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ABSTRACT
Multiple source code files reference metadata of an exist-
ing database. Consequently, any modification that needs
to be done in the source code files or in the schema of a
database requires asserting the impact of performing such
change. This problem of data and control dependencies be-
tween a database system and source code has been tackled
before by software engineering. Unfortunately, these solu-
tions are cumbersome to implement by requiring a long ex-
ecution time for obtaining the dependency analysis, and do
not allow a flexible analysis of the resulting data. In this
research, we present and formalize a novel approach for us-
ing keyword search algorithms to analyze the resulting ref-
erences found between the source code and the database’s
schema. Our initial findings show that our algorithms are ef-
ficient to perform a rapid integration phase, allow complex
analysis of the references inside the DBMS (e.g. compu-
tation of OLAP data cubes), and provide efficient ranking
capabilities.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases

General Terms
Algorithms, Experimentation, Languages

Keywords
DBMS, Source Code, Software Maintainability, Integration

1. INTRODUCTION
Source code files exhibit a close relation with all the data

sets stored in the DBMS by referencing table names or col-
umn names in their metadata (e.g. file name), classes, meth-
ods, variables, and especially SQL queries. Therefore, appli-
cations and the schema of a database turn into rigid entities
that are difficult to modify. This problem is evident when
dealing with source code and a database’s maintainability
that requires adding or removing software functionalities.
As a result, a deep analysis of the related data and con-
trol dependencies of common elements that exist across all
c© ACM, 2012 . This is the author’s version of the work. It is posted
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Figure 1: Matches between a program P and a
schema S.

sources (joint querying) is required for application profil-
ing, speeding up application development, estimating main-
tainability costs, and application debugging [10, 3]. Even
though analyzing data dependency is a problem tradition-
ally studied within the compilers and software engineering
community [2, 6, 16], we defend the idea that it is possible to
solve this data and control dependency problem in a simpler
manner by using keyword search techniques and allowing a
joint exploration of these external sources based on keyword
matching. In order to do so, we focus on integrating both
sources by finding those references that exist between a set
of source code files (e.g. C++, Java, SQL scripts) and the
physical model of a database (schema).

To exemplify this, a brief scenario is described. A cen-
tral DBMS containing information about water quality of
wells in the State of Texas and a set of surrounding source
code files are related. From these files, only a portion of
them references the DBMS in the form of a file name, class
name, variables, methods (procedures of functions) or SQL
queries. From these two sources, we are interested in know-
ing which pieces of code and tables or columns are related
directly (or indirectly) to assert the impact of a source code
modification. Some queries that we are interested in answer-
ing are: “Which is the class that is more dependent on the
database?”, “Which are the most queried tables?”, and “Is
there a data dependency between a column in the database
with a particular method?”.

A number of challenges arise in solving the complex task
of relating the content of source code files (including their
metadata) and the physical design of a set of databases,
which include database names, table names, and column
names. Some of these problems include, but are not lim-
ited to: finding a conceptual representation of the data and



Table 1: Example of matches between S and P in the context of water quality.
name in S parent in S type in S keyword in P distance type in P loc. in file file
Pollutant null table name Pollutant 0 metadata filename Pollutant.java
Pollutant null table name Pollutant 0 SQL SELECT * FROM Pollutant Pollutant.java
ptype Pollutant column name ntype 1 var String ntype = ”” Pollutant.java

control dependencies between a source code section and a
portion of the database, efficient extraction of the existing
matches between embedded SQL queries and the potential
data and control dependencies given by class names, vari-
able names and file metadata, and efficient and informative
querying of the resulting matches.

