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ABSTRACT
Finding aggregations of records with high dimensionality in
large data warehouses is a crucial and costly task. These
groups of similar records are the result of partitions ob-
tained with GROUP BYs. In this research, we focus on
obtaining aggregations of groups of similar records by turn-
ing the problem into efficient binary clustering of a fact table
as a relaxation of a GROUP BY clause. We present an ef-
ficient window-based Incremental K-Means algorithm in a
relational database system implemented as a user-defined
function. This variant is based on the Incremental K-Means
algorithm. The speed up is achieved through the computa-
tion of sufficient statistics, multithreading, efficient distance
computation and sparse matrix operations. Finally, the per-
formance of our algorithm is compared against multiple vari-
ants of the K-Means algorithm. Our experiments show that
our incremental K-Means algorithm achieves similar or even
better results more quickly than the traditional K-Means
algorithm.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—
Relational databases

Keywords
OLAP; Clustering; DBMS

1. INTRODUCTION
Processing a large amount of records in one-pass is similar

to dealing with stream data, which is characterized by the
data’s volume and velocity of arrival which makes storage
for later processing unfeasible [3, 10]. Examples of these en-
vironments are network traffic, transactions in retail stores
(e.g. market basket data), sensor data, weather monitor-
ing, telephone communications, stock trading, and web logs,
among many others [8, 5]. The simplest form of represen-
tation of these data streams is binary, which can be used
to characterize categorical data. Clustering binary data
presents advantages since it does not contain the noise of
quantitative data and it has lean storage requirements.

Despite this, most clustering algorithms work with nu-
merical data and the problem of clustering categorical data
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is not as obvious as the problem of clustering continuous
dimensions [9].

The main motivation for this research is the computa-
tion of efficient aggregations (e.g. SUM, MAX, MIN, AVG)
of groups of tuples from a fact table, where the aggrega-
tion is the result of using clustering as a relaxation of a
GROUP BY clause. The relaxation of GROUP BY as clus-
tering is important for efficient processing by reducing the
number of groups to a desired quantity when the number of
groups is large. This paper introduces several improvements
to the Incremental K-Means algorithm for clustering binary
data streams, which was presented initially in [15]. The K-
Means variants studied in this paper include the well-known
Standard K-Means, On-line K-Means, the incremental K-
Means, and an incremental K-Means version that exploits
multithreading. In addition to this, we introduce a sliding
window incremental K-Means algorithm to deal with time
decay [2, 20]. This paper also presents K-Means improve-
ments to cluster binary data streams. These include simple
sufficient statistics for binary data, efficient distance compu-
tation, and sparse matrix operations. We examine how to in-
corporate these changes into several variants of the K-Means
algorithm in a database management system (DBMS). In or-
der to do so, we exploit user-defined functions to extend the
DBMS functionalities. Particular attention is paid to the
improvements made to the Incremental K-Means algorithm.

The paper is organized as follows: Section 2 introduces
definitions, the K-Means algorithm, and a detailed example.
Section 3 presents the proposed improvements to K-Means
and how to incorporate them into a DBMS. Section 4 shows
an experimental evaluation with real and synthetic data sets.
Section 5 discusses related work. Finally, Section 6 contains
the conclusions and directions for future work.

2. PRELIMINARIES
Given a fact table D having n d-dimensional records and

m measurements, it is desired to partition it into k clusters
and aggregate the measurements. A characteristic of the fact
table is that all the dimensions are binary, which requires
transforming complex data sets. The partitioning results
are a matrix with the cluster centroids C, a matrix with
the weights of the clusters, W , and an array of variance
diagonal matrices, R. As a result, matrices C and R are
of size d × k and W is a k × 1 matrix. Notice that the
array of matrices R is managed as a matrix because only
the main diagonal of each variance matrix is stored. These
matrices use the following convention for subscripts: Let
transactions t be identified by the i subscript, where i ∈



