
Dynamic Optimization of Generalized SQL Queries with
Horizontal Aggregations

Carlos Ordonez
University of Houston

USA

Javier García-García
UNAM/IPN

Mexico

Zhibo Chen
University of Houston

USA

ABSTRACT
SQL presents limitations to return aggregations as tables
with a horizontal layout. A user generally needs to write
separate queries and data definition statements to combine
transposition with aggregation. With that motivation in
mind, we introduce horizontal aggregations, a complemen-
tary class of aggregations to traditional (vertical) SQL ag-
gregations. The SQL syntax extension is minimal and it
significantly enhances the expressive power and ease of use
of SQL. Our proposed SQL extension blurs the boundary
between row values and column names. We present a pro-
totype query optimizer that can evaluate arbitrary nested
queries combining filtering, joins and both classes of aggre-
gations. Horizontal aggregations have many applications in
ad-hoc querying, OLAP cube processing and data mining.
We demonstrate query optimization of horizontal aggrega-
tions introduces new research challenges.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Relational
databases

General Terms
Algorithms, Languages, Performance

1. INTRODUCTION
Given a query, the SQL query optimizer requires know-

ing all specific columns in the output table at the moment
the query is parsed and optimized: the output table schema
must be determined at optimization time. In other words,
output columns are static and need to be determined at
“compile” time from a programming languages perspective.
This is similar to knowing storage requirements for local
variables in a function in a high-level programming language
at compile time. SQL cannot easily produce aggregation
results with a horizontal layout. The PIVOT operator [2]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

available in some DBMSs requires a separate step to de-
termine pivoting values. Moreover, pivoting by multiple
columns is not possible. In general, combining operators
to produce vertical and horizontal layouts requires separate
queries: it is difficult to do it in a single query. Consider-
ing the motivation explained above, we present a prototype
query optimizer for a new class of generalized queries ex-
tended with horizontal aggregations [4].

Our proposal extends SQL in a novel and simple way to
compute aggregations with different output layouts. Aggre-
gations extend relational algebra to so-called SPJA queries.
Notice there is no universal mathematical notation for aggre-
gations highlighting the theoretical difficulty incorporating
them into relational algebra. Horizontal aggregation queries
generalize standard (vertical) aggregations to a new class of
queries we call SPJH. SPJH queries subsume SPJA queries
and produce“nested”relations (non-first normal form, a.k.a.
NF2), as we shall explain. In our proposal there is a minimal
change in syntax in the SELECT statement with one new
keyword which works in a similar manner to the GROUP BY
clause. In fact, such syntax change happens locally within
the aggregation function call. The new syntax for horizontal
aggregations eliminates the need to specify separate opera-
tions to produce output in a horizontal layout. Standard
SQL aggregations and horizontal aggregations can be eas-
ily combined in a new class of queries that goes beyond the
static schema complying with relational algebra. Contrast-
ing standard SQL aggregations and ours, vertical horizon-
tal aggregations produce a static number of columns and
dynamic number of rows, whereas horizontal aggregations
produce both a dynamic number of columns and a dynamic
number of rows. Our proposed horizontal aggregations can
be applied to prepare data sets to compute multivariate sta-
tistical models [3], to compute data quality metrics [5] or
to transpose results in cube queries [1], among many other
potential applications.

From a systems perspective, our proposed SQL exten-
sion can work on top of an existing DBMS, without the
need to internally modify its query optimizer. Since queries
with horizontal aggregations require producing a dynamic
number of columns a traditional cost-based query optimizer
would need to suffer fundamental changes and a difficult
rewrite of existing source code. In our system, we have opted
for a less disruptive path in which the existing DBMS opti-
mizer is used as a building block to evaluate standard SQL
subqueries generated by our system. However, it is feasible
to modify an existing optimizer. The fundamental change
we have identified would be to determine output columns at

Figure 1: System architecture.

evaluation time with a continuous feedback process to the
optimization phase as subqueries get evaluated.