Accounting for all of these challenges, we propose QDPC

(Querying Database Programs and Code). This novel sys-
tem is a collection of algorithms based on traditional SQL
queries and database extensibility mechanisms. QDPC fo-
cuses on finding a dependency representation in the form of
matches, and provides efficient algorithms for extracting and
querying all the existing matches between the DBMS and a
set of source files using the same central DBMS as the back-
bone for the entire process. The integration is performed
using database extensibility features, such as User-defined
functions (UDFs), and the resulting matches are stored in-
side relational tables for efficient querying using standard
SQL queries. The result is a powerful system that allows
the user to ask questions that go beyond a simple match ex-
traction, such as finding all the tables that are related to a
particular function, all the elements that are related through
different dependencies, or OLAP queries. Finally, we pro-
pose a way to rank the resulting references in an efficient
manner.

This paper is organized as follows: Section 2 presents the
definitions and notation used throughout the paper. Section
3 describes in detail the algorithms that are part of QDPC for
integration of the sources, and exploration and ranking of
the references. In Section 4, performance experiments are
shown for the integration and exploration phases. Section 5
presents previous research in the area of source code analy-
sis. Finally, Section 6 presents our final remarks and future
work.

2. DEFINITIONS
QDPC takes as input a schema S and a program (or source

code repository) P (as shown in Figure 1). S is composed
of a set of tables S = {T1, T2, . . . }, where each Ti contains
attributes defined as Ti(ai1, ai2, ...), and each T and a is
mapped (7→) to a keyword k. A program with n files is
defined as P = {v1, v2, . . . }, in which each vi is a keyword
that represents metadata (e.g. filename), classes, methods
(procedures or functions), variables or SQL queries. Fur-
thermore, there exist directed relationships between tables
T of the form Ti(ai1, . . . ) → Tj(aj1, . . . ) given by the pri-
mary/foreign key referential integrity constraints, and con-
trol dependency relationships between classes and methods.
There are additional undirected relationships (due to mem-
berships) between classes, methods, variables, and queries,
in which a class can have methods, variables and queries,
and a method can contain some variables and queries. In
Figure 1, we exemplify the relationships between all the el-
ements of S and P . Table 1 shows in detail several matches
present in Figure 1.
QDPC also takes a query Q which is composed of a set of

Figure 2: Resulting Graph.

keywords Q = {k1, k2, . . . } in order to perform a uniform
search in both sources. The searches are performed over a
set of approximate matches between P and S mapped to
a keyword. An approximate match of a keyword k is ob-
tained based on an edit distance function edit(k,k’), where
the edit distance represents the minimum number of inser-
tions, deletions, or substitutions required to turn k into k′.
Therefore, we consider an approximate match if and only
if edit(k, k′) ≤ dβ ∗ |k|e, where β is a real number in the
interval [0,1]. Intuitively, the value for β cannot be larger
than 0.5 because it will accept many unrelated keywords as
valid approximations. In the particular case in which exact
matches are the only ones desired, the value of β equals zero.
The value of β should be tuned based on the programming
style in the source code problem. Because exact matches
are clearly the more important ones, a small value of β is
normally desired (e.g. between 0.10 to 0.20). A match is
represented as a pair of the form (k, v). Finally, the result
of a query Q is all the graphs, G, containing all elements (e.g.
tables, columns, class, methods, variables, SQL queries) that
are required to satisfy all the approximate matches between
P and S. The representation of all these elements in rela-
tional terms will be given in Section 3.

For example, as shown in Figure 2, let S1 have two tables
T1(a11, a12, a13) and T2(a21, a22), where there T1(a12) →
T2(a21); and P1 has a single class:

public class v1

{

int v2;

int v3;

}

Given that T2 7→ k1 and a12 7→ k2, and edit(k1, v1) ≤
dβ ∗ |k1|e and edit(k2, v2) ≤ dβ ∗ |k2|e, then (k1, v1) and
(k2, v2) represent a match between S1 and P1. If a query is
given involving keywords k1 and k2, then the resulting graph
is G1 = {T2, T1, a12, v1, v2}.

