
Integrating and Querying Source Code of Programs
Working on a Database

Carlos Garcia-Alvarado
University of Houston

Dept. of Computer Science
Houston, TX, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX, USA

ABSTRACT
Programs and a database’s schema contain complex data
and control dependencies that make modifying the schema
along with multiple portions of the source code difficult to
change. In this paper, we address the problem of exploring
and analyzing those dependencies that exist between a pro-
gram and a database’s schema using keyword search tech-
niques inside a database management system (DBMS). As a
result, we present QDPC, a novel system that allows the inte-
gration and flexible querying within a DBMS of source code
and a database’s schema. The integration focuses on obtain-
ing the approximate matches that exist between source files
(classes, function and variable names) and the database’s
schema (table names and column names), and then storing
them in summarization tables inside a DBMS. These sum-
marization tables are then analyzed with SQL queries to
find matches that are related to a set of keywords provided
by the user. It is possible to perform additional analysis
of the discovered matches by computing aggregations over
the obtained matches, and to perform sophisticated analysis
by computing OLAP cubes. In our experiments, we show
that we obtain an efficient integration and allow complex
analysis of the dependencies inside the DBMS. Furthermore,
we show that searching for data dependencies and building
OLAP cubes can be obtained in an efficient manner. Our
system opens up the possibility of using the keyword search
for software engineering applications.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering ; H.2.4 [Database Management]: Systems—
Relational databases

General Terms
Algorithms, Experimentation, Languages

Keywords
DBMS, Source Code, Software Maintainability, Integration

1. INTRODUCTION
c© ACM, 2012 . This is the author’s version of the work. It is posted

here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proc. ACM Workshop on Keyword
Search on Structured Data (KEYS, SIGMOD 2010 Workshop).
http://doi.acm.org/10.1145/2254736.2254747

A variety of programs normally surround a database man-
agement system (DBMS) because they must access the data
stored within the DBMS. Therefore, these applications ex-
hibit a close relation with all the data sets stored in the
DBMS in terms of their metadata (e.g. file name), classes,
methods, variables, and SQL queries. This problem is evi-
dent when dealing with source code and a database’s main-
tainability. As a result, a deep analysis of these data de-
pendencies and querying capabilities of common elements
that exist across all sources (joint querying) is required for
application profiling, speeding up application development,
estimating maintainability costs, and application debugging
[9, 3]. Even though analyzing data dependency is a deeply
studied problem within the compilers and software engineer-
ing community [2, 6, 15], we defend the idea that it is pos-
sible to solve this data and control dependency problem in
a simpler manner by using keyword search techniques and
allowing a joint exploration of these external sources. In or-
der to do so, we focus on integrating both sources by finding
those relationships that exist between a set of source code
files (e.g. C++, Java, SQL scripts) and the physical model
of a database.

To exemplify this, a brief scenario is described. In Figure
1, a central DBMS containing information about water qual-
ity of wells in the State of Texas and a set of surrounding
source code files are shown. From these files, only a portion
of them relates to the DBMS due to their file name, class
name, variables, methods (procedures of functions) or SQL
queries. From these two sources, we are interested in know-
ing which pieces of code and tables or columns are related
directly (or indirectly) to assert the impact of a source code
modification. Some queries that we are interested in answer-
ing are: “Which is the class that is more dependent on the
database?”, “Which are the most queried tables?”, and “Is
there a data dependency between a column in the database
with a particular method?”.

A number of challenges arise in solving the complex task
of relating the content of source code files (including their
metadata) and the physical design of a set of databases,
which include database names, table names, and column
names. Some of these problems include, but are not lim-
ited to: finding a conceptual representation of the data and
control dependencies between a source code section and a
portion of the database, efficient extraction of the existing
matches between embedded SQL queries and the potential
data and control dependencies given by class names, vari-
able names and file metadata, and efficient and informative
querying of the resulting matches.