2. SYSTEM DESCRIPTION

2.1 System Architecture
Our system is basically an extended, but small, SQL query

meta-optimizer built on top of a traditional query optimizer.
That is, we use an existing query optimizer as a building
block. There are four subsystems, similar to those of a re-
lational query optimizer. Our first subsystem is a basic SE-
LECT parser which accepts SPJH queries combining filter-
ing (WHERE clause), project (list of chosen columns), joins,
standard aggregations and horizontal aggregations. The sec-
ond subsystem is an extended SQL dynamic optimizer. The
third subsystem is the underlying DBMS optimizer (which
also has its own parser). The fourth and simplest subsystem
allows viewing output tables highlighting related columns
coming from the same horizontal aggregation (i.e. as if there
are nested tables). Figure 1 shows the system architecture.

2.2 Definitions: Input and Output Tables
Let F be a table having a simple primary key K repre-

sented by an integer, p discrete attributes and one numeric
attribute: F (K, D1, . . . , Dp, A). Our definitions are easily
generalized to q numeric attributes. In OLAP cube terms,
F is a fact table with one column used as a generic primary
key, p dimensions (for GROUP BY) and one measure col-
umn (for SQL aggregations). F is assumed to have a star
schema to simplify exposition. In practical terms, table F

represents a a view or intermediate table before GROUP
BY based on a “star join” query on several tables. However,
our system can handle any arbitrary query combining joins
and aggregations. Column K will not be used to compute
aggregations and dimension lookup tables will be based on
simple foreign keys. That is, one dimension column Dj will
be a foreign key linked to a lookup table that has Dj as
primary key. F size is called N (i.e. |F | = N), not to be
confused with n, the size of the answer set defined below.

2.3 Horizontal aggregation: Syntax and Call
We now turn our attention to a small syntax extension

to the SELECT statement, which allows understanding our
proposal in an intuitive manner. We must point out the

proposed extension represents non-standard SQL because
the columns in the output table are not known when the
query is parsed. We assume F does not change during a
horizontal aggregation evaluation because new values may
create new result columns, producing inconsistent results.
Conceptually, we extend standard SQL aggregate functions
with a “transposing” BY clause followed by a list of columns
(i.e. R1, . . . , Rk), to produce a horizontal set of numbers
instead of one number. Our proposed syntax is as follows.

SELECT L1, .., Lj , H(A BY R1, . . . , Rk)
FROM F

GROUP BY L1, . . . , Lj ;

In the context of our work, H() represents some SQL ag-
gregation (e.g. sum(), count(), min(), max(), avg()). The
function H() must have at least one argument represented
by A, followed by a list of columns. The result rows are de-
termined by columns L1, . . . , Lj in the GROUP BY clause
if present. Result columns are determined by all potential
combinations of columns R1, . . . , Rk, where k = 1 is the
default. Also, {L1, . . . , Lj} ∩ {R1, . . . , Rk} = ∅

We intend to preserve standard SQL evaluation seman-
tics as much as possible. Also, our goal is to develop sound
and efficient evaluation mechanisms. Thus we propose the
following rules. (1) the GROUP BY clause is optional, like
a vertical aggregation. That is, the list L1, . . . , Lj may be
empty. When the GROUP BY clause is not present then
there is only one result row. (2) When GROUP BY is
present there should not be a HAVING clause that may pro-
duce cross-tabulation of the same group (i.e. multiple rows
with aggregated values per group). (3) the transposing BY
clause is optional. When BY is not present then a horizontal
aggregation reduces to a vertical aggregation. (4) When the
BY clause is present the list R1, . . . , Rk is required, where
k = 1 is the default. (5) horizontal aggregations can be
combined with vertical aggregations or other horizontal ag-
gregations on the same query, provided all use the same
GROUP BY columns {L1, . . . , Lj}. (6) Calls to horizontal
aggregations must be unique to avoid name conflict when
column names are generated. (7) As long as F does not
change during query processing horizontal aggregations can
be freely combined. Such restriction requires table locking
[4]. (8) the argument to aggregate represented by A is re-
quired; A can be a column name or an arithmetic expression.
In the particular case of count() A can be the ”DISTINCT”
keyword followed by the list of columns. (9) when H() is
used more than once, in different terms, it should be used
with different sets of BY columns.

2.4 Examples
We start by showing an input table F and two aggregation

queries, one vertical and the second one horizontal. Figure
2 gives an example of F , one vertical aggregation and a hor-
izontal aggregation. The vertical aggregation query for FV

and the horizontal aggregation query for FH appear on the
right hand side. Notice column names in FH are automat-
ically determined from the function call. FH is populated
with nulls. The null in bold face indicates such null existed
in the original F table and thus it passed through, whereas
the remaining nulls are a consequence of having a uniform
tabular structure.