3. INTEGRATION AND QUERYING
QDPC is a system that allows joint keyword searches, com-

plex analysis and ranking of the resulting matches to be
performed. As a result, QDPC is composed of an integra-
tion phase and an exploration phase. Our system exploits
a relational database as a backbone for efficient extraction
and retrieval of matches. In other words, the entire process
of managing both sources is performed within the DBMS.



Figure 3: Source Code Matching.

Therefore, both modules rely on optimizations that exploit
either SQL or UDFs, depending on the required task.

3.1 Integration
The integration is a refinement of an earlier idea presented

in [8] for managing structured and unstructured sources.
However, the analysis was limited to simple queries. The
integration phase can be summarized as:

• Preprocessing

1. Analyze source code files to extract all v.

2. Extract control dependencies.

• Integration.

1. Obtain unique keywords.

2. Search for approximate matches in the prepro-
cessed source code.

3. Apply indexes to the resulting tables.

The notion of achieving the integration relies on a two-
step process. The first step preprocesses all the source code
files to extract all the metadata, class names, method names,
and variables, as well as the calls that exist between them
(control dependencies). This will generate three tables: a
source code table (P document) which contains an identifier
for each v ∈ P and the location in the file, P mcall (caller
method, method) which has the control dependencies be-
tween methods, and P ccall (caller method, method) which
has the control dependencies between classes. The P prefix
indicates that a table contains information regarding a pro-
gram P . The integration step will rely on three main tables
M predicate (keyword id, keyword), S database (keyword,
location, parent) and M document (keyword id, edit dis-
tance, type, parent method, parent class, location in file), in
which M document will hold all the approximate matches
to the source code files. Similar to the P prefix, the S and
M prefixes relate to the schema and matching results, re-
spectively.

The first task during the integration will focus on obtain-
ing the unique keywords of the database’s schema and find-
ing all the approximate matches that exist between these
unique keywords and every v in P . Therefore, this pro-
cess is bounded by the number of unique keywords and the
number of files. During this integration phase, a batch of
keywords is tested at a time. As a result, if the number of
unique keywords in S is small, the algorithm is only bounded
by the number of discovered elements v in the source code
repository P . In order to find approximate matches, the
Approximate Boyer-Moore algorithm (ABM) was used [15].

The rationale behind this is that by using this algorithm,
it is possible to capture valid text patterns within the de-
sired edit distance that differ in only a few characters. For
example, in Figure 3, the string “pollution” is found as a
class name and as a SQL query. Once this discovery phase
has been finished, indexes are applied to the summary ta-
bles containing the approximate matches. Indexes were also
added to the unique keywords, source code, and metadata
summary tables in order to guarantee certain join algorithms
(merge join or hash join).

Matches between the database and the source code files
are discovered as follows: a set of all the elements from the
database (T and a) is queried from the catalog in order to ex-
tract all of the unique keywords. This set of keywords will be
stored in two summary tables. M predicate will contain all
of the unique keywords (obtained with a UNION query) and
S database, which will contain the location of the elements
in the database. The keywords in M predicate are then
matched between every element in the database and then
for every keyword k in the code repository P . The result-
ing matches in the source code are stored in a M document
table. Table M predicate is pruned to only hold those key-
words that are represented in the matches. This matching
is performed through database extensibility features, such
as using user-defined functions (UDFs), in order to keep in-
main memory all of the data structures used to obtain an
approximate distance (using edit distance) for every concept
and every given string coming from the database or collec-
tion of source code files. This matching step is the bottleneck
of the keyword matching. However, to ease the processing,
the matching is performed in batches. In other words, a set
of keywords k mapped from S is scanned simultaneously to
avoid multiple passes over the P document table and reduce
I/Os.

Tables S database, M document, and M predicate (sum-
mary tables) are created to avoid repeated searches on a par-
ticular data source and they include the location of the con-
cept in the database and in the source repository. By using
these summary tables, it is possible to obtain the matches
(stored as a view called M table) by joining these three ta-
bles, in where there is a hash join on the matching keywords
between M predicate and S database, and a hash join on
the id of v present in M predicate and S database.