Table 1: Example of matches between S and P in the context of water quality.
name in S parent in S type in S keyword in P distance type in P loc. in file file
Region null table name Agency 0 metadata filename Agency.java
Pollutant null table name Pollutant 0 metadata filename Pollutant.java
Pollutant null table name Pollutant 0 SQL SELECT * FROM Pollutant Pollutant.java
name Agency column name name 0 method public string name () Agency.java
ptype Pollutant column name ntype 1 var String ntype = ”” Pollutant.java

Figure 1: Integration Scenario. The matches be-
tween a program P and a schema S are represented
as dotted lines.

Accounting for all of these challenges, we propose QDPC

(Querying Database Programs and Code). This novel sys-
tem is a collection of algorithms based on traditional SQL
queries and database extensibility mechanisms. QDPC fo-
cuses on finding a dependency representation in the form of
matches, and provides efficient algorithms for extracting and
querying all the existing matches between the DBMS and a
set of source files using the same central DBMS as the back-
bone for the entire process. The integration is performed
using database extensibility features, such as User-defined
functions (UDFs), and the resulting matches are stored in-
side relational tables for efficient querying using standard
SQL queries. The result is a powerful system that allows
the user to ask questions that go beyond a simple match ex-
traction, such as finding all the tables that are related to a
particular function, all the elements that are related through
different dependencies, or OLAP queries.

This paper is organized as follows: Section 2 presents the
definitions and notation used throughout the paper. Section
3 describes in detail the algorithms that are part of QDPC for
integration and exploration of the sources. In Section 4,
performance experiments are shown for the integration and
exploration phases. Section 5 presents previous research in
the area of source code analysis. Finally, Section 6 presents
our conclusions and future work.

2. DEFINITIONS
QDPC takes as input a schema S and a program (or source

code repository) P . S is composed of a set of tables S =
{T1, T2, . . . }, where each Ti contains attributes defined as
Ti(ai1, ai2, ...), and each T and a is mapped (7→) to a key-
word k. A program with n files is defined as P = {v1, v2, . . . },
in which each vi is a keyword that represents metadata (e.g.
filename), classes, methods (procedures or functions), vari-
ables or SQL queries. Furthermore, there exist directed
relationships between tables T of the form Ti(ai1, . . .) →
Tj(aj1, . . .) given by the primary/foreign key referential in-
tegrity constraints, and control dependency relationships be-
tween classes and methods. There are additional undirected

relationships (due to memberships) between classes, meth-
ods, variables, and queries, in which a class can have meth-
ods, variables and queries, and a method can contain some
variables and queries. In Figure 1, we exemplify the relation-
ships between all the elements of S and P . Table 1 shows
in detail several matches present in Figure 1.
QDPC also takes a query Q which is composed of a set of

keywords Q = {k1, k2, . . . } in order to perform a uniform
search in both sources. The searches are performed over a
set of approximate matches between P and S mapped to
a keyword. An approximate match of a keyword k is ob-
tained based on an edit distance function edit(k,k’), where
the edit distance represents the minimum number of inser-
tions, deletions, or substitutions required to turn k into k′.
Therefore, we consider an approximate match if and only
if edit(k, k′) ≤ dβ ∗ |k|e, where β is a real number in the
interval [0,1]. Intuitively, the value for β cannot be larger
than 0.5 because it will accept many unrelated keywords as
valid approximations. In the particular case in which exact
matches are the only ones desired, the value of β equals zero.
The value of β should be tuned based on the programming
style in the source code problem. Because exact matches
are clearly the more important ones, a small value of β is
normally desired (e.g. 0.10). Finally, the result of a query
Q is all the graphs, G, containing all elements (e.g. tables,
columns, class, methods, variables, SQL queries) that are
required to satisfy all the approximate matches between P
and S. The representation of all these elements in relational
terms will be given in Section 3.

For example, let S1 have two tables T1(a11, a12, a13) and
T2(a21, a22), where there T1(a12) → T2(a21); and P1 has a
single class:

v1:class

begin

v2:var

v3:var

end

Given that T2 7→ k1 and a12 7→ k2, and edit(k1, v1) ≤
dβ ∗ |k1|e and edit(k2, v2) ≤ dβ ∗ |k2|e, then (k1, v1) and
(k2, v2) represent a match between S1 and P1. If a query is
given involving keywords k1 and k2, then the resulting graph
is G1 = {T2, T1, a12, v1, v2}.

