
A Fast Convergence Clustering Algorithm Merging MCMC
and EM Methods

David Sergio Matusevich
University of Houston

Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Houston, TX 77204, USA

Veerabhadran
Baladandayuthapani

MD Anderson Cancer Center
University of Texas

Houston, TX 77030, USA

ABSTRACT
Clustering is a fundamental problem in statistics and ma-
chine learning, whose solution is commonly computed by
the Expectation-Maximization (EM) method, which finds a
locally optimal solution for an objective function called log-
likelihood. Since the surface of the log-likelihood function is
non convex, a stochastic search with Markov Chain Monte
Carlo (MCMC) methods can help escaping locally optimal
solutions. In this article, we tackle two fundamental con-
flicting goals: Finding higher quality solutions and achiev-
ing faster convergence. With that motivation in mind, we
introduce an efficient algorithm that combines elements of
the EM and MCMC methods to find clustering solutions
that are qualitatively better than those found by the stan-
dard EM method. Moreover, our hybrid algorithm allows
tuning model parameters and understanding the uncertainty
in their estimation. The main issue with MCMC methods
is that they generally require a very large number of itera-
tions to explore the posterior of each model parameter. Con-
vergence is accelerated by several algorithmic improvements
which include sufficient statistics, simplified model parame-
ter priors, fixing covariance matrices and iterative sampling
from small blocks of the data set. A brief experimental eva-
luation shows promising results.

1. INTRODUCTION
Clustering is a fundamental data mining technique that

is frequently used as a building block for the treatment of
more complex problems such as Class Decomposition and
Bayesian Classifiers. Maximization algorithms’ weakness is
that, if the problem to be explored has more than one pos-
sible extrema, they don’t return the best possible solution,
but only the first maximum encountered. This has been ex-
tensively studied in the literature. Considerable work has
gone into improving the EM algorithm and into accelerat-
ing its convergence. In [11], the authors present a survey of
several approaches from the Machine Learning community,
with mathematical justifications for them.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.

In this work we present a modification to the classic EM
algorithm that searches for better solutions (e.g. lower log-
likelihood) based on the Monte Carlo (MC) approach. MC
techniques use random walks to explore the solution space.
In general it is found that, even though MC algorithms take
a long time to converge, they reach very good solutions
avoiding been trapped in local extrema. While in recent
years the problem of accelerating the EM algorithm has been
studied, ([6], [10] among others) not much has been done to
speed-up the convergence of Gibbs Samplers for mixtures of
Gaussians. In this paper we describe the FAMCEM algo-
rithm, the hybridization of EM with MC for faster, more
accurate results.

2. DEFINITIONS AND PRELIMINARIES
The Expectation-Maximization Algorithm (EM) is used

to estimate the parameters of a mixture of k normal dis-
tributions. The multivariate normal distribution for a d di-
mensional vector x for cluster j ∈ {1, . . . , k} with mean Cj

and covariance matrix Rj is:

P (x;Cj , Rj) =
(

(2π)d |Rj |
)− 1

2
e−

1
2 (x−Cj)

T
R−1

j (x−Cj) (1)

and P (y;C,R,W) =
∑k

i=1WjP (x;Cj , Rj) is the probabil-
ity of the mixture. W is a matrix that contains the weights
of each of the clusters. Note that Rj is a d × d matrix,
however since it is diagonal, we can just keep the non-zero
elements as a d× 1 vector

The Mahalanobis Distance of a multivariate vector x from
a group of variables with mean Cj and covariance Rj is
defined as

δ (x,Cj , Rj) = δij = (x− Cj)
T R−1

j (x− Cj) (2)

This distance is used in EM instead of the regular Eu-
clidean distance [3] since it provides an understanding, not
only of how far a certain point is from the center of mass
of the cluster, but also how dense the cluster is, by scaling
the distance by the covariance matrix. EM takes as an in-
put the data-set (X = {x1, . . . xn}) and gives as an output
the matrices C, R and W . The quality of the solution is
measured by the Log-Likelihood, defined as:

L (Θ) =
1

n

n∑
i=1

log (P (yi; Θ)) (3)

In general EM algorithms stop when the change in log-
likelihood is less than a predetermined precision.

