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Abstract—Preparing a data set for analysis is generally the
most time consuming task in a data mining project, requiring
many complex SQL queries, joining tables and aggregating
columns. Existing SQL aggregations have limitations to prepare
data sets because they return one column per aggregated
group. In general, a significant manual effort is required to
build data sets, where a horizontal layout is required. We
propose simple, yet powerful, methods to generate SQL code
to return aggregated columns in a horizontal tabular layout,
returning a set of numbers instead of one number per row.
This new class of functions is called horizontal aggregations.
Horizontal aggregations build data sets with a horizontal
denormalized layout (e.g. point-dimension, observation-variable,
instance-feature), which is the standard layout required by
most data mining algorithms. We propose three fundamental
methods to evaluate horizontal aggregations: CASE: Exploiting
the programming CASE construct; SPJ: Based on standard
relational algebra operators (SPJ queries); PIVOT: Using the
PIVOT operator, which is offered by some DBMSs. Experiments
with large tables compare the proposed query evaluation
methods. Our CASE method has similar speed to the PIVOT
operator and it is much faster than the SPJ method. In general,
the CASE and PIVOT methods exhibit linear scalability, whereas
the SPJ method does not.

Index terms: aggregation; data preparation; pivoting; SQL

I. INTRODUCTION

In a relational database, especially with normalized ta-
bles, a significant effort is required to prepare a summary
data set [16] that can be used as input for a data mining
or statistical algorithm [17], [15]. Most algorithms require
as input a data set with a horizontal layout, with several
records and one variable or dimension per column. That is
the case with models like clustering, classification, regression
and PCA; consult [10], [15]. Each research discipline uses
different terminology to describe the data set. In data mining
the common terms are point-dimension. Statistics literature
generally uses observation-variable. Machine learning research
uses instance-feature. This article introduces a new class of
aggregate functions that can be used to build data sets in a
horizontal layout (denormalized with aggregations), automat-
ing SQL query writing and extending SQL capabilities. We
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show evaluating horizontal aggregations is a challenging and
interesting problem and we introduce alternative methods and
optimizations for their efficient evaluation.

A. Motivation
As mentioned above, building a suitable data set for data

mining purposes is a time-consuming task. This task generally
requires writing long SQL statements or customizing SQL
code if it is automatically generated by some tool. There are
two main ingredients in such SQL code: joins and aggregations
[16]; we focus on the second one. The most widely-known
aggregation is the sum of a column over groups of rows. Some
other aggregations return the average, maximum, minimum or
row count over groups of rows. There exist many aggregation
functions and operators in SQL. Unfortunately, all these ag-
gregations have limitations to build data sets for data mining
purposes. The main reason is that, in general, data sets that
are stored in a relational database (or a data warehouse) come
from On-Line Transaction Processing (OLTP) systems where
database schemas are highly normalized. But data mining,
statistical or machine learning algorithms generally require ag-
gregated data in summarized form. Based on current available
functions and clauses in SQL, a significant effort is required
to compute aggregations when they are desired in a cross-
tabular (horizontal) form, suitable to be used by a data mining
algorithm. Such effort is due to the amount and complexity of
SQL code that needs to be written, optimized and tested. There
are further practical reasons to return aggregation results in
a horizontal (cross-tabular) layout. Standard aggregations are
hard to interpret when there are many result rows, especially
when grouping attributes have high cardinalities. To perform
analysis of exported tables into spreadsheets it may be more
convenient to have aggregations on the same group in one row
(e.g. to produce graphs or to compare data sets with repetitive
information). OLAP tools generate SQL code to transpose
results (sometimes called PIVOT [5]). Transposition can be
more efficient if there are mechanisms combining aggregation
and transposition together.

With such limitations in mind, we propose a new class
of aggregate functions that aggregate numeric expressions
and transpose results to produce a data set with a horizontal
layout. Functions belonging to this class are called horizontal
aggregations. Horizontal aggregations represent an extended
form of traditional SQL aggregations, which return a set of
values in a horizontal layout (somewhat similar to a multi-
dimensional vector), instead of a single value per row. This
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article explains how to evaluate and optimize horizontal ag-
gregations generating standard SQL code.

B. Advantages

Our proposed horizontal aggregations provide several
unique features and advantages. First, they represent a template
to generate SQL code from a data mining tool. Such SQL code
automates writing SQL queries, optimizing them and testing
them for correctness. This SQL code reduces manual work in
the data preparation phase in a data mining project. Second,
since SQL code is automatically generated it is likely to be
more efficient than SQL code written by an end user. For
instance, a person who does not know SQL well or someone
who is not familiar with the database schema (e.g. a data
mining practitioner). Therefore, data sets can be created in
less time. Third, the data set can be created entirely inside
the DBMS. In modern database environments it is common
to export denormalized data sets to be further cleaned and
transformed outside a DBMS in external tools (e.g. statistical
packages). Unfortunately, exporting large tables outside a
DBMS is slow, creates inconsistent copies of the same data and
compromises database security. Therefore, we provide a more
efficient, better integrated and more secure solution compared
to external data mining tools. Horizontal aggregations just
require a small syntax extension to aggregate functions called
in a SELECT statement. Alternatively, horizontal aggregations
can be used to generate SQL code from a data mining tool to
build data sets for data mining analysis.

C. Article Organization

This article is organized as follows. Section II introduces
definitions and examples. Section III introduces horizontal
aggregations. We propose three methods to evaluate horizontal
aggregations using existing SQL constructs, we prove the
three methods produce the same result and we analyze time
complexity and I/O cost. Section IV presents experiments
comparing evaluation methods, evaluating the impact of op-
timizations, assessing scalability and understanding I/O cost
with large tables. Related work is discussed in Section V, com-
paring our proposal with existing approaches and positioning
our work within data preparation and OLAP query evaluation.
Section VI gives conclusions and directions for future work.

II. DEFINITIONS

This section defines the table that will be used to ex-
plain SQL queries throughout this work. In order to present
definitions and concepts in an intuitive manner, we present
our definitions in OLAP terms. Let F be a table having a
simple primary key K represented by an integer, p discrete
attributes and one numeric attribute: F (K, D1, . . . , Dp, A).
Our definitions can be easily generalized to multiple numeric
attributes. In OLAP terms, F is a fact table with one column
used as primary key, p dimensions and one measure column
passed to standard SQL aggregations. That is, table F will
be manipulated as a cube with p dimensions [9]. Subsets
of dimension columns are used to group rows to aggregate

the measure column. F is assumed to have a star schema to
simplify exposition. Column K will not be used to compute
aggregations. Dimension lookup tables will be based on simple
foreign keys. That is, one dimension column Dj will be a
foreign key linked to a lookup table that has Dj as primary
key. Input table F size is called N (not to be confused with
n, the size of the answer set). That is, |F | = N . Table F

represents a temporary table or a view based on a “star join”
query on several tables.

We now explain tables FV (vertical) and FH (horizontal)
that are used throughout the article. Consider a standard SQL
aggregation (e.g. sum()) with the GROUP BY clause, which
returns results in a vertical layout. Assume there are j + k

GROUP BY columns and the aggregated attribute is A. The
results are stored on table FV having j + k columns making
up the primary key and A as a non-key attribute. Table FV

has a vertical layout. The goal of a horizontal aggregation
is to transform FV into a table FH with a horizontal layout
having n rows and j+d columns, where each of the d columns
represents a unique combination of the k grouping columns.
Table FV may be more efficient than FH to handle sparse
matrices (having many zeroes), but some DBMSs like SQL
Server [2] can handle sparse columns in a horizontal layout.
The n rows represent records for analysis and the d columns
represent dimensions or features for analysis. Therefore, n is
data set size and d is dimensionality. In other words, each
aggregated column represents a numeric variable as defined
in statistics research or a numeric feature as typically defined
in machine learning research.