This query is quite efficient due to the keyword indexes.
An example of the resulting matches is shown in Table 1.
Furthermore, the data type is considered irrelevant when
matching metadata, but this remains something to be ex-
plored in the future.

The complexity of the integration is given by the number
of unique keywords to search and the number of files in P .
Therefore, the integration is on the order of O(rn), where
r is the number of unique keywords and n is the number of
files.

3.2 Querying
The exploration is obtained only by analyzing the sum-

marization tables obtained in the previous phase (mainly
the approximate matches in the M table view). Analytical
queries are obtained mostly from the predicate table and the
approximate match table as shown in Equation 1. These
analytical queries are efficient one-pass aggregations in SQL
using functions such as SUM, COUNT, MAX and MIN.



SELECT

CASE

WHEN GROUPING(a) = 1

THEN ’ALL’

ELSE a

END a,

CASE

WHEN GROUPING(v) = 1

THEN ’ALL’

ELSE v

END v,

SUM(f) AS f

FROM M_TABLE GROUP BY a, v

WITH CUBE;

Figure 4: OLAP Data Cube Query.

πF (σQ(M predicate) ./ (M document)) (1)

These queries are able to answer questions such as the
number of matches that are associated with a particular v, T
or a, as well as which matches are present if the aggregation
(πF ) is removed.

Furthermore, we are able to take these aggregations one
step further and compute OLAP cubes from these matches
by generating aggregations with different dimensions that in-
clude all the granularity levels inside the DBMS and within
the source code. An OLAP query that exploits the sum-
marization tables based on the CUBE operator from SQL
SERVER is shown in Figure 4.

This query can answer complex analytical queries such as
“Which column a has the highest number of dependencies
associated with v?”

Finally, the most complex searches are those that require
following the dependencies. These searches answer queries
such “What are all the methods associated with a particular
column?” In order to find these dependency graphs G, we
propose the following algorithm: The computation of the
graph in S is performed efficiently in main memory due to
the reduced number of elements. However, computing the
resulting graph in P cannot be performed in main memory.
The algorithm for computing graphs in P is based on filter-
ing the approximate match table to find all matches associ-
ated to Q, and sorting them by their frequencies in ascend-
ing order (least frequent first). Then, each of these matches
is explored in a breadth-first-search fashion by joining the
the M document table filtered using M predicate with the
transition tables P mcall and P ccall (each explored path is
maintained as a tuple in a temporary table). If a valid graph
is found, the result is returned to the user. The exploration
continues in a recursive manner by joining the resulting ta-
ble of the previous iteration with the transition tables (those
tables that contain the relationships between the methods
and classes). The exploration will halt when a certain num-
ber of steps has been reached or when certain time threshold
has expired (the exploration can fall into infinite loops). The
resulting graphs are returned to the user in ascending order
based on the number of elements required to satisfy Q.

3.3 Ranking
Once these references have been found, we focus on rank-

ing the references stored in the M table materialized view.
Thus, we propose three methods for querying the set of ref-
erences:

• Method 1: Approximate Boolean Search ranked by fre-
quency.

• Method 2: Approximate Boolean Search ranked by fre-
quency and the average edit distance.

• Method 3: Reference Frequency.

The first two methods are based on querying directly the
references (approximate boolean search) and ranking us-
ing frequency. The third method is the result of querying
and ranking the documents in M documents using the in-
verse document index resulting from the references stored in
M table and a given query Q = {t1, t2, t3, . . . }.