3. INTEGRATION AND QUERYING OF
PROGRAMS AND SCHEMAS

QDPC is a system that allows joint keyword searches and
complex analysis of the resulting matches to be performed.
As a result, QDPC is composed of an integration phase and an
extraction phase. Our system exploits a relational database
as a backbone for efficient extraction and retrieval of matches.
In other words, the entire process of managing both sources
is performed within the DBMS. Therefore, both modules

a) Browsing Source Code and Schema. b) Source Code View. c) Assisted/Advanced querying.

Figure 2: QDPC.

rely on optimizations that exploit either SQL or UDFs, de-
pending on the required task.

3.1 Integration
The integration is a refinement of an earlier idea presented

in [8] for managing structured and unstructured sources.
However, the analysis was limited to simple queries. The
integration phase can be summarized as:

• Preprocessing

1. Analyze source code files to extract all v.

2. Extract control dependencies.

• Integration.

1. Obtain unique keywords.

2. Search for approximate matches in the prepro-
cessed source code.

3. Apply indexes to the resulting tables.

The notion of achieving the integration relies on a two-step
process. The first step preprocesses all the source code files
to extract all the metadata, class names, method names, and
variables, as well as the calls that exist between them. This
will generate three tables: a source code table (P document)
which contains an identifier for each v ∈ P and the location
in the file, P mcall (caller method, method) which has the
control dependencies between methods, and P ccall (caller
method, method) which has the control dependencies be-
tween classes. Notice that the P prefix indicates that a table
contains information regarding a program P . The integra-
tion step will rely on three main tables M predicate (key-
word id, keyword), S database (keyword, location, parent)
and M document (keyword id, edit distance, type, parent
method, parent class, location in file), in whichM document
will hold all the approximate matches to the source code
files. Similar to the P prefix, the S and M prefixes relate to
the schema and matching results, respectively.

The first task during the integration will focus on obtain-
ing the unique keywords of the database’s schema and find-
ing all the approximate matches that exist between these
unique keywords and every v in P . Therefore, this pro-
cess is bounded by the number of unique keywords and the
number of files. During this integration phase, a batch of
keywords is tested at a time. As a result, if the number
of unique keywords in S is small, the algorithm is only

Figure 3: Approximate matching.

bounded by the number of discovered elements v in the
source code repository P . In order to find approximate
matches, the Approximate Boyer-Moore algorithm (ABM)
was used [14]. The rationale behind this is that by using
this algorithm, it is possible to capture valid text patterns
within the desired edit distance. For example, in Figure 3,
the Alpha code class, the alpa code, and county code vari-
ables are found. In addition, methods GET ALPHA CODE
and GET COUNTY CODE are also identified. In our ap-
proach, only the declaration of a variable was taken into
account. Once this discovery phase has been finished, in-
dexes are applied to the summary tables containing the ap-
proximate matches. Indexes were also added to the unique
keywords, source code, and metadata summary tables.

Matches between the database and the source code files
are discovered as follows: a set of all the elements from the
database (T and a) is queried from the catalog in order to ex-
tract all of the unique keywords. This set of keywords will be
stored in two summary tables. M predicate will contain all
of the unique keywords (obtained with a UNION query) and
S database, which will contain the location of the elements
in the database. The keywords in M predicate are then
matched between every element in the database and then
for every keyword k in the code repository P . The result-
ing matches in the source code are stored in a M document
table. Table M predicate is pruned to only hold those key-
words that are represented in the matches. This matching
is performed through database extensibility features, such
as using user-defined functions (UDFs), in order to keep in-

main memory all of the data structures used to obtain an
approximate distance (using edit distance) for every concept
and every given string coming from the database or collec-
tion of source code files. This matching step is the bottleneck
of the keyword matching. However, to ease the processing,
the matching is performed in batches. In other words, a set
of keywords k mapped from S is scanned simultaneously to
avoid multiple passes over the P document table and reduce
I/Os.

Tables S database, M document, and M predicate (sum-
mary tables) are created to avoid repeated searches on a par-
ticular data source and they include the location of the con-
cept in the database and in the source repository. By using
these summary tables, it is possible to obtain the matches
(stored as a view called M table) by joining these three ta-
bles, in where there is a hash join on the matching keywords
between M predicate and S database, and a hash join on
the id of v present in M predicate and S database.