Table 1: Computing aggregation example.
clusterID Wj D1 D2 D3 A1 A2

1 66% 0.9 0.6 0.1 10 200
2 33% 0.2 1.0 0.8 7 320

{1, 2, . . . , n}. In addition, each transaction i contains a set
of m measurements. The cluster number is given by j, where
j ∈ {1, 2, . . . , k}. Therefore, the j subscript is used to refer
to the columns of C or R. As a result, Cj , Rj , and Wj

refer to the jth cluster centroid, the jth variance diagonal
matrix, and the jth cluster weight, respectively. Dimensions
are mapped by h where h ∈ {1, 2, . . . , d}. Moreover, let
{D1, D2, . . . , Dk} be the k subsets of D given C such that
Dj∩Dj′ = ∅ for j 6= j′. Chj represents the fraction of records
in cluster j that have dimension h equal to one. Similarly,
Wj is the fraction of the n records that belong to cluster j.
These fractions of records in Chj and Wj can also be seen as
percentages which will be useful for interpreting the result.
Finally, Aje represents the aggregation (e.g. SUM, MAX,
MIN) of the corresponding measurement e per cluster j. An
example is presented in Table 1.

We define a generic operator diag[] to ease matrix ma-
nipulation. This operator obtains a diagonal matrix from
a vector or converts the diagonal of a matrix into a vector.
In this work, we use the Euclidean similarity measure, in
which a 0/0 match is as important as a 1/1 match on some
dimension. Thus, the Euclidean distance from ti to Cj is
given by δ(ti, Cj) = (ti − Cj)t(ti − Cj).

Since transactions are sparse vectors, we found that |ti| �
d. This fact will be exploited for efficient distance compu-
tations. We will use T to denote average transaction size
(T =

∑n
i=1 |T i|/n). In this work, we focus on data sets with

d� n.

2.1 The K-Means Algorithm
The K-Means algorithm can be initialized from a random

or approximate solution. Each iteration assigns each point
to its nearest cluster (using any distance measure) and then
records belonging to the same cluster are averaged to get
new cluster centroids. Each iteration successively improves
cluster centroids until they become stable (the solution con-
verges). Formally, the problem of clustering is defined as
finding a partition of D into k subsets such that the dis-
tance between a transaction and a centroid is minimized.
When using the Euclidean distance, the quality of a clus-
tering model q(C) is measured by the sum of squared dis-
tances from each point to the cluster where it was assigned
[21, 14, 4]. This quantity is proportional to the average
quantization error, also known as distortion. The quality
of a solution is obtained by the squared error measured as
q(C) = 1

n

∑n
i=1 δ(ti, Cj), which can be computed from R

and W as q(C) = q(R,W ) =
∑k
j=1Wj

∑d
h=1Rhj .

If a different measure such as the Jaccard distance is
used, the convergence of the clustering is obtained when the
records do not change cluster memberships. The evaluation
of the clustering solution can be done using other quality
measurements. Additional information from the quality of
the clusters, regardless of the distance measure used, can
be obtained by computing the entropy E of the resulting
clusters C if class labels are given. Since clustering is an
unsupervised model, having a class label g is not expected.

However, we complement a fact table with this information
for quality validation purposes.

The entropy of each cluster E(Cj) is computed by E(Cj) =

−
∑

∀g∈Cj

Njg

Nj
log

Njg

Nj
, where Njg represents the number of

points in cluster j of class g andNj is the number of points in
cluster j. Notice that for the purpose of computing entropy,
N is extended to count the number of points of a certain
class in every cluster. The total entropy of model E(C) is
obtained by the weighted sum of all the previously computed
cluster entropies. E(C) is computed as

∑k
j Wj E(Cj).

2.2 Stream Data
Binary stream data is a continuous ordered sequence of

transactions. The arrival time can either be implicit by ar-
rival time or explicit by timestamp [11, 12]. The arrival
interval allows physical window models based on the num-
ber of transactions that can be held in memory at a time
to be analyzed. Hence, let τ represent the window in which
the transactions are contained. This window is defined as
τ = τ1, . . . , τm, where each sliding non-overlapping subwin-
dow τγ can aggregate at most ω-transactions. Notice that
there is no difference if the window is assumed to have a time
interval. However, the number of transactions that can be
held within a window can be uneven. Also, if the stream-
ing environment has a constant flow of transactions and the
timestamp is given during arrival time, a physical approach
is the most efficient solution.