A. Examples

Figure 1 gives an example showing the input table F , a
traditional vertical sum() aggregation stored in FV and a hor-
izontal aggregation stored in FH . The basic SQL aggregation
query is:

SELECT D1, D2,sum(A)
FROM F

GROUP BY D1, D2

ORDER BY D1, D2;

Notice table FV has only five rows because D1=3 and
D2=Y do not appear together. Also, the first row in FV has null
in A following SQL evaluation semantics. On the other hand,
table FH has three rows and two (d = 2) non-key columns,
effectively storing six aggregated values. In FH it is necessary
to populate the last row with null. Therefore, nulls may come
from F or may be introduced by the horizontal layout.

We now give other examples with a store (retail) database
that requires data mining analysis. To give examples of F , we
will use a table transactionLine that represents the transaction
table from a store. Table transactionLine has dimensions
grouped in three taxonomies (product hierarchy, location,
time), used to group rows, and three measures represented
by itemQty, costAmt and salesAmt, to pass as arguments
to aggregate functions.

We want to compute queries like ”summarize sales for each
store by each day of the week”; ”compute the total number of



3

F FV FH

K D1 D2 A

1 3 X 9
2 2 Y 6
3 1 Y 10
4 1 Y 0
5 2 X 1
6 1 X null
7 3 X 8
8 2 X 7

D1 D2 A

1 X null
1 Y 10
2 X 8
2 Y 6
3 X 17

D1 D2X D2Y
1 null 10
2 8 6
3 17 null

Fig. 1. Example of F , FV and FH .

items sold by department for each store”. These queries can
be answered with standard SQL, but additional code needs to
be written or generated to return results in tabular (horizontal)
form. Consider the following two queries.

SELECT storeId,dayofweekNo,sum(salesAmt)
FROM transactionLine
GROUP BY storeId,dayweekNo
ORDER BY storeId,dayweekNo;

SELECT storeId,deptId,sum(itemqty)
FROM transactionLine
GROUP BY storeId,deptId
ORDER BY storeId,deptId;

Assume there are 200 stores, 30 store departments and
stores are open 7 days a week. The first query returns 1400
rows which may be time-consuming to compare with each
other each day of the week to get trends. The second query
returns 6000 rows, which in a similar manner, makes diffi-
cult to compare store performance across departments. Even
further, if we want to build a data mining model by store
(e.g. clustering, regression), most algorithms require store id
as primary key and the remaining aggregated columns as
non-key columns. That is, data mining algorithms expect a
horizontal layout. In addition, a horizontal layout is generally
more I/O efficient than a vertical layout for analysis. Notice
these queries have ORDER BY clauses to make output easier
to understand, but such order is irrelevant for data mining
algorithms. In general, we omit ORDER BY clauses.

B. Typical Data Mining Problems

Let us consider data mining problems that may be solved
by typical data mining or statistical algorithms, which assume
each non-key column represents a dimension, variable (statis-
tics) or feature (machine learning). Stores can be clustered
based on sales for each day of the week. On the other hand,
we can predict sales per store department based on the sales
in other departments using decision trees or regression. PCA
analysis on department sales can reveal which departments
tend to sell together. We can find out potential correlation
of number of employees by gender within each department.
Most data mining algorithms (e.g. clustering, decision trees,
regression, correlation analysis) require result tables from
these queries to be transformed into a horizontal layout. We

must mention there exist data mining algorithms that can
directly analyze data sets having a vertical layout (e.g. in
transaction format) [14], but they require reprogramming the
algorithm to have a better I/O pattern and they are efficient
only when there many zero values (i.e. sparse matrices).

III. HORIZONTAL AGGREGATIONS

We introduce a new class of aggregations that have similar
behavior to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, we call standard
SQL aggregations vertical aggregations since they produce
tables with a vertical layout. Horizontal aggregations just
require a small syntax extension to aggregate functions called
in a SELECT statement. Alternatively, horizontal aggregations
can be used to generate SQL code from a data mining tool to
build data sets for data mining analysis. We start by explaining
how to automatically generate SQL code.

A. SQL Code Generation

Our main goal is to define a template to generate SQL
code combining aggregation and transposition (pivoting). A
second goal is to extend the SELECT statement with a clause
that combines transposition with aggregation. Consider the
following GROUP BY query in standard SQL that takes a
subset L1, . . . , Lm from D1, . . . , Dp:

SELECT L1, .., Lm, sum(A)
FROM F

GROUP BY L1, . . . , Lm;

This aggregation query will produce a wide table with m+1
columns (automaticaly determined), with one group for each
unique combination of values L1, . . . , Lm and one aggregated
value per group (sum(A) in this case). In order to evaluate this
query the query optimizer takes three input parameters: (1) the
input table F , (2) the list of grouping columns L1, . . . , Lm,
(3) the column to aggregate (A). The basic goal of a horizontal
aggregation is to transpose (pivot) the aggregated column A

by a column subset of L1, . . . , Lm; for simplicity assume
such subset is R1, . . . , Rk where k < m. In other words,
we partition the GROUP BY list into two sublists: one list to
produce each group (j columns L1, . . . , Lj) and another list
(k columns R1, . . . , Rk) to transpose aggregated values, where
{L1, . . . , Lj} ∩ {R1, . . . , Rk} = ∅. Each distinct combination
of {R1, . . . , Rk} will automatically produce an output column.



4

In particular, if k = 1 then there are |πR1
(F )| columns (i.e.

each value in R1 becomes a column storing one aggregation).
Therefore, in a horizontal aggregation there are four input
parameters to generate SQL code:

1) the input table F ,
2) the list of GROUP BY columns L1, . . . , Lj ,
3) the column to aggregate (A),
4) the list of transposing columns R1, . . . , Rk.
Horizontal aggregations preserve evaluation semantics of

standard (vertical) SQL aggregations. The main difference will
be returning a table with a horizontal layout, possibly having
extra nulls. The SQL code generation aspect is explained
in technical detail in Section III-D. Our definition allows
a straightforward generalization to transpose multiple aggre-
gated columns, each one with a different list of transposing
columns.

B. Proposed Syntax in Extended SQL

We now turn our attention to a small syntax extension to the
SELECT statement, which allows understanding our proposal
in an intuitive manner. We must point out the proposed
extension represents non-standard SQL because the columns
in the output table are not known when the query is parsed. We
assume F does not change while a horizontal aggregation is
evaluated because new values may create new result columns.
Conceptually, we extend standard SQL aggregate functions
with a “transposing” BY clause followed by a list of columns
(i.e. R1, . . . , Rk), to produce a horizontal set of numbers
instead of one number. Our proposed syntax is as follows.