This query is quite efficient due to the keyword indexes.
An example of the resulting matches is shown in Table 1.
Furthermore, the data type is considered irrelevant when
matching metadata, but this remains something to be ex-
plored in the future.

The complexity of the integration is given by the number
of unique keywords to search and the number of files in P .
Therefore, the integration is on the order of O(rn), where
r is the number of unique keywords and n is the number of
files.

3.2 Querying
The exploration is obtained only by analyzing the sum-

marization tables obtained in the previous phase (mainly
the approximate matches in the M table view). Analytical
queries are obtained mostly from the predicate table and the
approximate match table as shown in Equation 1. These
analytical queries are efficient one-pass aggregations in SQL
using functions such as SUM, COUNT, MAX and MIN.

πF (σQ(M predicate) ./ (M document)) (1)

These queries are able to answer questions such as the
number of matches that are associated with a particular v, T
or a, as well as which matches are present if the aggregation
(πF) is removed.

Furthermore, we are able to take these aggregations one
step further and compute OLAP cubes from these matches
by generating aggregations with different dimensions that in-
clude all the granularity levels inside the DBMS and within
the source code. An OLAP query that exploits the sum-
marization tables based on the CUBE operator from SQL
SERVER is shown in Figure 4.

This query can answer complex analytical queries such as
“Which column a has the highest number of dependencies
associated with v?”

Finally, the most complex searches are those that require
following the dependencies. These searches answer queries
such “What are all the methods associated with a particular
column?” In order to find these dependency graphs G, we
propose the following algorithm: The computation of the
graph in S is performed efficiently in main memory due to
the reduced number of elements. However, computing the
resulting graph in P cannot be performed in main memory.
The algorithm for computing graphs in P is based on filter-
ing the approximate match table to find all matches associ-

SELECT

CASE

WHEN GROUPING(a) = 1

THEN ’ALL’

ELSE a

END a,

CASE

WHEN GROUPING(v) = 1

THEN ’ALL’

ELSE v

END v,

SUM(f) AS f

FROM M_TABLE GROUP BY a, v

WITH CUBE;

Figure 4: OLAP cube query.

ated to Q, and sorting them by their frequencies in ascend-
ing order (least frequent first). Then, each of these matches
is explored in a breadth-first-search fashion by joining the
the M document table filtered using M predicate with the
transition tables P mcall and P ccall (each explored path is
maintained as a tuple in a temporary table). If a valid graph
is found, the result is returned to the user. The exploration
continues in a recursive manner by joining the resulting ta-
ble of the previous iteration with the transition tables (those
tables that contain the relationships between the methods
and classes). The exploration will halt when a certain num-
ber of steps has been reached or when certain time threshold
has expired (the exploration can fall into infinite loops). The
resulting graphs are returned to the user in ascending order
based on the number of elements required to satisfy Q.

4. EXPERIMENTS
QDPC is a standalone system developed entirely in C# as

two modules: a thin client that uses ODBC to connect to the
DBMS and a set of UDFs and Store Procedures that perform
the integration and searches (see Figure 2). Experiments
were run on an Intel Xeon E3110 server at 3.00 GHz with 750
GB of hard drive and 4 GB of RAM. The server was running
an instance of SQL SERVER 2005. All the experiments are
the result of an average of 30 runs unless otherwise specified.
The times are presented in seconds.

Table 2: Programs.
Description WP SE PJ1 PJ2
Num. Files 52 44 119 316
Num. Classes 52 0 158 460
Avg. File Size (KB) 1409 4787 12388 11474
Lines of Code (LOC) 5488 5463 28180 70815
Avg. Num. Variables 8 29 19 35
Avg. SQL queries 0 1 0 5
OLTP N N Y Y

4.1 Programs and Schemas
QDPC was tested using four different source code repos-

itories and their corresponding databases’ schemas. The
programs and schemas are a program used for capturing
information to a database of water quality of wells in the

Table 3: Schemas.
Description WP SE PJ1 PJ2
Num. Tables 52 25 21 95
Avg. No. Columns 7 4 6 5
Max No. Columns 110 12 15 29
Min No. Columns 1 2 2 2
Processing Type OLAP OLTP OLTP OLTP

 0

 10

 20

 30

 40

 50

 60

WP SE PJ1 PJ2

T
im

e
 i
n
 s

e
c
o
n
d
s

Programs

Integrating
Preprocessing

Figure 5: Preprocessing and Integration.

