those
dimensions that are present in each document.

All the data cubes are stored in an array with all the levels
of a given ontology for efficiency purposes. Every level in the
ontology that is analyzed is stored in a hash table and com-
puted for only those existing dimensions in each document.
CUBO was adapted into a relational database system us-
ing extensibility mechanisms, such as store procedures. We
tested our algorithm in real and synthetic databases, and
showed that our algorithm has linear scalability when the
number of documents increases in the collection. In addi-
tion, we showed that unlike traditional algorithms, CUBO
is able to scale to a larger number of dimensions due to the
avoidance of computing and storing unnecessary combina-
tions. Moreover, we showed in our experiments that the
running time of our algorithm in real and synthetic databa-
ses is significantly less than the expected exponential upper
bound. This was also appreciated when we analyzed the
overhead of computing the lattice in higher levels of the hi-
erarchy, which resulted in only a small difference (almost
negligible). Hence, the complexity of the algorithm is still
highly dependent on the average number of dimensions in
a document. Further analysis of our algorithm in both da-
tabases showed that the processing time for building and
storing the CUBO is mostly spent on the latter. As a result,
CUBO showed to be an efficient and scalable algorithm for
summarizing text data with hierarchies.

Future work on this topic includes testing the performance
of our algorithm when a new level of indirection is added for
capturing instances under the h − 1 level. Also, we would
like to test our algorithm with larger ontologies that do not
fit in main memory and have to be loaded in a relational
table, as well as more complex real ontologies that have a
large depth. Finally, we would like to extend our algorithm
to cover more complex ontologies, that include unbalanced
hierarchies and multiple parents.

Acknowledgments
This work was supported by NSF grant IIS 0914861.

7. REFERENCES
[1] G. Antoniou and F.v. Harmelen. Web ontology

language: OWL. In Peter Bernus, Jacek Blazewics,
Günter Schmidt, Michael Shaw, Steffen Staab, and
Rudi Studer, editors, Handbook on Ontologies,
International Handbooks on Information Systems,
pages 91–110. Springer Berlin Heidelberg, 2009.

[2] L. Bellatreche and S. Khouri. A methodology and tool
for conceptual designing a data warehouse from
ontology-based sources. In Proc. ACM DOLAP
Workshop, 2010.

[3] C. Chakroun, L. Bellatreche, and Y.A. Ameur.
Ontological concept dependencies driven approach to
design ontology-based databases. LISI/ENSMA, 3,
2011.

[4] Z. Chen and C. Ordonez. Efficient OLAP with UDFs.
In Proc. ACM DOLAP Workshop, pages 41–48, 2008.

[5] R. Feldman and J. Sanger. The text mining handbook:
advanced approaches in analyzing unstructured data.
Cambridge Univ. Press, 2007.

[6] F.T. Fonseca, M.J. Egenhofer, P. Agouris, and
G. Câmara. Using ontologies for integrated geographic
information systems. Transactions in GIS,
6(3):231–257, 2002.

[7] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
OLAP-based query recommendation. In Proc. of ACM
CIKM, pages 1353–1356, 2010.

[8] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
ONTOCUBE: efficient ontology extraction using
OLAP cubes. In Proc. of ACM CIKM Conference,
pages 2429–2432, 2011.

[9] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-total. In
ICDE Conference, pages 152–159, 1996.

[10] I. Horrocks. DAML+ OIL: a description logic for the
semantic web. Bulletin of the Technical Committee on,
51(4), 2002.

[11] J. Lee, D. Grossman, O. Frieder, and M.C. McCabe.
Integrating structured data and text: A
multi-dimensional approach. In Proc. of IEEE
International Conference on Information Technology:
Coding and Computing, pages 264–269, 2000.

[12] C.X. Lin, B. Ding, J. Han, F. Zhu, and B. Zhao. Text
cube: Computing ir measures for multidimensional
text database analysis. In Proc. of IEEE ICDM, pages
905–910, 2008.

[13] P. Martin and P. Eklund. Embedding knowledge in
web documents. Computer Networks,
31(11):1403–1419, 1999.

[14] P. Mika. Ontologies are us: A unified model of social
networks and semantics. In Proc. of ISWC, pages
522–536, 2005.

[15] T. Priebe and G. Pernul. Ontology-based integration
of OLAP and information retrieval. In Proc. of IEEE
DEXA, pages 610–614, 2003.

[16] F. Ravat, O. Teste, and R.Tournier. OLAP
aggregation function for textual data warehouse. In
Proc. of ICEIS), pages 151–156, 2007.

[17] U. Shah, T. Finin, A. Joshi, R.S. Cost, and
J. Matfield. Information retrieval on the semantic web.
In Proc. of ACM CIKM Conference, pages 461–468,
2002.

[18] D. Zhang, C. Zhai, and J. Han. Topic cube: Topic
modeling for olap on multidimensional text databases.
In Proc. of SIAM SDM Conference, 2009.