2.3 User-defined Functions
Data mining algorithms are difficult to implement in re-

lational databases, due to the fact that DBMSs lack matrix
and vectors native data types and operations that would ease
their implementation [17]. Despite this limitation, multiple
proposals have shown that user-defined functions (UDFs)
can be used to extend the functionality of the DBMS [6].
A UDF is a compiled piece of code that is attached to the
DBMS to be run within the SELECT statement. UDFs
are executed in a memory pool assigned by the DBMS.
User-defined functions are scalar, aggregate or table-valued.
Scalar UDFs are routines executed record-by-record. The
isolation level of a scalar UDF is that the memory assigned
to the UDF is not carried between records. The output of
a scalar UDF is a single data type. Aggregate UDFs main-
tain the allocated memory through the data stream resulting
from the SELECT statement. Aggregate UDFs process a
set of records in independent parallel runs which are merged
into a final global aggregation. Aggregate UDFs return a
single row per group. Table-valued functions (TVFs) are a
type of user-defined function that, unlike aggregate UDFs,
are able to return a table as the final result of the function.
In addition to this, a TVF cannot implicitly manage paral-
lelism. Despite this lack of ‘out-of-the-box’ parallelism, it is
common that database systems allow the user to implement
routines that support parallelism. TVFs read and process
an input data set as a single data stream. Table-valued func-
tions allow the user to manage arrays and matrices within
the memory space assigned to the UDFs.

3. CLUSTERING BINARY DATA STREAMS
Given a data stream X, we want to cluster and aggre-

gate the incoming transactions from a fact table using the
Standard K-Means. The main problem with the traditional



K-Means is that iterating through the data stream is unfea-
sible. As a result, we will have to modify the algorithm in
order to obtain a model without revisiting the points. De-
spite this huge limitation, the binary nature of the items
gives us the opportunity to accelerate the computation of
the model. In this section, we explore optimizations within
the K-Means algorithm for the distance computation and
model update. We also present our variants for the K-Means
algorithm for clustering data streams.

3.1 Sufficient Statistics and Sparse Operations
We first explore possible optimizations to accelerate the

computations in the K-Means algorithm. Sparse distance
computation and simpler sufficient statistics are our main
objectives. When D is a sparse matrix and d is high, the
distance formula is costly to compute (especially because
this computation is performed between each point and all
of the centroids). Sparse Euclidean distance computation is
optimized, without modifying the result, by precomputing
the distance from every Cj to the null vector ~0. In order

to do so, a k-dimensional vector ∆ : δj = (~0, Cj) is de-
fined. Thus each δ(ti, Cj) can be computed as δ(ti, Cj) =
∆j +

∑
h=1,(ti)h 6=0((ti)h −Chj)2 −C2

hj . A similar optimiza-
tion is obtained for metrics such as the Jaccard distance
by precomputing the norm of each centroid. Here, each ∆j

value is obtained from the
∑d
h=1 C

2
hj .

K-Means has been proven to use sufficient statistics to
compute the model [4, 21], which are summaries of D1, D2,
. . . , Dk represented by the three matrices N ,L and Q. These
matrices contain the sum of points, the sum of squared
points, and the number of points per cluster, respectively.
The idea of using sufficient statistics is well known to ac-
celerate the computations [4, 7]. However, due to the fact
that we are working with binary data, it is possible to sim-
plify these computations. The following lemma states that
the sufficient statistics for the problem of clustering binary
vectors are simpler than the ones required for clustering nu-
meric data.

Lemma 1. Let D be a set of n transactions of binary data
and D1, D2, . . . , Dk be a partition of D. Then the sufficient
statistics required for computing C,R,W are only N and L.

Proof. In order to compute W , k counters are needed
for the k subsets of D that are stored in the k × 1 ma-
trix N and then Wj = Nj/n. For the computation of C,
we use Lj =

∑n
i=1 ti, ∀ti ∈ Dj and then Cj = Lj/Nj .

To compute Q the following formula must be computed:
Qj =

∑n
i=1 diag[tit

t
i] =

∑n
t=1 ti = Lj , ∀ti ∈ Dj . Note that

diag[tit
t
i] = ti because x = x2 if x is binary and ti is a

vector of binary numbers. Elements off of the diagonal are
ignored for diagonal matrices. Since we know that Q = L,
we conclude that only N and L are required for obtaining
sufficient statistics from binary transactions.

Thus R can be computed from C without scanning D
or storing Q. Even further, Lemma 1 makes it possible to
reduce storage to one half. However, it is not possible to
reduce storage further because when K-Means determines
cluster membership, it needs to keep a copy of Cj to compute
distances and a separate matrix with Lj to accumulate the
point to cluster j. Therefore, both C and L are needed
for an Incremental version, but not for an On-line version.