Consider the following query for a cell phone company
database:

F FV

K D1 D2 D3 A1

1 2 a x 2
2 2 b y 2
3 4 b z 4
4 2 a x 0
5 4 c y 0
6 2 a z 1
7 1 c x null
8 2 b y 1
9 2 a x 2
10 3 a y 8

D1 D2 count(*) A
1 c 1 null
2 a 4 5
2 b 2 3
3 a 1 8
4 b 1 4
4 c 1 0

FH

D1 sum(A BY D2=a) sum(A BY D2=b) sum(A BY D2=c)
1 null null null
2 5 3 null
3 8 null null
4 null 4 0

/* FV */
SELECT D1, D2,count(*),sum(A)
FROM F
GROUP BY D1, D2

ORDER BY D1, D2;

/* FH */
SELECT D1,sum(A BY D2)
FROM F
GROUP BY D1

ORDER BY D1;

Figure 2: Example of input table F , vertical aggregation FV and horizontal aggregation FH .

SELECT
telNo,
count(*),
count(* BY dayofweekName),
sum(costPerMinute BY dayTime),
count(distinct calledId BY monthId),
sum(costPerMinute BY countryName)

FROM callLog F
JOIN country FC ON F.countryId=FC.countryId

GROUP BY telNo;

We now give an example of nested queries which require a
more complex evaluation and optimization. Notice column
names of nested H() cannot be determined during parsing.
Therefore, column names are dynamically determined at
query evaluation time. Consider the following nested query
with two nested aggregations. This query produces a wide
table with only one row.

SELECT
’FLAT’ AS D0
,sum(FH.sum(A BY D1) BY D2)
,sum(FH.sum(A BY D1,D3) BY D2)

FROM (SELECT
D2

,sum(A BY D1)
,sum(A BY D1,D3)
,sum(A BY D3)

FROM F
GROUP BY D2)FH

GROUP BY D0;

This query below allows projection in a horizontal aggre-
gation by filtering values with the ”IN” keyword, as it is
done in standard SQL. This query produces an output table
with just three ”salesAmt” aggregation columns instead of
seven. Notice that the standard SQL vertical aggregation
still computes a total with the seven days.

SELECT
storeId,
sum(salesAmt BY dayofweekName IN ’Wed’,’Thu’,’Fri’),
count(distinct transactionid BY salesMonth),
sum(1 BY deptName),
sum(salesAmt)

FROM transactionLine
JOIN DimDayOfWeek ON
transactionLine.dayOfWeekNo

=DimDayOfWeek.dayOfWeekNo
JOIN DimDepartment ON
transactionLine.deptId = DimDepartment.deptId

JOIN DimMonth ON
transactionLine.MonthId = DimTime.MonthId

WHERE salesYear=2009
GROUP BY storeId;

2.5 Query Optimization
We start by discussing the three evaluation methods [4] for

a single flat query with one horizontal aggregation. Nested
queries are discussed below. The evaluation of multiple hor-
izontal aggregations on the same query is straightforward to
generalize by producing different output tables and joining
them or expanding each horizontal call on the same SE-
LECT. The first method is called SPJA and relies on tra-
ditional SPJA queries. Thus it is based on traditional re-
lational query optimization. The second method exploits
the PIVOT operator, if available, which is an operator out-
side relational algebra. The third method relies on CASE
statements to evaluate aggregations at the intersection (con-
junction) of specific values. Notice CASE is a programming
construct beyond the control of the query optimizer. SPJA
is ideal for input tables with sparse combinations of values,
producing zero rows. PIVOT is better for a single column
within a horizontal aggregation. The CASE method is best
for multiple horizontal grouping columns and dense tables,
in which there are few zero values in the output table.