State of Texas (WP), the Sphider open source search engine
(SE) program, and a couple of management systems (PJ1
and PJ2). Table 2 and Table 3 contain the details of each
repository and schema.

4.2 Integration
The experiments in Figure 5 show the performance results

of preprocessing the source code repositories, obtaining the
approximate matches (allowing a proportional edit distance
of 10%). Figure 5 shows that looking for the approximate
matches and creating the summarization tables uses only
a small portion of the time compared to the source code
analysis. Despite this larger source code analysis task, the
entire integration phase takes less than 1 minute in all the
source code repositories.

In Table 4 and Figure 6, we focus on analyzing the effect
of the approximate matches and the performance of such ex-
ploration. Table 4 shows that even though WP contains the
fewest LOC, it has the highest number of unique keywords
to search. This table shows that the value of β is critical
to finding good matches (and avoiding having meaningless
matches). As is shown in this table, the values from β should
be between 0.10 and 0.25. However, when the value of β
exceeds that range, the number of approximate matches in-
creases by a factor of 4x. Furthermore, Figure 6 shows that
the performance of the algorithm is bounded by the number
of unique matches. PJ2 has the highest performance time
due to the number of LOC. However, WP ranks second due
to the number of unique keywords to search, regardless of
the size of the program. An interesting finding on this plot is
that the performance of the algorithm is not affected by the
selected β because all of these computations are performed
efficiently in batches stored within main memory.

Table 5 shows a breakdown of the performance of the inte-
gration phase. As expected, the bottleneck of the algorithm
is in the computation of the approximate matches between
the collections (Compute M document).

Table 4: Integration (Approximate Matches Found.)
Performance time (in seconds) is shown for β = 0.1.

Program L β = 0.10 β = 0.25 β = 0.50 Time
WP 375 850 979 4008 11
SE 60 1438 1478 3619 4

PJ1 88 4188 4304 13411 5
PJ2 332 42217 42742 143928 16

 0

 5

 10

 15

 20

 25

 30

WP SE PJ1 PJ2

T
im

e
 i
n
 s

e
c
o
n
d
s

Programs

0.10
0.25
0.50

Figure 6: Integration (Approximate Matches Per-
formance.)

4.3 Querying
The first type of querying to discuss here involves finding

the number of matches associated with elements in either P
or S. Figure 7 shows the result of obtaining the SUM, MAX,
MIN and COUNT aggregations in a single pass through the
data. Figure 7 presents similar results for all the collections
regardless of the original size. This is due to the fact that
the summarization is quite efficient because the size of the
input table is quite small and the aggregate functions are
performed within main memory using a hash aggregate. The
aggregation is not necessary as long as only these matches
are sought, speeding up the query and resulting in a natural
join.

A more complex analysis of aggregations can be computed
by generating OLAP cubes. These queries answer analytical
questions that focus on finding all the aggregations at dif-
ferent granularity levels. Some of the information obtained
in the OLAP cube includes: the matches that are associated
with all the methods and all the classes, or all the matches
that are associated to all the elements in P . Figures 8 and 9
show the result of computing an entire OLAP lattice based
on the summary tables. The first plot contains the com-
putation of the lattice in different levels of the hierarchy.
Therefore, the “P-type, S-type” cube shows the number of
matches associated with a column, table, class, method, and
so on. The “P-type, tablename” obtains an OLAP cube in-
dicating the number of matches associated per v with each
T . The last aggregation generates the OLAP cube showing
the number of matches associated with every class and T .
This plot shows that regardless of the level, the OLAP cube
is generated in less than 3 seconds in the smaller programs
(see Figure 8) and in less than 17 seconds in the larger ones
(see Figure 9). The highest times are associated with the
programs with the largest number of approximate matches.
In addition, Figure 8 and Figure 9 also show that computing

Table 5: Integration (QDPC Profiling.)