Our first method is the result of a filtering and an ag-
gregation on the M table to compute the frequency of the
keywords. This query is of the form:

SELECT k, SUM(1.0) AS f

FROM M_table

WHERE k IN (’t1’,’t2’)

GROUP BY k

ORDER BY f

The second method also relies on the frequency of a key-
word in the M table table. However, the proximity of key-
word in Q to a keyword in M table is considered. The ad-
vantage of this method is that this search allows finding
those references that are closely related to a user search.
For example, if the user searches for “pollutants”, the result-
ing references will also include all those references that have
the keyword “pollutant”. Unfortunately, this type of search
cannot be done in a single pass and requires a full scan on
the M predicate table. The resulting keywords, that have
approximate matches to the given Q, are then stored in a
temporary table. This temporary table is then left joined
with the M table to compute in a single pass the aggrega-
tion, filtering of NULL keywords and sorting. For example,
let a keyword “pollutant” be a t ∈ Q. For the first method,
only those references that have an exact match with the user
query will be returned. For the second method, all the re-
sults obtained will be included with the addition of all those
references that have certain proximity to the user search.
This parameter, like the β parameter during the integration
phase, can be specified by the user during the querying.

Unlike the previous methods that focused on returning
the number of references associated to a particular query
Q. In our third ranking method, we are interested in rank-
ing all the source code files associated to a query Q. In
order to do so, we extended the traditional vector space
model (VSM) to consider the uniqueness of a keyword in
both sources (S and P ). Hence, a weight of each keyword is
computed, which can be understood as an inverse relation
frequency (IRF). The IRF is defined in Equation 2, The IRF
is based on the uniqueness of a keyword in the collection, in
which n̂ is the number of source code files that contain k
and ê is the number of elements mapped to k. The first part
of the equation is the well-known Inverse Document Fre-
quency (IDF). A second weight is obtained for computing
the uniqueness of a keyword in the database. Therefore, the
second part of the equation represents the Inverse Element



Frequency (IEF). Notice that Equation 2 can be summarized
as IRF (k) = IDF (k) ∗ IEF (k).

irf(k) = log
(n
n̂

+ 1
)
∗ log

(
|E|
ê

+ 1

)
(2)

The final ranking of the keyword is obtained by applying
the traditional vector space model using the proposed IRF
weight for each keyword instead of the IDF.

4. EXPERIMENTS
QDPC is a standalone system developed entirely in C# as

two modules: a thin client that uses ODBC to connect to the
DBMS and a set of UDFs and Store Procedures that perform
the integration and searches. Experiments were run on an
Intel Xeon E3110 server at 3.00 GHz with 750 GB of hard
drive and 4 GB of RAM. The server was running an instance
of SQL SERVER 2005. All the experiments are the result of
an average of 30 runs unless otherwise specified. The times
are presented in seconds.

Table 2: Programs.
Description WP SE PJ1 PJ2
Num. Files 52 44 119 316
Num. Classes 52 0 158 460
Avg. File Size (KB) 1409 4787 12388 11474
Lines of Code (LOC) 5488 5463 28180 70815
Avg. Num. Variables 8 29 19 35
Avg. SQL queries 0 1 0 5
OLTP N N Y Y

Table 3: Schemas.
Description WP SE PJ1 PJ2
Num. Tables 52 25 21 95
Avg. No. Columns 7 4 6 5
Max No. Columns 110 12 15 29
Min No. Columns 1 2 2 2
Processing Type OLAP OLTP OLTP OLTP

4.1 Programs and Schemas
QDPC was tested using four different source code repos-

itories and their corresponding databases’ schemas. The
programs and schemas are a program used for capturing
information to a database of water quality of wells in the
State of Texas (WP), the Sphider open source search engine
(SE) program, and a couple of management systems (PJ1
and PJ2). Table 2 and Table 3 contain the details of each
repository and schema.

4.2 Integration
The experiments in Figure 5 show the performance results

of preprocessing the source code repositories, obtaining the
approximate matches (allowing a proportional edit distance
of 10%). Figure 5 shows that looking for the approximate
matches and creating the summarization tables uses only
a small portion of the time compared to the source code
analysis. Despite this larger source code analysis task, the
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Figure 5: Preprocessing and Integration.

entire integration phase takes less than 1 minute in all the
source code repositories.