We now discuss the horizontal aggregation query opti-
mizer which produces a horizontal plan. The parsed SE-
LECT query is passed to the optimizer which selects the
best evaluation method according to the number of output
columns and an estimation of input column cardinalities.
Each evaluation method produces a sequence of DDL and
DML statements in standard SQL. This step is a key dif-
ference because DDL and DML statements are interleaved.
This process is recursively repeated for nested queries with
horizontal aggregations, starting with innermost queries. At
each intermediate step the query plan is updated with new
column names automatically generated. Output column
names are automatically generated with the function call
and they are enforced to be unique in nested queries to
avoid name conflict. Nested queries containing only verti-
cal aggregations are passed straight to the DBMS optimizer.
This step populates intermediate horizontal tables with nulls
since each row has a fixed number of columns.

3. SYSTEM DEMONSTRATION
We will run our system on a portable computer with a

DBMS installed. In addition, we will have a powerful re-
mote DBMS available to run queries on large tables. Our
program provides a GUI to type queries and view results.
The demonstration will be done with SQL Server, but any
DBMS supporting SQL works fine. Our GUI is programmed
in the C# language, which provides tight integration with
the DBMS, but any language like Java or C++ can provide
equivalent implementation.

The database will contain TPC-H tables and several tables
with real data with different applications like water pollu-
tion, medicine and census information. The user will be able
to understand the evaluation of fairly complex SPJH queries
(e.g. cubes, nested, transposition) on these tables.

3.1 Points to Emphasize
In our system demonstration we will emphasize the fol-

lowing points: (1) The output table has a horizontal layout.
(2) Compare our proposal with existing SQL syntax to pro-
duce tables with vertical and horizontal layouts. (3) Giving
an intuitive understanding of generalization of SQL syntax
and aggregation functions. (4) Showing there is a radical
change in how a query is evaluated: the output columns are
dynamic; they are determined at evaluation time. Moreover,
the number of columns is also determined at evaluation time.
(5) Emphasizing column naming is automatic, helping the
user build“wide” data sets for analysis. (6) Gradually trans-
forming a vertical aggregation into a horizontal aggregation
with several (two or more) grouping columns, and vice-versa.
(7) Understanding automation in query writing and expres-
sive power limitations of the built-in PIVOT operator. (8)
showing bottlenecks during query evaluation: external sorts,
redundant CASE expressions, multiple outer joins.

3.2 Demonstration: Optimizing and
Evaluating Complex Queries

The user will be able to type and evaluate any SPJH
query, nested up to three levels. The user will have ac-
cess to template queries that can be easily modified. Such
queries will have typical horizontal aggregations combined
with vertical aggregations. In a complementary manner,
the user will also have freedom to type SPJH queries on the
TPC-H database and tables from scientific databases.

The user will have the ability to submit various queries,
going from one simple horizontal aggregation with one BY
column on a single table to a complex query with nested
queries (subqueries). The user will have the ability to under-
stand the interaction of horizontal aggregations with query
optimization when there are joins present.

For each query the demonstration will flow as follows. The
user will be able to compare estimated I/O and elapsed
time for the three methods. Then the user can view the
query evaluation plan produced by the horizontal aggrega-
tion query optimizer. If needed, the user can browse the
generated SQL code for the best method. The user will
have the ability to evaluate the query by step, temporarily
stopping and browse intermediate tables, especially those
with horizontal aggregation columns. Query evaluation can
be resumed at any time. The user will view the output ta-
ble, where we will make emphasis on column names and how
they are derived from the aggregation function BY clause.
The user will understand the column name has the matching
values embedded in it. The user will understand limitations
of our proposal: long column names, especially when in-
put column names have long names to start with, maximum
number of columns related to physical row size, understand-
ing the difficulty of modifying an existing optimizer and thus
we opted for building a small “meta-optimizer”.

Acknowledgments
This work was partially supported by National Science Foun-
dation grant IIS 0914861.

4. REFERENCES
[1] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast

and dynamic OLAP exploration using UDFs. In Proc.
ACM SIGMOD Conference, pages 1087–1090, 2009.

[2] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria.
PIVOT and UNPIVOT: Optimization and execution
strategies in an RDBMS. In Proc. VLDB Conference,
pages 998–1009, 2004.

[3] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[4] C. Ordonez and Z. Chen. Horizontal aggregations in
SQL to prepare data sets for data mining analysis.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 24(4), 2012.

[5] C. Ordonez and J. Garćıa-Garćıa. Referential integrity
quality metrics. Decision Support Systems Journal,
44(2):495–508, 2008.