According to [12] a Markov process is a stochastic process
such that the conditional probability of value xi at time

ti is uniquely determined by the value xi−1 at time ti−1

and not by any knowledge of the values at earlier times.
In a Monte Carlo algorithm, we generate a Markov chain
in which each successive state is generated by its predeces-
sor and accepted (or rejected) according to an acceptance
ratio determined by the probabilities of each state. This
algorithm randomly attempts to sample the solution space,
sometimes accepting the move and sometimes remaining in
place. Gibbs Samplers are Markov Chain Monte Carlo algo-
rithms for obtaining sequences of observations of the joint
probability distribution of a set of random variables, when
direct sampling is difficult. Gibbs Samplers are commonly
used as means of Bayesian Inference instead of deterministic
algorithms such as EM. In order to illustrate the computa-
tional power of Monte Carlo techniques, it is customary to
use examples borrowed from Physics. A common problem
in the area, is to determine the minimum of the potential
energy in order to find the equilibrium state of a system.
Determining the global extrema of this potential function,
and the state with the lowest energy is not trivial since sys-
tems with more than 3 bodies are not solvable in a closed
manner.

Monte Carlo algorithms (in particular the Metropolis Has-
tings model) were developed to solve this kind of problems
[4]. Deterministic schemes, such as the Gauss- Newton Al-
gorithm and its variants (or for that matter EM) find pro-
gressively better solutions in an iterative manner, with the
result that, if there are several possible minima, the algo-
rithm can stop at a local one, without finding the global
result we are looking for. In contrast Monte Carlo iterations
allow the solution to worsen, climbing out of the shallow val-
leys in order to find the deep ones. In other words, Monte
Carlo techniques effectively sample phase space until the
best possible solution is found.

3. MERGING EM WITH MONTE CARLO
Markov Chain Monte Carlo (MCMC) methods are a set

of algorithms for sampling probability distributions by con-
structing a Markov Chain whose equilibrium distribution is
the desired one. Since it is difficult to determine a priori the
number of steps (iterations) that will result in a stable dis-
tribution, MCMC models tend to overestimate the number
of iterations needed, therefore requiring longer computation
time. This issue is particularly important when the size of
the problem is significantly large, since each step of the com-
putation will be repeated a very large number of times. In
this section we describe our efforts to improve EM by in-
corporating ideas from Monte Carlos style algorithms. To
begin we will briefly describe the FREM algorithm from [8],
since we used it as our starting point. We will also analyze
the time complexity of the complete algorithm.

3.1 Sufficient Statistics
Sufficient statistics are multidimensional functions that

summarize the properties of clusters of points. One of the
interesting properties of these summaries is that they are in-
dependent, that is, statistics from one cluster do not depend
on the values of the data points from other clusters. In this
case we introduce three statistics per cluster Dj : Nj = |Dj |,
Lj =

∑Nj

i=1 xi and Qj =
∑Nj

i=1 xix
T
i

N stores the number of points per cluster and is a k × 1
matrix while L stores the sum of the data points and Q
stores the sum of the squares. L and Q are k × d matrices.

FREM uses these sufficient statistics to reduce the number
of reads of the dataset, allowing the periodic estimation of
the parameters without resorting to extra I/O steps, signif-
icantly reducing the running time of the algorithm.

3.2 FREM’s Improvements over EM
A significant improvement described in [8] was the intro-

duction of the parameter λ to circumvent the weakness of
EM when variances approach zero, that is, when there is
very little variation in one of the dimensions. This parame-
ter is a small positive constant that, multiplied by the global
standard deviation, is added to the variances during its up-
date in the maximization step. It is chosen small enough
to avoid the real variance values, but large enough to avoid
zeros that could make the results undefined.

The formulae used in FREM (and in FAMCEM) is

Cj =
Lj

Nj
(4)

The d-dimensional cluster average

Wj =
Nj∑k

j′=1Nj′
(5)

The weight of the cluster

Rj =
Qj

Nj
−
LjL

T
j

N2
j

+ λΣ (6)

The d-dimensional variance, with the λ factor

FREM also makes use of the fact that, for sufficiently large
data sets, a portion of the data-set is representative of the
whole. This ”fractal” behavior of data is illustrated in Fi-
gure 1. In it, we plot two dimensional synthetic data in
the (i, j) plane. The complete data-set consists of 5500
points distributed in three clusters. In the second part of
the graph we show a random sampling of 10% of the data
points and it presents the same clustering behavior (albeit
with a lower density). Going back to FREM, the algorithm
can be accelerated by including Maximization steps before
the Expectation state has finished processing the complete
data-set. FREM uses a parameter ψ, that the authors fixed
experimentally to ψ = b

√
nc. Since the M step is performed

roughly n/ψ times during a single iteration of the algorithm,
the convergence is accelerated substantially.