In Table 4 and Figure 6, we focus on analyzing the effect
of the approximate matches and the performance of such ex-
ploration. Table 4 shows that even though WP contains the
fewest LOC, it has the highest number of unique keywords
to search. This table shows that the value of β is critical
to finding good matches (and avoiding having meaningless
matches). As is shown in this table, the values from β should
be between 0.10 and 0.25. However, when the value of β
exceeds that range, the number of approximate matches in-
creases by a factor of 4x. Furthermore, Figure 6 shows that
the performance of the algorithm is bounded by the number
of unique matches. PJ2 has the highest performance time
due to the number of LOC. However, WP ranks second due
to the number of unique keywords to search, regardless of
the size of the program. An interesting finding on this plot is
that the performance of the algorithm is not affected by the
selected β because all of these computations are performed
efficiently in batches stored within main memory.

Table 4: Integration (Approximate Matches Found.)
Performance time (in seconds) is shown for β = 0.1.

Program M predicate β = 0.10 β = 0.25 β = 0.50 Time

WP 375 850 979 4008 11
SE 60 1438 1478 3619 4

PJ1 88 4188 4304 13411 5
PJ2 332 42217 42742 143928 16

Table 5 shows a breakdown of the performance of the inte-
gration phase. As expected, the bottleneck of the algorithm
is in the computation of the approximate matches between
the collections (Compute M document).

Table 5: Integration (QDPC Profiling.)
Program Compute M predicate Compute M document
WP 1 4
SE 1 2
PJ1 1 4
PJ2 1 14

4.3 Querying
The first type of querying to discuss here involves finding

the number of matches associated with elements in either P
or S. Figure 7 shows the result of obtaining the SUM, MAX,
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MIN and COUNT aggregations in a single pass through the
data. Figure 7 presents similar results for all the collections
regardless of the original size. This is due to the fact that
the summarization is quite efficient because the size of the
input table is quite small and the aggregate functions are
performed within main memory using a hash aggregate. The
aggregation is not necessary as long as only these matches
are sought, speeding up the query and resulting in a natural
join.

A more complex analysis of aggregations can be computed
by generating OLAP cubes. These queries answer analytical
questions that focus on finding all the aggregations at dif-
ferent granularity levels. Some of the information obtained
in the OLAP cube includes: the matches that are associated
with all the methods and all the classes, or all the matches
that are associated to all the elements in P . Figures 8 and 9
show the result of computing an entire OLAP lattice based
on the summary tables. The first plot contains the com-
putation of the lattice in different levels of the hierarchy.
Therefore, the “P-type, S-type” cube shows the number of
matches associated with a column, table, class, method, and
so on. The “P-type, tablename” obtains an OLAP cube in-
dicating the number of matches associated per v with each
T . The last aggregation generates the OLAP cube showing
the number of matches associated with every class and T .
This plot shows that regardless of the level, the OLAP cube
is generated in less than 3 seconds in the smaller programs
(see Figure 8) and in less than 17 seconds in the larger ones
(see Figure 9). The highest times are associated with the
programs with the largest number of approximate matches.
In addition, Figure 8 and Figure 9 also show that computing
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a cube in a lower level in the hierarchy is faster due to the
early pruning of the match table allowing the exploitation
of a hash aggregate.

Finally, all the elements associated with a particular key-
word search are sought, due the dependencies between these.
Notice that this type of querying is the most complex be-
cause it requires performing a breadth-first traversal of P
and S in order to find all the G that cover a Q. This search
answers queries of the form “Is a particular method depen-
dent on a particular column?”. Figure 10 (which is the result
of 30 random conjunctive queries with a maximum recursion
depth of 5) shows that the exploration is equally efficient
when generating the graphs G by taking only a few seconds
for the most time-consuming searches (2 and 3 keywords).
When the number of keywords increases in Q, the perfor-
mance time of the algorithm decreases due to the limited
number of graphs that can satisfy Q, resulting in an early
termination of the algorithm.