Program Compute M predicate Compute M document
WP 1 4
SE 1 2
PJ1 1 4
PJ2 1 14

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

WP SE PJ1 PJ2

T
im

e
 i
n
 s

e
c
o
n
d
s

Programs

Figure 7: Querying (Aggregations.)

a cube in a lower level in the hierarchy is faster due to the
early pruning of the match table allowing the exploitation
of a hash aggregate.

Finally, all the elements associated with a particular key-
word search are sought, due the dependencies between these.
Notice that this type of querying is the most complex be-
cause it requires performing a breadth-first traversal of P
and S in order to find all the G that cover a Q. This search
answers queries of the form “Is a particular method depen-
dent on a particular column?”. Figure 10 (which is the result
of 30 random conjunctive queries with a maximum recursion
depth of 5) shows that the exploration is equally efficient
when generating the graphs G by taking only a few seconds
for the most time-consuming searches (2 and 3 keywords).
When the number of keywords increases in Q, the perfor-
mance time of the algorithm decreases due to the limited
number of graphs that can satisfy Q, resulting in an early
termination of the algorithm.

5. RELATED WORK
Control and data dependency analysis of programs have

been explored for code maintainability, reverse engineering,
and compilers. Despite this, the interaction between source
code and a database’s schema has rarely been explored. In
[10] the authors propose the DB-MAIN case tool. This tool
automatically extracts data structures and control and data
dependencies declared in the source code (including all the
explicit and implicit structures and constraints). The re-
sult of this tool is a conceptual representation of the data
structures and the relationships between them. DB-MAIN
proposes three techniques for capturing the dependencies
in a program which are based on applying heuristics after
a pattern-matching analysis. Unlike our approach, which
is based on finding approximate matches, allowing us the
flexibility of analyzing a larger variety of languages and
pieces of code, DB-MAIN supports only a few languages
(such as COBOL). Furthermore, we rely on a DBMS to per-

 0

 1

 2

 3

 4

 5

WP SE

T
im

e
 i
n
 s

e
c
o
n

d
s

Programs

P-type,S-type
P-type,tablename

class,tablename

Figure 8: Querying (OLAP Cube for small projects.)

 0

 5

 10

 15

 20

 25

PJ1 PJ2

T
im

e
 i
n
 s

e
c
o
n
d
s

Programs

P-type,S-type
P-type,tablename

class,tablename

Figure 9: Querying (OLAP Cube for large projects.)

form the extraction and exploration of the matches. In the
keyword search domain several algorithms have been pro-
posed to manage efficient searches [5]. From this pool of
algorithms, the closest similarity is found to be in the DBX-
plorer system [1], BANKS [4] and DISCOVER [11]. Our
graph algorithm is partially based on the DISCOVER algo-
rithm in the exploration style. However, in DBXplorer, DIS-
COVER and BANKS, the challenge is to find those tables
and attributes that are related to PK/FK constraints. This
differs from our algorithms, which focus on exploring the
database’s schema and not the data within. Finally, QDPC is
the result of ongoing research in the field of data integration
and joint exploration between structured and unstructured
sources. This approach was originally implemented to inte-
grate semistructured data with structured data, as presented
in [13], in which the basic notion of a “link” was introduced.
In addition, several algorithms for finding those links were
introduced. Later on, we extended these ideas to perform
efficient approximate keyword matching inside the DBMS
[8]. Finally, in this paper, the ideas presented in [12] for
preparing a data set for data mining and the ideas in [7] for
OLAP exploration are extended to allow complex analysis
of the resulting matches.