SELECT L1, .., Lj , H(A BY R1, . . . , Rk)
FROM F

GROUP BY L1, . . . , Lj ;

We believe the subgroup columns R1, . . . , Rk should be
a parameter associated to the aggregation itself. That is why
they appear inside the parenthesis as arguments, but alternative
syntax definitions are feasible. In the context of our work,
H() represents some SQL aggregation (e.g. sum(), count(),
min(), max(), avg()). The function H() must have at least
one argument represented by A, followed by a list of columns.
The result rows are determined by columns L1, . . . , Lj in the
GROUP BY clause if present. Result columns are determined
by all potential combinations of columns R1, . . . , Rk, where
k = 1 is the default. Also, {L1, . . . , Lj} ∩ {R1, . . . , Rk} = ∅

We intend to preserve standard SQL evaluation semantics
as much as possible. Our goal is to develop sound and effi-
cient evaluation mechanisms. Thus we propose the following
rules. (1) the GROUP BY clause is optional, like a vertical
aggregation. That is, the list L1, . . . , Lj may be empty. When
the GROUP BY clause is not present then there is only one
result row. Equivalently, rows can be grouped by a constant
value (e.g. L1 = 0) to always include a GROUP BY clause in
code generation. (2) When the clasue GROUP BY is present
there should not be a HAVING clause that may produce
cross-tabulation of the same group (i.e. multiple rows with
aggregated values per group). (3) the transposing BY clause is
optional. When BY is not present then a horizontal aggregation

reduces to a vertical aggregation. (4) When the BY clause
is present the list R1, . . . , Rk is required, where k = 1
is the default. (5) horizontal aggregations can be combined
with vertical aggregations or other horizontal aggregations
on the same query, provided all use the same GROUP BY
columns {L1, . . . , Lj}. (6) As long as F does not change
during query processing horizontal aggregations can be freely
combined. Such restriction requires locking [11], which we
will explain later. (7) the argument to aggregate represented
by A is required; A can be a column name or an arithmetic
expression. In the particular case of count() A can be the
”DISTINCT” keyword followed by the list of columns. (8)
when H() is used more than once, in different terms, it should
be used with different sets of BY columns.

Examples

In a data mining project most of the effort is spent in
preparing and cleaning a data set. A big part of this effort
involves deriving metrics and coding categorical attributes
from the data set in question and storing them in a tabular
(observation, record) form for analysis so that they can be
used by a data mining algorithm.

Assume we want to summarize sales information with one
store per row for one year of sales. In more detail, we need
the sales amount broken down by day of the week, the number
of transactions by store per month, the number of items sold
by department and total sales. The following query in our
extended SELECT syntax provides the desired data set, by
calling three horizontal aggregations.

SELECT
storeId,
sum(salesAmt BY dayofweekName),
count(distinct transactionid BY salesMonth),
sum(1 BY deptName),
sum(salesAmt)

FROM transactionLine
,DimDayOfWeek,DimDepartment,DimMonth

WHERE salesYear=2009
AND transactionLine.dayOfWeekNo

=DimDayOfWeek.dayOfWeekNo
AND transactionLine.deptId

=DimDepartment.deptId
AND transactionLine.MonthId

=DimTime.MonthId
GROUP BY storeId;

This query produces a result table like the one shown
in Table I. Observe each horizontal aggregation effectively
returns a set of columns as result and there is call to a standard
vertical aggregation with no subgrouping columns. For the first
horizontal aggregation we show day names and for the second
one we show the number of day of the week. These columns
can be used for linear regression, clustering or factor analysis.
We can analyze correlation of sales based on daily sales. Total
sales can be predicted based on volume of items sold each day
of the week. Stores can be clustered based on similar sales for
each day of the week or similar sales in the same department.
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TABLE I
A MULTIDIMENSIONAL DATA SET IN HORIZONTAL LAYOUT, SUITABLE FOR DATA MINING.

salesAmt countTransactions countItems total
storeId Mon Tue .. Sun Jan Feb .. Dec dairy meat produce .. salesAmt

10 120 111 200 2011 1807 4200 34 57 101 25025
32 70 65 98 802 912 1632 32 65 204 14022
...

Consider a more complex example where we want to know
for each store sub-department how sales compare for each
region-month showing total sales for each region/month com-
bination. Sub-departments can be clustered based on similar
sales amounts for each region/month combination. We assume
all stores in all regions have the same departments, but local
preferences lead to different buying patterns. This query in our
extended SELECT builds the required data set:

SELECT subdeptid,
sum(salesAmt BY regionNo,monthNo)

FROM transactionLine
GROUP BY subdeptId;

We turn our attention to another common data preparation
task, transforming columns with categorical attributes into
binary columns. The basic idea is to create a binary dimension
for each distinct value of a categorical attribute. This can be
accomplished by simply calling max(1 BY..), grouping by
the appropriate columns. The next query produces a vector
showing a 1 for the departments where the customer made a
purchase, and 0 otherwise.

SELECT
transactionId,
max(1 BY deptId DEFAULT 0)

FROM transactionLine
GROUP BY transactionId;

C. SQL Code Generation: Locking and Table Definition

In this section we discuss how to automatically generate
efficient SQL code to evaluate horizontal aggregations. Modi-
fying the internal data structures and mechanisms of the query
optimizer is outside the scope of this article, but we give some
pointers. We start by discussing the structure of the result table
and then query optimization methods to populate it. We will
prove the three proposed evaluation methods produce the same
result table FH .

Locking

In order to get a consistent query evaluation it is necessary
to use locking [7], [11]. The main reasons are that any insertion
into F during evaluation may cause inconsistencies: (1) it
can create extra columns in FH , for a new combination of
R1, . . . , Rk; (2) it may change the number of rows of FH ,
for a new combination of L1, . . . , Lj ; (3) it may change
actual aggregation values in FH . In order to return consistent
answers, we basically use table-level locks on F , FV and FH

acquired before the first statement starts and released after
FH has been populated. In other words, the entire set of SQL

statements becomes a long transaction. We use the highest
SQL isolation level: SERIALIZABLE. Notice an alternative
simpler solution would be to use a static (read-only) copy of
F during query evaluation. That is, horizontal aggregations can
operate on a read-only database without consistency issues.

Result Table Definition

Let the result table be FH . Recall from Section II FH has
d aggregation columns, plus its primary key. The horizontal
aggregation function H() returns not a single value, but a
set of values for each group L1, . . . , Lj . Therefore, the result
table FH must have as primary key the set of grouping
columns {L1, . . . , Lj} and as non-key columns all existing
combinations of values R1, . . . , Rk. We get the distinct value
combinations of R1, . . . , Rk using the following statement.

SELECT DISTINCT R1, .., Rk

FROM F ;

Assume this statement returns a table with d distinct rows.
Then each row is used to define one column to store an
aggregation for one specific combination of dimension values.
Table FH that has {L1, . . . , Lj} as primary key and d columns
corresponding to each distinct subgroup. Therefore, FH has d

columns for data mining analysis and j + d columns in total,
where each Xj corresponds to one aggregated value based on
a specific R1, . . . , Rk values combination.

CREATE TABLE FH (
L1 int

,. . .
,Lj int
,X1 real
,. . .
,Xd real

) PRIMARY KEY(L1, . . . , Lj);

D. SQL Code Generation: Query Evaluation Methods

We propose three methods to evaluate horizontal aggrega-
tions. The first method relies only on relational operations.
That is, only doing select, project, join and aggregation
queries; we call it the SPJ method. The second form relies
on the SQL ”case” construct; we call it the CASE method.
Each table has an index on its primary key for efficient join
processing. We do not consider additional indexing mecha-
nisms to accelerate query evaluation. The third method uses
the built-in PIVOT operator, which transforms rows to columns
(e.g. transposing). Figures 2 and 3 show an overview of the
main steps to be explained below (for a sum() aggregation).
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Fig. 2. Main steps of methods based on F (unoptimized).

Fig. 3. Main steps of methods based on FV (optimized).

SPJ method

The SPJ method is interesting from a theoretical point of
view because it is based on relational operators only. The basic
idea is to create one table with a vertical aggregation for each
result column, and then join all those tables to produce FH .
We aggregate from F into d projected tables with d Select-
Project-Join-Aggregation queries (selection, projection, join,
aggregation). Each table FI corresponds to one subgrouping
combination and has {L1, . . . , Lj} as primary key and an
aggregation on A as the only non-key column. It is necessary
to introduce an additional table F0, that will be outer joined
with projected tables to get a complete result set. We propose
two basic sub-strategies to compute FH . The first one directly
aggregates from F . The second one computes the equivalent
vertical aggregation in a temporary table FV grouping by
L1, . . . , Lj , R1, . . . , Rk. Then horizontal aggregations can be
instead computed from FV , which is a compressed version of
F , since standard aggregations are distributive [9].