3.3 The FAMCEM Algorithm
FAMCEM introduces two significant changes to FREM.

The first one is a modification to the Expectation step: In
FREM, as in the regular EM algorithm, the datapoint is
assigned a series of probabilities of belonging to each of the
clusters. In FAMCEM we use these probabilities to find a
unique cluster to which the data point belongs, this pro-
duces a decoupling between the clusters, simplifying (as we
will see) the calculation of the Log-Likelihood. However, in-
stead of assigning the data point to the cluster with highest
probability, we use the Alias Method [5] and [2]. This is
the main Monte Carlo change, since it allows the algorithm
to explore the parameter space, by allowing the possibility
that the data point belongs to a lower probability cluster.
By letting the algorithm swim upstream, climbing over local
maxima, we allow it to find possible better energetic minima.

To illustrate this step we can imagine a distribution of
points in two-dimensional space: Some points are relatively
easy to place within a cluster, that is to say, the proba-

Figure 1: The Fractal behavior of data.

bilities are skewed in favor of only one cluster. However,
in general this is not the case. In fact any point between
two centroids could belong to either one, particularly if the
standard deviations (radii) are large enough. While at some
point during the procedure, the probability might favor one
cluster in detriment of others it is possible that this is just
an artifact of the current distribution. Allowing a certain
opportunity to be included in other clusters, while making
the current iteration slightly worse, could lead to an overall
improvement of the solution.

The FAMCEM divides the iterations into two main phases.
In the first, burn-in phase, the algorithm uses a regular
FREM Maximization step in order to calculate the initial
standard deviations and variances. After the burn-in period
is finished, we start a Sampling phase where, instead of using
Maximization steps we use Sampling steps.

The Sampling step is the second main difference with
FREM. The initial update of the parameters is performed as
in equations 4 and 5, however we add an extra step: After
we have an estimate for Cj we use a normal distribution to
calculate C′j , using |Rj | as the standard deviation. This al-
lows for further exploration of the solution space, improving
our chances of finding the global extrema. It is important to
emphasize that the Sampling phase only explores the priors
of C and W but not R. R uses a non-informative prior and
remains fixed during Sampling, to reduce the complexity of
the problem [7].

The reason for these hybrid approach is to use the first
part to estimate the covariance matrices, and use them in
the sampling phase. Sampling requires knowledge of the ini-
tial distribution of the priors [7] and we resort to FREM to
calculate them. It is important to mention that the pos-
terior probability for C arises naturally as a result of our
calculations.

Table 1: Experimental Results.

k
FAMCEM EM

L(Θ) time [s] L(Θ) time [s]

9 -102.797 88 -92.706 34
12 -167.203 126 -174.418 44
15 -110.838 152 -134.374 61
18 -168.189 189 -188.437 76

As we mentioned previously, choosing a unique cluster for
each data point, coupled with the fact that the covariance
matrices are diagonal, has the added benefit of simplifying
the calculation of the log-likelihood. This quantity can be
calculated using the sufficient statistics matrices, in a sin-
gle step, without resorting to reading the data-set a second
time, or making extra calculation steps in the Expectation
subroutine.

L(Θ) = −d
2

log(2π)

− 1

2

k∑
i=1

[
1

n

(
QiR

−1
i − 2CT

i LiR
−1
i

)
+Wi

(
CT

i R
−1
i Ci − |Ri|

)]
(7)

3.4 Time Complexity
The time complexity of this algorithm is dominated by

the number of iterations of the main loop and the number
of data points in the data-set. In the worst case scenario the
time complexity is O(ndk) per iteration, as was calculated
for FREM in [8]. However, while FREM reaches equilibrium
in few passes, per force Monte Carlo style algorithms need
a much larger number of iterations, since it much more dif-
ficult to achieve stability and convergence.

4. EXPERIMENTAL VALIDATION
We evaluated out proposed method by using a real data-

set from the UCI Machine Learning Repository [1]. The
data-set, represented measurements of electric power con-
sumption in one household with a one-minute sampling rate
over a period of almost 4 years. Different electrical quanti-
ties and some sub-metering values were available. The data-
set has 9 dimensions that include date of the measurement,
time and 4 electrical measurements and 3 dimensions that
represented discrete characteristics of the households.

We implemented the algorithm in C++. The data set was
stored in a plain text file and the experiments were run on
a machine using an Intel Core i5 CPU, running at 1.8 Ghz,
with 4Gb of main memory. The computer was running a 64
bit version of Windows 8 operating system, and the program
was developed using Windows Visual Studio 2012 Pro. The
algorithm reads the data-set into memory once and operates
in main memory.