6. CONCLUSIONS
This paper presents a novel system that allows flexible

querying of a source code repository and the schema of a
database. In order to do so, our approach relies on an effi-
cient integration phase that summarizes these dependencies
and stores them in the database management system. The
keyword searches in our approach are performed over these

 0

 5

 10

 15

 20

WP SE PJ1 PJ2

T
im

e
 i
n
 s

e
c
o
n

d
s

Programs

2 keywords
3 keywords

Figure 10: Querying (Graph Searches.)

summary structures that allow all the graphs that cover
the keywords given by the user to be returned. Additional
searches based on aggregation and OLAP cubes can be gen-
erated using these summary tables to answer complex ana-
lytical queries. Our experiments also showed that integra-
tion of several programs varying in the levels of dependency
with the database’s schema can be obtained quite efficiently
(in less than a minute in all the cases). Furthermore, the
scalability of the algorithm is observed to be bounded by the
number of keywords to be searched for. It was also shown
that searching for dependency graphs that cover the key-
words of a query can also be obtained in less than 20 seconds
in all the cases tested. Moreover, the algorithm also prunes
all the undesired matches early (if there are not matches cov-
ering all the keywords), resulting in a faster evaluation when
no graphs are found. The integration obtained with our sys-
tem also allowed an efficient evaluation of aggregate func-
tions and an efficient construction of OLAP cubes, which
allows such complex queries as, “What are the methods that
have the highest number of associated dependencies?” to be
answered. Finally, it was shown that a database manage-
ment system (DBMS) is a good candidate for managing this
type of keyword search in the DBMS (the amount of key-
words is much less that in the document domain), allowing
the integration and exploration of source code.

Future work is required to improve the integration and ex-
ploration of source code repositories and a database’s schema.
A richer analysis of the semantics of the source code (e.g.
considering the type of the data) needs to be incorporated.
Moreover, a way to deal with ambiguity between the source
code repository and the schema (e.g. “id” may be a column
of several tables) needs to be found. The representation
of complex relationships and interactions between multiple
programs and databases remains as an open question. Fur-
thermore, the usage of our match representation to build
data mining models (e.g. classification or clustering) to ex-
plore the characteristics of the programs, in order to an-
swer more complex questions, needs to be explored. Finally,
the authors believe that it is possible to extend and gen-
eralize our proposal to jointly query larger semi-structured
and structured sources in other domains, as well as to use a
DBMS as a backbone for such processing and exploration.

Acknowledgments
This work was partially supported by National Science Foun-
dation grant IIS 0914861.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A

system for keyword-based search over relational
databases. In Proc. ICDE, pages 5–16, 2002.

[2] T.M. Austin and G.S. Sohi. Dynamic dependency
analysis of ordinary programs. Proc. of ACM
SIGARCH Computer Architecture News,
20(2):342–351, 1992.

[3] Z. Bellahsene, A. Bonifati, and E. Rahm. Schema
matching and mapping. Springer-Verlag, 2011.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In Procs. of ICDE, pages
431–440, 2002.

[5] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword
search on structured and semi-structured data. In
Proc. of ACM SIGMOD, pages 1005–1010, 2009.

[6] A. Cleve, J. Henrard, and J.L. Hainaut. Data reverse
engineering using system dependency graphs. In Proc.
of IEEE Conference on Reverse Engineering, pages
157–166, 2006.

[7] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
OLAP-based query recommendation. In Proc. of ACM
CIKM, pages 1353–1356, 2010.

[8] C. Garcia-Alvarado and C. Ordonez. Keyword Search
Across Databases and Documents. In Proc. ACM
SIGMOD KEYS Workshop, 2010.

[9] M. Harman. Why source code analysis and
manipulation will always be important. In Proc. of
IEEE Working Conference on Source Code Analysis
and Manipulation (SCAM), pages 7–19, 2010.

[10] J. Henrard and J.L. Hainaut. Data dependency
elicitation in database reverse engineering. In Proc of
IEEE European Conference on Software Maintenance
and Reengineering, pages 11–19, 2001.

[11] V. Hristidis and Y. Papakonstantinou. DISCOVER:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[12] C. Ordonez. Data set preprocessing and
transformation in a database system. Intelligent Data
Analysis (IDA), 15(4), 2011.

[13] C. Ordonez, Z. Chen, and J. Garćıa-Garćıa. Metadata
management for federated databases. In ACM CIMS
Workshop, pages 31–38, 2007.

[14] J. Tarhio and E. Ukkonen. Boyer-Moore approach to
approximate string matching. SWAT, pages 348–359,
1990.

[15] T. Zimmermann and N. Nagappan. Predicting defects
using network analysis on dependency graphs. In Proc.
of ACM ICSE, pages 531–540, 2008.