We now introduce the indirect aggregation based on the
intermediate table FV , that will be used for both the SPJ
and the CASE method. Let FV be a table containing the
vertical aggregation, based on L1, . . . , Lj , R1, . . . , Rk. Let V()
represent the corresponding vertical aggregation for H(). The
statement to compute FV gets a cube:

INSERT INTO FV

SELECT L1, . . . , Lj , R1, . . . , Rk, V(A)
FROM F

GROUP BY L1, . . . , Lj , R1, . . . , Rk;

Table F0 defines the number of result rows, and builds the
primary key. F0 is populated so that it contains every existing
combination of L1, . . . , Lj . Table F0 has {L1, . . . , Lj} as
primary key and it does not have any non-key column.

INSERT INTO F0

SELECT DISTINCT L1, . . . , Lj

FROM {F |FV };

In the following discussion I ∈ {1, . . . , d}: we use h to
make writing clear, mainly to define boolean expressions. We
need to get all distinct combinations of subgrouping columns
R1, . . . , Rk, to create the name of dimension columns, to get
d, the number of dimensions, and to generate the boolean ex-
pressions for WHERE clauses. Each WHERE clause consists
of a conjunction of k equalities based on R1, . . . , Rk.

SELECT DISTINCT R1, . . . , Rk

FROM {F |FV };

Tables F1, . . . , Fd contain individual aggregations for each
combination of R1, . . . , Rk. The primary key of table FI is
{L1, . . . , Lj}.

INSERT INTO FI

SELECT L1, . . . , Lj , V (A)
FROM {F |FV }
WHERE R1 = v1I AND .. AND Rk = vkI

GROUP BY L1, . . . , Lj ;

Then each table FI aggregates only those rows that corre-
spond to the I th unique combination of R1, . . . , Rk, given by
the WHERE clause. A possible optimization is synchronizing
table scans to compute the d tables in one pass.

Finally, to get FH we need d left outer joins with the
d + 1 tables so that all individual aggregations are properly
assembled as a set of d dimensions for each group. Outer
joins set result columns to null for missing combinations for
the given group. In general, nulls should be the default value
for groups with missing combinations. We believe it would be
incorrect to set the result to zero or some other number by
default if there are no qualifying rows. Such approach should
be considered on a per-case basis.

INSERT INTO FH

SELECT
F0.L1, F0.L2, . . . , F0.Lj ,

F1.A, F2.A, . . . , Fd.A

FROM F0

LEFT OUTER JOIN F1

ON F0.L1 = F1.L1 and. . . and F0.Lj = F1.Lj

LEFT OUTER JOIN F2

ON F0.L1 = F2.L1 and. . . and F0.Lj = F2.Lj

. . .

LEFT OUTER JOIN Fd

ON F0.L1 = Fd.L1 and. . . and F0.Lj = Fd.Lj ;

This statement may look complex, but it is easy to see that
each left outer join is based on the same columns L1, . . . , Lj .
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To avoid ambiguity in column references, L1, . . . , Lj are qual-
ified with F0. Result column I is qualified with table FI . Since
F0 has n rows each left outer join produces a partial table with
n rows and one additional column. Then at the end, FH will
have n rows and d aggregation columns. The statement above
is equivalent to an update-based strategy. Table FH can be
initialized inserting n rows with key L1, . . . , Lj and nulls on
the d dimension aggregation columns. Then FH is iteratively
updated from FI joining on L1, . . . , Lj . This strategy basically
incurs twice I/O doing updates instead of insertion. Reordering
the d projected tables to join cannot accelerate processing
because each partial table has n rows. Another claim is that
it is not possible to correctly compute horizontal aggregations
without using outer joins. In other words, natural joins would
produce an incomplete result set.

CASE method

For this method we use the ”case” programming construct
available in SQL. The case statement returns a value selected
from a set of values based on boolean expressions. From a
relational database theory point of view this is equivalent to
doing a simple projection/aggregation query where each non-
key value is given by a function that returns a number based
on some conjunction of conditions. We propose two basic
sub-strategies to compute FH . In a similar manner to SPJ,
the first one directly aggregates from F and the second one
computes the vertical aggregation in a temporary table FV and
then horizontal aggregations are indirectly computed from FV .

We now present the direct aggregation method. Horizontal
aggregation queries can be evaluated by directly aggregating
from F and transposing rows at the same time to produce FH .
First, we need to get the unique combinations of R1, . . . , Rk

that define the matching boolean expression for result columns.
The SQL code to compute horizontal aggregations directly
from F is as follows. Observe V () is a standard (vertical)
SQL aggregation that has a ”case” statement as argument.
Horizontal aggregations need to set the result to null when
there are no qualifying rows for the specific horizontal group to
be consistent with the SPJ method and also with the extended
relational model [4].

SELECT DISTINCT R1, . . . , Rk

FROM F ;

INSERT INTO FH

SELECT L1, . . . , Lj

,V(CASE WHEN R1 = v11 and . . . and Rk = vk1

THEN A ELSE null END)
..
,V(CASE WHEN R1 = v1d and . . . and Rk = vkd

THEN A ELSE null END)
FROM F

GROUP BY L1, L2, . . . , Lj ;

This statement computes aggregations in only one scan on
F . The main difficulty is that there must be a feedback process
to produce the ”case” boolean expressions.

We now consider an optimized version using FV . Based
on FV , we need to transpose rows to get groups based on

L1, . . . , Lj . Query evaluation needs to combine the desired
aggregation with ”CASE” statements for each distinct combi-
nation of values of R1, . . . , Rk. As explained above, horizontal
aggregations must set the result to null when there are no
qualifying rows for the specific horizontal group. The boolean
expression for each case statement has a conjunction of k

equality comparisons. The following statements compute FH :

SELECT DISTINCT R1, . . . , Rk

FROM FV ;

INSERT INTO FH

SELECT L1,..,Lj

,sum(CASE WHEN R1 = v11 and .. and Rk = vk1

THEN A ELSE null END)
..
,sum(CASE WHEN R1 = v1d and .. and Rk = vkd

THEN A ELSE null END)
FROM FV

GROUP BY L1, L2, . . . , Lj ;

As can be seen, the code is similar to the code presented
before, the main difference being that we have a call to sum()
in each term, which preserves whatever values were previously
computed by the vertical aggregation. It has the disadvantage
of using two tables instead of one as required by the direct
computation from F . For very large tables F computing FV

first, may be more efficient than computing directly from F .

PIVOT method

We consider the PIVOT operator which is a built-in operator
in a commercial DBMS. Since this operator can perform
transposition it can help evaluating horizontal aggregations.
The PIVOT method internally needs to determine how many
columns are needed to store the transposed table and it can be
combined with the GROUP BY clause.