We show the results in Table1. It shows the calculation
of the Log-Likelihood for the data-set, when we varied the
number of clusters considered for a fixed n = 100000 and
d = 5. For comparison purposes we show the results from
EM runs of exactly the same data. When comparing running
times, FAMCEM is 2.49 times slower than a classic EM
algorithm: for 18 clusters EM took 76.11 sec, versus 189.45

Algorithm 1 The FAMCEM Clustering Algorithm

Input: X = {x1, x2, . . . , xn} and k
Output: Θ = {C,R,W} and L(Θ)

/* Parameters (defined in the text) */
ψ ← b

√
nc, α← 1

d×k
, λ← 0.01

for j = 1 to k do
Cj ← µ± α× r × diag|σ|, Rj ← Σj , Wj ← 1/k

end for
I = 0
while (|L(Θ)I − L(Θ)I−1| > ε and I ≤ MAXITER) do

/* Initialize the sufficient statistic matrices */
for j = 0 to k do

Lj ←
−→
0 , Qj =

−→
0 , Nj = 0

end for
for i = 1 to n do

/* Expectation Step: Choose to which cluster
the data point xi belongs according to the posterior
probabilities. */
Find the maximum probability cluster m0

Choose m randomly, according to the
probabilities pij .
a← Random number a ∈ [0, 1)
if p(m)/p(m0) > a then

Use m
else

Use m← m0

end if
if (i mod ψ = 0 or i = n) then

if (i < BURNIN) then
/* Maximizing Step: During the burnin pe-
riod, we maximize, to calculate the standard de-
viations */
Update Equations 4 through 6

else
/* Sampling Step: After the burn-in period,
we sample instead of maximizing */
Update Equations 4 and 5
/* We purposely de-tune the centroids, in order
to avoid local minima */
Cj ← rnorm(Cj , Rj)

end if
end if

end for
Calculate the Log-Likelihood using Equation 7
ε← (1− L(ΘI−1)/L(ΘI))

end while

sec for FAMCEM due to running about 4 times as many
iterations.

5. CONCLUSIONS
Although more experimentation is required, FAMCEM

shows an improvement over FREM in the quality of solu-
tions, however this is counterbalanced by the considerable
increase in execution time. FAMCEM could be considered
as an alternative to FREM when the accurate results are
more important than time efficiency.

Future work will include optimizations for storage and
time efficiency, as well as the translation of the code into C#,
in order to enable SQL calls and, ultimately, the creation of
an UDF that can be called directly from a DBMS, as well

as the possible integration with MapReduce to enable Big
Data Analytics. Further development on this problem will
involve programming the algorithm directly in SQL as in [9].

Acknowledgements
This research work was partially supported by National Sci-
ence Foundation grants IIS 0914861 and IIS 0915196.

6. REFERENCES
[1] K. Bache and M. Lichman. UCI machine learning

repository, 2013.

[2] L. Devroye. Sample-based non-uniform random variate
generation. In Proceedings of the 18th conference on
Winter simulation, pages 260–265. ACM, 1986.

[3] R. Duda and P. Hart. Pattern Classification and Scene
Analysis. J. Wiley and Sons, New York, 1973.

[4] D. B. Hitchcock. A history of the Metropolis–Hastings
algorithm. The American Statistician, 57(4):254–257,
2003.

[5] R. A. Kronmal and A. V. Peterson Jr. On the Alias
Method for generating random variables from a
discrete distribution. The American Statistician,
33(4):214–218, 1979.

[6] N. Kumar, S. Satoor, and I. Buck. Fast parallel
expectation maximization for gaussian mixture models
on GPUs using CUDA. In High Performance
Computing and Communications, 2009. HPCC’09.
11th IEEE International Conference on, pages
103–109. IEEE, 2009.

[7] L. Liang. On simulation methods for two component
normal mixture models under Bayesian approach.
Uppsala Universitet, Project Report, 2009.

[8] C. Ordonez and E. Omiecinski. Accelerating EM
clustering to find high-quality solutions. Knowledge
and Information Systems (KAIS), 7(2):135–157, 2005.

[9] C. Ordonez and S. Pitchaimalai. Bayesian classifiers
programmed in SQL. IEEE Transactions on
Knowledge and Data Engineering (TKDE),
22(1):139–144, 2010.

[10] B. Thiesson, C. Meek, and D. Heckerman.
Accelerating EM for large databases. Machine
Learning, 45(3):279–299, 2001.

[11] N. Ueda, R. Nakano, Z. Ghahramani, and G. Hinton.
SMEM algorithm for mixture models. Neural
Computation, 12(9):2109–2128, 2000.

[12] N. G. Van Kampen. Stochastic processes in physics
and chemistry. North Holland, 1992.