The On-line K-Means algorithm, which corresponds to a
variant of K-Means that updates the model with every new
transaction, could keep a single matrix for centroids and
the sum of points. For the remainder of this article, L is a
d × k matrix and Lj =

∑
∀ti∈Dj

ti and N is k × 1 matrix

and Nj = |Dj |. The update formulas for C,R,W are Cj =
1
Nj
Lj , Rj = diag[Cj ]− CjCtj and Wj =

Nj∑k
j′=1

Nj′
.

3.2 K-Means Variants for Binary Data Streams
We now introduce the variants of K-Means (KM) for bi-

nary data streams based on the optimizations explained pre-
viously. These variants from the KM include the Incremen-
tal K-Means (IKM), Multithreaded Incremental K-Means
(IKM-MT), Incremental Window K-Means (Inc.WinKM),
Multithreaded Incremental Window Means (Inc.WinKM-MT)
and the K-Means with multithreading (KM-MT). Consider
the binary data points given as transactions T1, T2, . . . , Tn
and k clusters. Observe that the points are assumed to ar-
rive as lists of integers as defined in Section 2. The order
of the dimensions within each transaction does not affect
the algorithm as long as transactions do not occur sorted
by cluster. The output is the clustering model (C,R,W ),
a partition of D into D1, D2, . . . , Dk, the aggregated mea-
surements, and a metric of cluster quality. Let the nearest
neighbor function be defined as NN(C, ti) = J , such that
δ(ti, CJ) ≤ δ(ti, Cj) for every cluster where J 6= j.

Let ⊕ be a sparse addition of vectors where only non-
zero entries are added. The Lj ⊕ ti operation has com-
plexity O(T ). Similar to this operation, the ti · CTj also
takes O(T ) and is equivalent to a sparse aggregation given
by

∑
∀h∈Ti

Chj . Initialization is based on a sample of k dif-
ferent points to seed C. The weights Wj are initialized to
1/k to avoid early re-seeding (see [14]).

3.3 Incremental K-Means
The Incremental K-Means algorithm is our proposed vari-

ant of K-Means. This version finds a middle ground between
the On-line K-Means algorithm and the Standard K-Means
algorithm by doing only one iteration. A fundamental differ-
ence with Standard K-Means is that Incremental K-Means
does not iterate until convergence and that the model is
updated every

√
(n) transactions, each time touching the

entirety of C and W . This algorithm is detailed and fully
explained in [15].

3.3.1 Multithreaded Incremental K-Means
The Incremental K-Means algorithm does not update the

model for a batch of transactions. As a result, during this
batch it is possible to compute in parallel the membership
and measurements of each transaction. Figure 1 shows the
pseudocode of our proposal of a one-pass incremental multi-
threaded K-Means algorithm. In the pseudocode, variable r
represents a random number between [0, 1], µ is the global

mean and σ = diag[
√

(Rj)] represents a vector of global
standard deviations. The initialization of the algorithm pro-
ceeds as in the Incremental K-Means. However, a set I is
initialized to hold a set of transactions to process per thread
(load) and a load size Is is given by the user.

In summary, the expectation step (Estep) is performed
for a set of transactions in the stream in every update batch
(ThreadPoolAdd function). During this step, the Nearest
Neighbor computation is obtained for every point, and the



Input: {T1, T2, . . . , Tn},k,{M1, . . . ,Mm},is
Output: C,R,W, q(C), {A1, . . . , Am}

1 for j ← 1 to k do
2 Cj ← µ± σr/d ;
3 Nj ← 0 ;

4 Lj ← ~0 ;
5 Wj ← 1/k ;
6 I ← ∅
7 end
8 for i← 1 to n do
9 I ← I ∪ Ti ;

/* E Step */

10 if ( |I| = is or (i mod(
√
n) = 0) ) then

/* A1, . . . , Am are aggregated during the

EStep. */

11 ThreadPoolAdd(EStep(I));
12 I ← ∅
13 end
14 if (i mod(

√
n) = 0) then

/* M Step */

15 Join(ThreadPool) ;
16 for j ← 1 to k do
17 Cj ← Lj/Nj ;

18 Rj ← diag[Cj ]− CjCtj ;
19 Wj ← Nj/i ;
20 if Wj = 0 then
21 Reseed(j);
22 end

23 end

24 end

25 end
26 q(C)← q(R,W ) ;