The basic syntax to exploit the PIVOT operator to compute a
horizontal aggregation assuming one BY column for the right
key columns (i.e. k = 1) is as follows:

SELECT DISTINCT R1

FROM F ; /* produces v1, . . . , vd */

SELECT L1, L2, ..., Lj

,v1, v2, ..., vd

INTO Ft

FROM F

PIVOT(
V(A) FOR R1 in (v1, v2, ..., vd)

) AS P;

SELECT
L1,L2,...,Lj

,V (v1), V (v2), ..., V (vd)
INTO FH

FROM Ft

GROUP BY L1, L2, ..., Lj ;

This set of queries may be inefficient because Ft can be a
large intermediate table. We introduce the following optimized
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set of queries which reduces of the intermediate table:

SELECT DISTINCT R1

FROM F ; /* produces v1, . . . , vd */

SELECT
L1, L2, ..., Lj

,v1, v2, ..., vd

INTO FH

FROM (
SELECT L1, L2, ..., Lj , R1, A

FROM F ) Ft

PIVOT(
V (A) FOR R1 in (v1, v2, ..., vd)

) AS P;

Notice that in the optimized query the nested query trims
F from columns that are not later needed. That is, the nested
query projects only those columns that will participate in FH .
Alos, the first and second query can be computed from FV ;
this optimization is evaluated in Section IV.

Example of Generated SQL Queries

We now show actual SQL code for our small example. This
SQL code produces FH in Figure 1. Notice the three methods
can compute from either F or FV , but we use F to make code
more compact.

The SPJ method code is as follows (computed from F ):

/* SPJ method */
INSERT INTO F1
SELECT D1,sum(A) AS A
FROM F
WHERE D2=’X’
GROUP BY D1;

INSERT INTO F2
SELECT D1,sum(A) AS A
FROM F
WHERE D2=’Y’
GROUP BY D1;

INSERT INTO FH
SELECT F0.D1,F1.A AS D2_X,F2.A AS D2_Y
FROM F0 LEFT OUTER JOIN F1 on F0.D1=F1.D1

LEFT OUTER JOIN F2 on F0.D1=F2.D1;

The CASE method code is as follows (computed from F ):

/* CASE method */
INSERT INTO FH
SELECT

D1
,SUM(CASE WHEN D2=’X’ THEN A

ELSE null END) as D2_X
,SUM(CASE WHEN D2=’Y’ THEN A

ELSE null END) as D2_Y
FROM F
GROUP BY D1;

Finally, the PIVOT method SQL is as follows (computed
from F ):

/* PIVOT method */
INSERT INTO FH
SELECT

D1

,[X] as D2_X
,[Y] as D2_Y

FROM (
SELECT D1, D2, A FROM F

) as p
PIVOT (
SUM(A)
FOR D2 IN ([X], [Y])
) as pvt;

E. Properties of Horizontal Aggregations

A horizontal aggregation exhibits the following properties:
1) n = |FH | matches the number of rows in a vertical

aggregation grouped by L1, . . . , Lj .
2) d = |πR1,...,Rk

(F )|
3) Table FH may potentially store more aggregated values

than FV due to nulls. That is, |FV | ≤ nd.

F. Equivalence of Methods

We will now prove the three methods produce the same
result.

Theorem 1: SPJ and CASE evaluation methods produce the
same result.

Proof: Let S = σR1=v1I∩...∩Rk=vkI
(F ). Each table FI

in SPJ is computed as FI = L1,...,Lj
FV (A)(S). The F

notation is used to extend relational algebra with aggregations:
the GROUP BY columns are L1 . . . Lj and the aggrega-
tion function is V (). Note: in the following equations all
joins 1 are left outer joins. We can follow an induction
on d, the number of distinct combinations for R1, . . . , Rk.
When d = 1 (base case) it holds |πR1...Rk

(F )| = 1 and
S1 = σR1=v11∩...Rk=vk1

(F ). Then F1 = L1,...,Lj
FV (A)(S1).

By definition F0 = πL1,...,Lj
(F ). Since |πR1...Rk

(F )| = 1
|πL1,...,Lj

(F )| = |πL1,...,Lj ,R1,...,Rk
(F )|. Then FH = F0 1

F1 = F1 (the left join does not insert nulls). On the other
hand, for the CASE method let G = L1,...,Lj

FV (γ(A,1))(F ),
where γ(, I) represents the CASE statement and I is the
I th dimension. But since |πR1...Rk

(F )| = 1 then G =

L1,...,Lj
FV (γ(A,1))(F ) = L1,...,Lj

FV (A)(F ) (i.e. the con-
junction in γ() always evaluates to true). Therefore, G =
F1, which proves both methods return the same result.
For the general case, assume the result holds for d − 1.
Consider F0 1 F1 . . . 1 Fd. By the induction hypoth-
esis this means F0 1 F1 . . . 1 Fd−1 = L1,...,Lj

F

V (γ(A,1)),V (γ(A,2)),...,V (γ(A,d−1))(F ). Let us analyze Fd. Table
Sd = σR1=v1d∩...Rk=vkd

(F ). Table Fd = L1,...,Lj
FV (A)(Sd).

Now, F0 1 Fd augments Fd with nulls so that |F0| = |FH |.
Since the dth conjunction is the same for Fd and for γ(A, d).
Then F0 1 Fd = L1,...,Lj

FV (γ(A,d))(F ). Finally,

F0 1 F1 1 . . . Fd

= L1,...,Lj
FV (γ(A,1)),V (γ(A,2)),...,V (γ(A,d−1)),V (γ(A,d))(F ).

Theorem 2: The CASE and PIVOT evaluation methods
produce the same result.

Proof: (sketch) The SQL PIVOT operator works in a sim-
ilar manner to the CASE method. We consider the optimized
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version of PIVOT, where we project only the columns required
by FH (i.e. trimming F ). When the PIVOT operator is applied
one aggregation column is produced for every distinct value
vj , producing the d desired columns. An induction on j proves
the clause “V (A) for R1 IN (v1, . . . , vd)” is transformed into
d “V(CASE WHEN R1 = vj THEN A END)” statements,
where each pivoted value produces one Xj for j = 1 . . . d.
Notice a GROUP BY clause is not required for the outer
SELECT statement for the optimized PIVOT version.

Based on the two previous theoretical results we present our
main theorem:

Theorem 3: Given the same input table F and horizontal
aggregation query, the SPJ, CASE and PIVOT methods pro-
duce the same result.

G. Time Complexity and I/O Cost

We now analyze time complexity for each method. Recall
that N = |F |, n = |FH | and d is the data set dimensionality
(number of cross-tabulated aggregations). We consider one I/O
to read/write one row as the basic unit to analyze the cost
to evaluate the query. This analysis considers every method
precomputes FV .

SPJ: We assume hash or sort-merge joins [7] are available.
Thus a join between two tables of size O(n) can be eval-
uated in time O(n) on average. Otherwise, joins take time
O(n log2n). Computing the sort in the initial query ”SELECT
DISTINCT..” takes O(N log2(N)). If the right key produces
a high d (say d ≥ 10 and a uniform distribution of values).
Then each σ query will have a high selectivity predicate. Each
|Fi| ≤ n. Therefore, we can expect |Fi| < N . There are
d σ queries with different selectivity with a conjunction of
k terms O(kn + N) each. Then total time for all selection
queries is O(dkn + dN). There are d GROUP-BY operations
with L1, . . . , Lj producing a table O(n) each. Therefore,
the d GROUP-BYs take time O(dn) with I/O cost 2dn

(to read and write). Finally, there are d outer joins taking
O(n) or O(nlog2(n)) each, giving a total time O(dn) or
O(d nlog2(n)). In short, time is O(N log2(N)+dkn+dN) and
I/O cost is N log2(N)+3dn+dN with hash joins. Otherwise,
time is O(N log2(N) + dknlog2(n) + dN) and I/O cost is
N log2(N) + 2dn + dnlog2(n) + dN with sort-merge joins.

Time depends on number of distinct values, their combina-
tion and probabilistic distribution of values.