4.4 Ranking
In order to test the scalability of our ranking methods, we

performed some preliminary work using documents instead
of source code files. A set of Water Pollution documents
were used, and a new data set using some documents from
the ACM Digital Library were used too (see Table 6).

The references were represented as a pair between an ex-
isting keyword in the document and a keyword in the schema
of the database. The experiments were performed in a dual
core machine with 8 GB in RAM.

In these sets of experiments, we observed in the first two
methods that the querying times are approximately steady
between the set of documents in the same collection. How-
ever, as expected, the times increase in a linear manner when
the number of elements in M predicate increases. Moreover,
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Table 6: Ranking Data sets
Description Value Min Max

Texas Water Wells P and S

Documents 1000 - -
Avg. k per document 217 1 250

Database

Number of Tables 32 - -
Number of Columns 214 - -
|M predicate| 278408 - -

ACM DL P and S

Documents 1000 - -
Avg. k per document 206 53 236

Database

Number of Tables 3 - -
Number of Columns 9 - -
|M predicate| 190233 - -

the performance of the first two methods (similar average
times and standard deviation) is comparable regardless of
the additional step needed by the second method to ob-
tain the approximate matches. The rationale behind this is
that this computation is performed entirely in main memory,
which results in an efficient performance. Also, we noticed
that the time it takes for our first two methods to rank a
collection of similar size to PJ2 is quite small (less of equal
than 5 seconds).

Like the first two methods, the third method also shows a
linear scalability. Notice that this linear scalability is clear
in the WP data set. However, some variability may exists
when M predicate fits in main memory. In addition, the av-
erage performance time and the standard deviation is much
smaller than in the other two methods. This is due to the
fact that the first two methods require a full scan in the ma-
terialized view. On the other hand, method 3 focuses only
on the M predicate table and the summarization table that
contain the precomputed values of the IRF .

5. RELATED WORK
Control and data dependency analysis of programs have

been explored for code maintainability, reverse engineering,
and compilers. Despite this, the interaction between source
code and a database’s schema has rarely been explored. In
[11] the authors propose the DB-MAIN case tool. This tool
automatically extracts data structures and control and data
dependencies declared in the source code (including all the
explicit and implicit structures and constraints). The re-
sult of this tool is a conceptual representation of the data
structures and the relationships between them. DB-MAIN
proposes three techniques for capturing the dependencies
in a program which are based on applying heuristics after
a pattern-matching analysis. Unlike our approach, which

Table 7: Querying using Method 1 (β = 0.20, times
in ms.).

WP ACM DL
P µ σ Max Min µ σ Max Min

100 5282 19803 88547 16 23 12 63 16
250 8547 37851 169359 31 28 13 63 16
500 13993 62277 278578 16 35 28 125 16

1000 20741 92439 413469 16 75 80 234 16

Table 8: Querying using Method 2 (β = 0.20, times
in ms.).

WP ACM DL
P µ σ Max Min µ σ Max Min

100 3602 14313 64188 16 22 9 47 16
250 5589 24594 110078 16 28 12 47 16
500 9626 42698 191031 16 41 41 203 16