Figure 1: Multithreaded Incremental K-Means.

sparse addition of LJ ⊕Ti and Nj are computed. An impor-
tant consideration during the L and N update is that these
arrays must hold a lock during the update process to avoid
unexpected results. The model update (Mstep) is performed

every
√

(n) steps. However, this step must wait until all the
threads in the thread pool finish their loads to update the
model (Join function). In contrast to the Estep, the oper-
ations during the maximization phase cannot be performed
in a sparse manner. Fortunately, these operations are com-
puted efficiently with the N and L vectors. If empty clusters
are found, the Reseed function can re-seed clusters with the
furthest neighbors of non-empty clusters as proposed in [4].
The re-seeding points are extracted from the outliers list
stored in a summary table. This summary table consists
of two arrays held in memory for storing the most frequent
item per cluster and the farthest transactions assigned to a
cluster. An additional optimization is that the R and W
matrices can be computed only at the end of the iteration
if no On-line q(C) or re-seeding is desired. In Figure 2, we
exemplify the incremental K-Means process. Notice that
the figure’s color code is related to the transactions that
were taken into consideration for updating the correspond-
ing model. The Estep is shown in the table on the right (we
omit the L and N arrays). During this step, the nearest

cluster is computed for every transaction (using the ~∆) and
the sparse addition between Lj ⊕ Ti. We compare the ob-

tained distance to update our summary table for obtaining
outliers and top items. In this example, we use ψ =

√
(23),

where ψ represents the number of model updates. As a re-
sult, the model is updated in batches of five transactions.
In practice, a rounding function should be used. During the
model update, C, R and W are updated. Notice that the
∆ vector needs to be recomputed, with the new centroids.
During each E step the top items and outliers’ transactions
are computed.

3.4 Sliding Windows over Stream Data
We propose a variation of the incremental K-Means al-

gorithm that works within a window of transactions of the
data stream X. The version is similar to the incremental K-
Means in the fact that it does not iterate until convergence.
Similar to this, the model is updated every

√
(n) transac-

tions. On the other hand, Window Incremental K-Means
(IncWinKM) only considers the transactions in a current
window for estimating the output matrices C, R and W .
The Incremental Window K-Means is shown in Figure 3. A
multithreaded version of this algorithm is possible by adding
the ThreadPoolAdd and Join functions to the proposed al-
gorithm (adding an additional lock to the Lτ and Nτ data
structures is required).

The window is managed as a fixed number of transac-
tions that can be held within an interval τ . The sufficient
statistics of the window are kept in N and L. However, s
subwindows with smaller number of transactions w are used
to displace the window in the current time. As a result,
there exists a global array with the sufficient statistics of
the whole window and a set of partial subwindows contain-
ing only a few transactions. The proposed algorithm initially
obtains all the sufficient statistics of the incoming transac-
tions and stores them in the available subwindow. When all
the subwindows have been filled with transactions, the sub-
window with the smallest average transaction arrival time
is reset and used to accumulate new transactions. The SW

function in Figure 3 obtains the window with the smallest
average transaction time. Note that prior to the reset of the
selected subwindow, the values of the transactions accumu-
lated in such an interval are discarded from the global win-
dow. Once the subwindow with the oldest transactions has
been subtracted from the global aggregation, the new trans-
action is aggregated to the empty subwindow and to the
general aggregation. The final result of this process is a set
of overlapping windows. The model then will be evaluated
in a manner similar to the incremental K-Means algorithm.
However, the C,R and W matrices will be obtained with the
transactions in the current window. The aggregated mea-
surements are global. If re-seeding is required, this should
be done with transactions in the current window.

A variation of the Standard KM algorithm was developed
for comparison purposes. The algorithm iterates until reach-
ing convergence in an equal-sized fixed window. In contrast
with the Incremental Window KM, the Window KM does
not have a set of overlapping windows. Thus, the model and
the global sufficient statistics are updated every ωs transac-
tions. The purpose of this variation was to avoid the update
of the model until convergence was reached with every new
transaction added (and removed) from the current window.
The result of this algorithm is similar to that obtained from
the implementation of Scalable K-Means. Nevertheless, the



Figure 2: Example: IKM Process.

algorithm computes the updated model with only the suffi-
cient statistics of the current model.