CASE: Computing the sort in the initial query ”SELECT
DISTINCT..” takes O(N log2(N)). There are O(dkN) com-
parisons; notice this is fixed. There is one GROUP-BY with
L1, . . . , Lj in time O(dkn) producing table O(dn). Evaluation
time depends on the number of distinct value combinations,
but not on their probabilistic distribution. In short, time is
O(N log2(N)+dkn+N) and I/O cost is N log2(N)+n+N .
As we can see, time complexity is the same, but I/O cost is
significantly smaller compared to SPJ.

PIVOT: We consider the optimized version which trims F

from irrelevant columns and k = 1. Like the SPJ and CASE
methods, PIVOT depends on selecting the distinct values from
the right keys R1, . . . , Rk. It avoids joins and saves I/O when it
receives as input the trimmed version of F . Then it has similar
time complexity to CASE. Also, time depends on number of

distinct values, their combination and probabilistic distribution
of values.

H. Discussion

For all proposed methods to evaluate horizontal aggrega-
tions we summarize common requirements. (1) All methods
require grouping rows by L1, . . . , Lj in one or several queries.
(2) All methods must initially get all distinct combinations
of R1, . . . , Rk to know the number and names of result
columns. Each combination will match an input row with a
result column. This step makes query optimization difficult by
standard query optimization methods because such columns
cannot be known when a horizontal aggregation query is
parsed and optimized. (3) It is necessary to set result columns
to null when there are no qualifying rows. This is done either
by outer joins or by the CASE statement. (4) Computation
can be accelerated in some cases by first computing FV and
then computing further aggregations from FV instead of F .
The amount of acceleration depends on how larger is N with
respect to n (i.e. if N >> n). These requirements can be used
to develop more efficient query evaluation algorithms.

The correct way to treat missing combinations for one group
is to set the result column to null. But in some cases it may
make sense to change nulls to zero, as was the case to code
a categorical attribute into binary dimensions. Some aspects
about both CASE sub-strategies are worth discussing in more
depth. Notice the boolean expressions in each term produce
disjoint subsets (i.e. they partition F ). The queries above
can be significantly accelerated using a smarter evaluation
because each input row falls on only one result column and
the rest remain unaffected. Unfortunately, the SQL parser does
not know this fact and it unnecessarily evaluates d boolean
expressions for each input row in F . This requires O(d)
time complexity for each row, instead of O(1). In theory, the
SQL query optimizer could reduce the number to conjunctions
to evaluate down to one using a hash table that maps one
conjunction to one dimension column. Then the complexity
for one row can decrease from O(d) down to O(1).

If an input query has several terms having a mix of horizon-
tal aggregations and some of them share similar subgrouping
columns R1, . . . , Rk the query optimizer can avoid redundant
comparisons by reordering operations. If a pair of horizontal
aggregations does not share the same set of subgrouping
columns further optimization is not possible.

Horizontal aggregations should not be used when the set
of columns {R1, . . . , Rk} have many distinct values (such
as the primary key of F ). For instance, getting horizontal
aggregations on transactionLine using itemId. In theory
such query would produce a very wide and sparse table, but in
practice it would cause a run-time error because the maximum
number of columns allowed in the DBMS could be exceeded.

I. DBMS limitations

There exist two DBMS limitations with horizontal aggre-
gations: reaching the maximum number of columns in one
table and reaching the maximum column name length when
columns are automatically named. To elaborate on this, a
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horizontal aggregation can return a table that goes beyond
the maximum number of columns in the DBMS when the
set of columns {R1, . . . , Rk} has a large number of distinct
combinations of values, or when there are multiple horizontal
aggregations in the same query. On the other hand, the second
important issue is automatically generating unique column
names. If there are many subgrouping columns R1, . . . , Rk

or columns are of string data types, this may lead to generate
very long column names, which may exceed DBMS limits.
However, these are not important limitations because if there
are many dimensions that is likely to correspond to a sparse
matrix (having many zeroes or nulls) on which it will be
difficult or impossible to compute a data mining model. On
the other hand, the large column name length can be solved
as explained below.

The problem of d going beyond the maximum number of
columns can be solved by vertically partitioning FH so that
each partition table does not exceed the maximum number
of columns allowed by the DBMS. Evidently, each partition
table must have L1, . . . , Lj as its primary key. Alternatively,
the column name length issue can be solved by generating
column identifiers with integers and creating a “dimension”
description table that maps identifiers to full descriptions, but
the meaning of each dimension is lost. An alternative is the
use of abbreviations, which may require manual input.

IV. EXPERIMENTAL EVALUATION

In this section we present our experimental evaluation on a
commercial DBMS. We evaluate query optimizations, compare
the three query evaluation methods and analyze time complex-
ity varying table sizes and output data set dimensionality.

A. Setup: Computer Configuration and Data Sets

We used SQL Server V9, running on a DBMS server
running at 3.2 GHz, Dual Core processor, 4 GB of RAM and
1 TB on disk. The SQL code generator was programmed in
the Java language and connected to the server via JDBC. The
PIVOT operator was used as available in the SQL language
implementation provided by the DBMS.

We used large synthetic data sets described below. We
analyzed queries having only one horizontal aggregation, with
different grouping and horizontalization columns. Each experi-
ment was repeated five times and we report the average time in
seconds. We cleared cache memory before each method started
in order to evaluate query optimization under pessimistic
conditions.

We evaluated optimization strategies for aggregation queries
with synthetic data sets generated by the TPC-H generator. In
general, we evaluated horizontal aggregation queries using the
fact table transactionLine as input. Table II shows the specific
columns from the TPC-H fact table we use for the left key
and the right key in a horizontal aggregation. Basically, we
picked several column combinations to get different d and n.
In order to get meaningful data sets for data mining we picked
high selectivity columns for the left key and low selectivity
columns for the right key. In this manner d << n, which is
the most common scenario in data mining.

TABLE II
SUMMARY OF GROUPING COLUMNS FROM TPC-H TABLE

TRANSACTIONLINE (N=6M).

L1 R1 n d

clerkKey dweek 1K 7
clerkKey month 1K 12
clerkKey brand 1K 25
partKey dweek 100K 7
partKey month 100K 12
partKey brand 100K 25
orderKey quarter 1.5M 4
orderKey dweek 1.5M 7
orderKey month 1.5M 12
orderKey brand 1.5M 25

TABLE III
QUERY OPTIMIZATION: PRECOMPUTE VERTICAL AGGREGATION IN FV

(N =12M). TIMES IN SECONDS

n d SPJ PIVOT CASE
F Fv F Fv F Fv

1K 7 552 62 121 58 119 59
12 845 67 122 62 122 64
25 1619 68 145 61 153 61

100K 7 540 86 131 81 247 81
12 856 85 136 77 234 80
25 1633 103 172 89 377 92

1.5M 7 669 230 538 157 242 155
12 1051 419 751 140 322 141
25 2776 1086 1240 161 384 150

Since TPC-H only creates uniformly distributed values we
created a similar data generator of our own to control the
probabilistic distribution of column values. We also created
synthetic data sets controlling the number of distinct values
in grouping keys and their probabilistic distribution. We used
two probabilistic distributions: uniform (unskewed) and zipf
(skewed), which represent two common and complementary
density functions in query optimization. The table definition
for these data sets is similar to the fact table from TPC-H. The
key value distribution has an impact both in grouping rows and
writing rows to the output table.

B. Query Optimizations

Table III analyzes our first query optimization, applied to
three methods. Our goal is to assess the acceleration obtained
by precomputing a cube and storing it on FV . We can see this
optimization uniformly accelerates all methods. This optimiza-
tion provides a different gain, depending on the method: for
SPJ the optimization is best for small n, for PIVOT for large n

and for CASE there is rather a less dramatic improvement all
across n. It is noteworthy PIVOT is accelerated by our opti-
mization, despite the fact it is handled by the query optimizer.
Since this optimization produces significant acceleration for
the three methods (at least 2X faster) we will use it by default.
Notice that precomputing FV takes the same time within each
method. Therefore, comparisons are fair.