1000 20809 92706 414672 31 46 35 125 16

is based on finding approximate matches, allowing us the
flexibility of analyzing a larger variety of languages and
pieces of code, DB-MAIN supports only a few languages
(such as COBOL). Furthermore, we rely on a DBMS to per-
form the extraction and exploration of the matches. In the
keyword search domain several algorithms have been pro-
posed to manage efficient searches [5]. From this pool of
algorithms, the closest similarity is found to be in the DBX-
plorer system [1], BANKS [4] and DISCOVER [12]. Our
graph algorithm is partially based on the DISCOVER algo-
rithm in the exploration style. However, in DBXplorer, DIS-
COVER and BANKS, the challenge is to find those tables
and attributes that are related to PK/FK constraints. This
differs from our algorithms, which focus on exploring the
database’s schema and not the data within. Finally, QDPC is
the result of ongoing research in the field of data integration
and joint exploration between structured and unstructured
sources. This approach was originally implemented to inte-
grate semistructured data with structured data, as presented
in [14], in which the basic notion of a “link” was introduced.
In addition, several algorithms for finding those links were
introduced. Later on, we extended these ideas to perform
efficient approximate keyword matching inside the DBMS
[8]. In this paper, the ideas presented in [13] for preparing
a data set for data mining and the ideas in [7] for OLAP
exploration are extended to allow complex analysis of the
resulting matches. Finally, this paper formalizes the nota-
tion in [9] and introduces efficient ranking methods for the
obtained references and source code files.

6. CONCLUSIONS

6.1 Solved Problems
A novel system, QDPC, is presented in this paper that

allows flexible querying of a source code repository and the
schema of a database. In order to do so, we propose us-
ing a keyword search approach to extract, explore and rank
the resulting references. Our approach relies on an efficient
integration phase that summarizes control and data depen-
dencies in a program and stores them in the database man-
agement system. The keyword searches in our approach
are performed over these summary structures that allow all
the graphs that cover the keywords given by the user to be
returned. Additional searches (e.g OLAP cubes) and rank-



Table 9: Querying using Method 3. Top-10 Refer-
ence Querying (β = 0.20, times in ms).

WP ACM DL
P µ σ Max Min µ σ Max Min

100 148 36 281 109 159 37 266 125
250 155 32 266 125 259 141 719 156
500 169 56 359 125 191 44 297 125

1000 225 79 406 141 207 51 328 125

ing can be generated using these summary tables to answer
complex analytical queries. Our experiments also showed
that integration of several programs varying in the levels
of dependency with the database’s schema can be obtained
quite efficiently (in less than a minute in all the cases). Fur-
thermore, the scalability of the algorithm is observed to be
bounded by the number of keywords to be searched for. It
was also shown that searching for dependency graphs that
cover the keywords of a query can also be obtained in less
than 20 seconds in all the cases tested. Moreover, the algo-
rithm also prunes all the undesired matches early (if there
are not matches covering all the keywords), resulting in a
faster evaluation when no graphs are found. The integra-
tion obtained with our system also allowed an efficient eval-
uation of aggregate functions and an efficient construction of
OLAP cubes, which allows such complex queries as, “What
are the methods that have the highest number of associ-
ated dependencies?” to be answered. Also, our experiments
showed that our three proposed ranking methods are effi-
cient for returning the most frequent keywords and approx-
imate keywords in the resulting references. As well as the
most relevant source code files associated to a user query.
Finally, it was shown that a database management system
(DBMS) is a good candidate for managing this type of key-
word search in the DBMS (the amount of keywords is much
less that in the document domain), allowing the integration
and exploration of source code.

6.2 Open Problems
Several problems remain to be addressed in future re-

search. Additional work is required to improve the inte-
gration and exploration of source code repositories and a
database’s schema (e.g. parallel processing techniques). A
richer analysis of the semantics of the source code (e.g. con-
sidering the type of the data) needs to be incorporated.
Moreover, a way to deal with ambiguity between the source
code repository and the schema (e.g. “id” may be a column
of several tables) needs to be found. The validation of our
method to represent complex relationships and interactions
between multiple programs and databases remains to be ex-
plored. The optimization for string matching with multiple
keywords represents an area of opportunity. A thorough
evaluation of the IRF ranking method using precision and
recall is needed since we do not have a baseline method to
compare. Along the line of source code analysis, statistical
models (e.g. linear regression) can be introduced to identify
which source code elements are more prone to produce bugs.
Finally, the authors believe that it is possible to extend and
generalize our proposal to integrate, explore and rank com-
plex programs, databases and documentation efficiently in a
database management system.
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