Input: {T1, T2, . . . , Tn},k,{M1, . . . ,Mm},ω
Output: C,R,W, q(C), {A1, . . . , Am}

1 for j ← 1 to k do
2 Cj ← µ± σr/d ;
3 Nj ← 0 ;

4 Lj ← ~0 ;
5 Wj ← 1/k ;
6 for γ ← 1 to s do
7 Nτjγ ← 0 ;

8 Lτjγ ← ~0 ;

9 end

10 end
11 for i← 1 to n do

/* E Step */

12 J ← NN(C, Ti) ;
13 p← SW (Nτ , J, ω, f) ;
14 if (f = true) then
15 N ← N −Nτp ;
16 L← L− Lτp ;
17 reset(Nτp, Lτp) ;

18 end
19 LτpJ ← LτpJ ⊕ Ti ;
20 NτpJ ← NτpJ + 1 ;
21 LJ ← LJ ⊕ Ti ;
22 NJ ← NJ + 1 ;
23 for e← 1 to m do
24 AJe ←Me

25 end
26 if (i mod(

√
n) = 0) then

/* M Step */

27 for j ← 1 to k do
28 Cj ← Lj/Nj ;

29 Rj ← diag[Cj ]− CjCtj ;
30 Wj ← Nj/i ;
31 if Wj = 0 then
32 Reseed(j);
33 end

34 end

35 end

36 end
37 q(C)← q(R,W ) ;

Figure 3: Incremental Window KM.

3.5 DBMS integration
The incremental KM algorithm, the window variant, and

the multithreaded versions can be integrated into the DBMS
to be processed in one-pass by exploiting user-defined func-
tions. The data set X is indexed in the DBMS by i and
h guaranteeing that all the dimensions of a sparse trans-
action are contiguous with each other. As a result, X is
being read by the user-defined function as a data stream of
sparse transactions. The best fit of a user-defined function
for implementing the K-Means variants in one-pass is a table
valued-function (TVF). This TVF will perform a single scan
through the data and maintain the central data structures
in main memory. An aggregate user-defined function is also
an alternative. However, it is not possible to synchronize
the threads and update the model without partitioning the
data.

3.6 Time Complexity Analysis
Clustering data streams has become a popular field of re-

search [13]. All the variants introduced above read each
data point from a disk just once. On-line K-Means and In-
cremental K-Means can keep up with the incoming flow of
transactions since they do not iterate.

The proposed K-Means variants have O(Tkn) complexity
where T is the average transaction size; recall that T � d.
Re-seeding using outliers, if desired, can be done in time
O(k). The top items’ and outlier’s data structures can be
updated in O(1) by using fixed intervals. Matrices L,C re-
quire O(dk) space and N ,W require O(k). Since R is derived
from C, that space is saved. In short, space requirements are
O(dk) and time complexity is O(kn) for sparse binary vec-
tors. Note that the space requirements for the Incremental
Window K-Means vary from the Incremental K-Means. The
window management requires an additional O(dks) space
for managing the transactions accumulated within the cur-
rent window. Notice that s represents the total amount of
subwindows that accumulate a maximum of ω-transactions.
The time complexity is still O(kn). Despite this, the algo-
rithm contains a larger hidden constant than the Incremen-
tal K-Means for the time that is required to manage the
window.

4. EXPERIMENTAL EVALUATION
A thorough examination of the proposed algorithms is

contained in this section. The algorithms were benchmarked



Table 3: Real data sets results (squared error).

a)KM q(C) b)IKM q(C)

c)WKM q(C) d)IncWinKM q(C)

Table 2: Real data sets.
Data set n d T Classes

car 1728 21 7 4
heart 655 22 18 2
house 435 45 16 2
nursery 12960 27 9 3
post operative 90 24 9 3

on the quality of the results and performance. The quality
was evaluated using q(C) for the squared error. However,
we also used entropy for the real data sets to compare the
distance approaches. We decided to incorporate all the suffi-
cient statistics and sparse matrix optimizations in all the al-
gorithms for a fair performance evaluation. All the times are
presented in seconds. The experiments were run on an Intel
Xeon E3110 server with 3.0GHz 6MB L2 Cache Dual-Core
Processor, 4 GB of main memory and 1 TB of hard disk.
All the algorithms were implemented as user-defined func-
tions in MSSQL Server using the C# language. In general,
all the algorithms require the k parameter. The Standard
K-Means distance-based algorithm also requires a tolerance
error for q(C) which was set to ε = 1.0e − 4. The incre-
mental algorithms also require setting the ψ value, which
defines the number of times the model gets updated. Fi-
nally, the window algorithm requires setting the number of
subwindows and the amount of transactions to aggregate per
subwindow.