We now evaluate an optimization specific to the PIVOT
operator. This PIVOT optimization is well-known, as we
learned from SQL Server DBMS users groups. Table IV shows
the impact of removing (trimming) columns not needed by
PIVOT. That is, removing columns that will not appear in FH .
We can see the impact is significant, accelerating evaluation
time from three to five times. All our experiments incorporate
this optimization by default.
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TABLE IV
QUERY OPTIMIZATION: REMOVE (TRIM) UNNECESSARY COLUMNS FROM

FV FOR PIVOT (N =12M). TIMES IN SECONDS.

n d trim=N trim=Y
1K 7 282 58

12 386 62
25 501 61

1.5M 7 364 157
12 408 140
25 522 161

TABLE V
COMPARING QUERY EVALUATION METHODS (ALL WITH OPTIMIZATION

COMPUTING FV ). TIMES IN SECONDS.

N n d SPJ PIVOT CASE
12M 1K 7 62 58 59

12 67 62 64
25 68 61 61

12M 100K 7 86 81 81
12 85 77 80
25 103 89 92

12M 1.5M 7 230 157 155
12 419 140 141
25 1086 161 150

C. Comparing Evaluation Methods

Table V compares the three query optimization methods.
Notice Table V is a summarized version of Table III, showing
best times for each method. Table VI is a complement,
showing time variability around the mean time µ for times
reported in Table V; we show one standard deviation σ and
percentage that one σ represents respect to µ. As can be
seen, times exhibit small variability, PIVOT exhibits smalles
variability, followed by CASE. As we explained before, in
the time complexity and I/O cost analysis, the two main
factors influencing query evaluation time are data set size
and grouping columns (dimensions) cardinalities. We consider
different combinations of L1, . . . , Lj and R1, . . . , Rk columns
to get different values of n and d, respectively. Refer to Table
II to know the correspondence between TPC-H columns and
FH table sizes d, n. The three methods use the optimization
precomputing FV in order to make a uniform and fair com-
parison (recall this optimization works well for large tables).
In general, SPJ is the slowest method, as expected. On the
other hand, PIVOT and CASE have similar time performance
with slightly bigger differences in some cases. Time grows
as n grows for all methods, but much more for SPJ. On the
other hand, there is a small time growth when d increases for
SPJ, but not a clear trend for PIVOT and CASE. Notice we are
comparing against the optimized version of the PIVOT method

TABLE VI
VARIABILITY OF MEAN TIME (N=12M, ONE STANDARD DEVIATION,

PERCENTAGE OF MEAN TIME). TIMES IN SECONDS.

SPJ PIVOT CASE
n d time % time % time %

1K 7 3.8 4.6% 1.8 2.2% 2.9 4.0%
12 4.9 5.4% 2.5 2.8% 3.1 4.1%
25 6.4 7.4% 2.1 2.7% 4.7 5.1%

100K 7 4.5 4.2% 2.2 2.3% 4.6 4.3%
12 4.4 3.8% 2.6 2.1% 3.8 3.6%
25 6.1 5.0% 2.4 1.8% 5.9 5.3%

1.5M 7 11.3 3.8% 5.9 3.1% 10.8 5.4%
12 36.2 7.2% 6.4 3.3% 10.4 6.4%
25 110.5 8.4% 6.0 3.2% 10.2 5.8%

(the CASE method is significantly faster than the unoptimized
PIVOT method). We conclude that n is the main performance
factor for PIVOT and CASE methods, whereas both d and n

impact the SPJ method.
We investigated the reason for time differences analyzing

query evaluation plans. It turned out PIVOT and CASE have
similar query evaluation plans when they use FV , but they
are slightly different when they use F . The most important
difference is that the PIVOT and CASE methods have a
parallel step which allows evaluating aggregations in parallel.
Such parallel step does not appear when PIVOT evaluates the
query from F . Therefore, in order to conduct a fair comparison
we use FV by default.

D. Time Complexity

We now verify the time complexity analysis given in Section
III-G. We plot time complexity keeping varying one parameter
and the remaining parameters fixed. In these experiments
we generated synthetic data sets similar to the fact table of
TPC-H of different sizes with grouping columns of varying
selectivities (number of distinct values). We consider two basic
probabilistic distribution of values: uniform (unskewed) and
zipf (skewed). The uniform distribution is the distribution used
by default.

Figure 4 shows the impact of increasing the size of the
fact table (N ). The left plot analyzes a small FH table
(n=1k), whereas the right plot presents a much larger FH table
(n=128k). Recall from Section III-G time is O(Nlog2N)+N

when N grows and the other sizes (n, d) are fixed (the first
term corresponds to SELECT DISTINCT and the second one
to the method). The trend indicates all evaluation methods get
indeed impacted by N . Times tend to be linear as N grows for
the three methods, which shows the method queries have more
weight than getting the distinct dimension combinations. The
PIVOT and CASE methods show very similar performance.
On the other hand, there is a big gap between PIVOT/CASE
and SPJ for large n. The trend indicates such gap will not
shrink as N grows.

Figure 5 now leaves N fixed and computes horizontal
aggregations increasing n. The left plot uses d = 16 (to get
the individual horizontal aggregation columns) and the right
plot shows d = 64. Recall from Section III-G, that time should
grow O(n) keeping N and d fixed. Clearly time is linear and
grows slowly for PIVOT and CASE. On the other hand, time
grows faster for SPJ and the trend indicates it is mostly linear,
especially for d = 64. From a comparison perspective, PIVOT
and CASE have similar performance for low d and the same
performance for high d. SPJ is much slower, as expected. In
short, for PIVOT and CASE time complexity is O(n), keeping
N, d fixed.

Figure 6 shows time complexity varying d. According to our
analysis in Section III-G, time should be O(d). The left plot
shows a medium sized data set with n=32k, whereas the right
plot shows a large data set with n=128k. For small n (left plot)
the trend for PIVOT and CASE methods is not clear; overall
time is almost constant overall. On the other hand, for SPJ
time indeed grows in a linear fashion. For large n (right plot)
trends are clean: PIVOT and CASE methods have the same
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TABLE VII
IMPACT OF PROBABILISTIC DISTRIBUTION OF RIGHT KEY GROUPING

VALUES (N=8M).

SPJ PIVOT CASE
d n unif zipf unif zipf unif zipf
4 4000 7.3 9.3 5.8 7.4 6.5 7.2

8000 9.6 10.2 6.1 8.1 7.6 8.6
16000 12.2 27.4 7.9 25.7 8.6 27.5
32000 12.8 9.3 11.0 7.5 9.9 7.3
64000 9.5 10.0 13.7 6.9 10.3 6.6

128000 10.6 10.6 9.0 6.9 9.1 6.7
64 4000 20.4 31.5 6.1 14.8 5.5 13.4

8000 18.7 34.2 7.6 10.5 5.5 13.9
16000 24.6 43.4 7.9 31.6 8.3 24.2
32000 38.1 28.5 10.4 11.5 9.3 10.7
64000 15.1 28.7 60.2 11.8 9.9 10.3

128000 62.5 28.7 16.1 11.6 11.1 10.5

performance it time is clearly linear, although with a small
slope. On the other hand, time is not linear overall for SPJ: it
initially grows linearly, bu it has a jump beyond d = 64. The
reason is the size of the intermediate join result tables, which
get increasingly wider.

Table VII analyzes the impact of having an uniform or a zipf
distribution of values on the right key. That is, we analyze the
impact of an unskewed and a skewed distribution. In general,
all methods are impacted by the distribution of values, but
the impact is significant when d is high. Such trend indicates
higher I/O cost to update aggregations on more subgroups. The
impact is marginal for all methods at low d . PIVOT shows a
slightly higher impact than the CASE method by the skewed
distribution at high d. But overall, both show similar behavior.
SPJ is again the slowest and shows bigger impact at high d.

V. RELATED WORK

We first discuss research on extending SQL code for data
mining processing. We briefly discuss related work on query
optimization. We then compare horizontal aggregations with
alternative proposals to perform transposition or pivoting.

There exist many proposals that have extended SQL syn-
tax. The closest data mining problem associated to OLAP
processing is association rule mining [18]. SQL extensions
to define aggregate functions for association rule mining are
introduced in [19]. In this case the goal is to efficiently
compute itemset support. Unfortunately, there is no notion of
transposing results since transactions are given in a vertical
layout. Programming a clustering algorithm with SQL queries
is explored in [14], which shows a horizontal layout of the
data set enables easier and simpler SQL queries. Alternative
SQL extensions to perform spreadsheet-like operations were
introduced in [20]. Their optimizations have the purpose of
avoiding joins to express cell formulas, but are not optimized
to perform partial transposition for each group of result rows.
The PIVOT and CASE methods avoid joins as well.

Our SPJ method proved horizontal aggregations can be eval-
uated with relational algebra, exploiting outer joins, showing
our work is connected to traditional query optimization [7].
The problem of optimizing queries with outer joins is not new.
Optimizing joins by reordering operations and using transfor-
mation rules is studied in [6]. This work does not consider
optimizing a complex query that contains several outer joins
on primary keys only, which is fundamental to prepare data

sets for data mining. Traditional query optimizers use a tree-
based execution plan, but there is work that advocates the
use of hyper-graphs to provide a more comprehensive set of
potential plans [1]. This approach is related to our SPJ method.
Even though the CASE construct is an SQL feature commonly
used in practice optimizing queries that have a list of similar
CASE statements has not been studied in depth before.

Research on efficiently evaluating queries with aggregations
is extensive. We focus on discussing approaches that allow
transposition, pivoting or cross-tabulation. The importance of
producing an aggregation table with a cross-tabulation of
aggregated values is recognized in [9] in the context of cube
computations. An operator to unpivot a table producing several
rows in a vertical layout for each input row to compute
decision trees was proposed in [8]. The unpivot operator
basically produces many rows with attribute-value pairs for
each input row and thus it is an inverse operator of horizontal
agregations. Several SQL primitive operators for transforming
data sets for data mining were introduced in [3]; the most
similar one to ours is an operator to transpose a table, based
on one chosen column. The TRANSPOSE operator [3] is
equivalent to the unpivot operator, producing several rows
for one input row. An important difference is that, compared
to PIVOT, TRANSPOSE allows two or more columns to
be transposed in the same query, reducing the number of
table scans. Therefore, both UNPIVOT and TRANSPOSE
are inverse operators with respect to horizontal aggregations.
A vertical layout may give more flexibility expressing data
mining computations (e.g. decision trees) with SQL aggrega-
tions and group-by queries, but it is generally less efficient
than a horizontal layout. Later, SQL operators to pivot and
unpivot a column were introduced in [5] (now part of the SQL
Server DBMS); this work took a step beyond by considering
both complementary operations: one to transpose rows into
columns and the other one to convert columns into rows (i.e.
the inverse operation). There are several important differences
with our proposal though: the list of distinct to values must
be provided by the user, whereas ours does it automatically;
output columns are automatically created; the PIVOT operator
can only transpose by one column, whereas ours can do it with
several columns; as we saw in experiments, the PIVOT opera-
tor requires removing unneeded columns (trimming) from the
input table for efficient evaluation (a well-known optimization
to users), whereas ours an work directly on the input table.
Horizontal aggregations are related to horizontal percentage
aggregations [13]. The differences between both approaches
are that percentage aggregations require aggregating at two
grouping levels, require dividing numbers and need taking
care of numerical issues (e.g. dividing by zero). Horizontal
aggregations are more general, have wider applicability and
in fact, they can be used as a primitive extended opera-
tor to compute percentages. Finally, our present article is
a significant extension of the preliminary work presented
in [12], where horizontal aggregations were first proposed.
The most important additional technical contributions are the
following. We now consider three evaluation methods, instead
of one, and DBMS system programming issues like SQL code
generation and locking. Also, the older work did not show
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the theoretical equivalence of methods, nor the (now popular)
PIVOT operator which did not exist back then. Experiments
in this newer article use much larger tables, exploit the TPC-H
database generator and carefully study query optimization.

VI. CONCLUSIONS

We introduced a new class of extended aggregate functions,
called horizontal aggregations which help preparing data sets
for data mining and OLAP cube exploration. Specifically,
horizontal aggregations are useful to create data sets with
a horizontal layout, as commonly required by data mining
algorithms and OLAP cross-tabulation. Basically, a horizontal
aggregation returns a set of numbers instead of a single number
for each group, resembling a multi-dimensional vector. We
proposed an abstract, but minimal, extension to SQL standard
aggregate functions to compute horizontal aggregations which
just requires specifying subgrouping columns inside the aggre-
gation function call. From a query optimization perspective,
we proposed three query evaluation methods. The first one
(SPJ) relies on standard relational operators. The second one
(CASE) relies on the SQL CASE construct. The third (PIVOT)
uses a built-in operator in a commercial DBMS that is not
widely available. The SPJ method is important from a theoreti-
cal point of view because it is based on select, project and join
(SPJ) queries. The CASE method is our most important con-
tribution. It is in general the most efficient evaluation method
and it has wide applicability since it can be programmed
combining GROUP-BY and CASE statements. We proved the
three methods produce the same result. We have explained it is
not possible to evaluate horizontal aggregations using standard
SQL without either joins or ”case” constructs using standard
SQL operators. Our proposed horizontal aggregations can be
used as a database method to automatically generate efficient
SQL queries with three sets of parameters: grouping columns,
subgrouping columns and aggregated column. The fact that the
output horizontal columns are not available when the query is
parsed (when the query plan is explored and chosen) makes its
evaluation through standard SQL mechanisms infeasible. Our
experiments with large tables show our proposed horizontal
aggregations evaluated with the CASE method have similar
performance to the built-in PIVOT operator. We believe this
is remarkable since our proposal is based on generating SQL
code and not on internally modifying the query optimizer.
Both CASE and PIVOT evaluation methods are significantly
faster than the SPJ method. Precomputing a cube on selected
dimensions produced an acceleration on all methods.

There are several research issues. Efficiently evaluating hori-
zontal aggregations using left outer joins presents opportunities
for query optimization. Secondary indexes on common group-
ing columns, besides indexes on primary keys, can accelerate
computation. We have shown our proposed horizontal aggre-
gations do not introduce conflicts with vertical aggregations,
but we need to develop a more formal model of evaluation. In
particular, we want to study the possibility of extending SQL
OLAP aggregations with horizontal layout capabilities. Hori-
zontal aggregations produce tables with fewer rows, but with
more columns. Thus query optimization techniques used for

standard (vertical) aggregations are inappropriate for horizon-
tal aggregations. We plan to develop more complete I/O cost
models for cost-based query optimization. We want to study
optimization of horizontal aggregations processed in parallel
in a shared-nothing DBMS architecture. Cube properties can
be generalized to multi-valued aggregation results produced by
a horizontal aggregation. We need to understand if horizontal
aggregations can be applied to holistic functions (e.g. rank()).
Optimizing a workload of horizontal aggregation queries is
another challenging problem.
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