4.1 Accuracy Evaluation
We initially study the quality of the results of the pre-

sented algorithms. In order to do so, we use five datasets
taken from the UCI Data Set repository from different do-
mains. From these data sets, the model with the smallest
squared error is chosen from a set of 30 runs.

In Table 3, we ran all algorithms several times to find a
good value for k. In the car data set, it is clear that the
squared error decreases as the number of clusters grow in all
the algorithms. This data set has the characteristic of being
unbalanced for one of the classes (most of the transactions
of the unbalanced class appear at the end of the stream). As
a result, the Incremental K-Means and the window versions
tend to obtain a better squared error than the Standard K-
Means. The rationale behind this is that the model gets

updated with the most current data, lowering the squared
error for the incoming transactions. On the other hand, the
standard K-Means re-evaluates old transactions and is less
sensitive to the latest transactions. Notice that the standard
window K-Means tends to overfit the data in the small win-
dow. As a result, it obtains the lowest squared error. In the
heart data set, it is observed that as the number of clusters
increases, the squared error is smaller. The best solution is
found by the Standard K-Means algorithm. However, the
solution of the incremental K-Means is within our tolerance
value. The WKM found the best solution, although the In-
cWinKM is within our tolerance value, too. It is important
to point out that the IncWinKM produces a model that
is less sensitive to new data because of the sliding window
approach. On the other hand, the Window KM is highly
sensitive to the window because of the disjoint windows ap-
proach. Notice that even though the incremental KM algo-
rithm is sensitive to recent data (when calculating the cur-
rent model), the window versions of the standard KM, and
the incremental KM are more sensitive to the transactions in
the window. The nursery data set contains the largest num-
ber of rows of the real data sets. An interesting result of
this data set is that the squared error improves as the num-
ber of clusters increases. This behavior is also noticed in
the window versions of the algorithm. The rationale behind
this is that the transactions are not skewed, which delivers
ideal results. In addition, the Incremental KM reports equal
or better results than the Standard KM. The last data set
is also the smallest one. The post operative data set has a
smaller error when the amount of clusters increases, except
in the Standard WinKM. This behavior is explained by the
small window size (ω = 1). In general, the standard algo-
rithm seems to obtain better solutions than the incremental
K-Means algorithm. Despite this, the squared difference is
quite small. Also, the IncWinKM is less sensitive to new
transactions in the current stream. Even though we did not
include entropy plots (due to space constraints), we noticed
that the best squared error solution did not obtain the best
E(C) model. We also noticed that the total model entropy
is slightly better for the incremental variant. As a result
IncWinKM produces good quality clusters.



4.2 Performance evaluation
In addition to the real data sets, we prepared some large

fact tables using the IBM data generator in order to obtain
some performance measurements. The defaults we used were
as follows: The number of transactions was n = 100k. The
average transaction size T was 4, 8, 10 and 20 and a single
aggregation. Pattern length (I) was one half of transaction
length. Dimensionality d was 10, 100 and 1000. The rest of
the parameters were kept at their defaults (average rule con-
fidence= 0.25, correlation=0.75). These data sets represent
very sparse matrices and very high dimensional data. We
did not expect to find any significant clusters, but we wanted
to try the algorithms in order to observe their scalability.

The set of plots in Table 4 shows experiments for ten com-
puted parallel models when varying the average transaction
size, the data set size, the number of dimensions and the
number of clusters for KM and all the variants. It is im-
portant to notice that even though the comparison is made
between equivalent algorithms (e.g. WKM and IncWinKM),
we included the eight trends in the same plot. Plot (a) shows
that all the algorithms have a linear increase when the av-
erage transaction size increases. However, this increase does
occur at a high rate due the optimization for sparse transac-
tions. Despite this optimization, this increase is not insignif-
icant and cannot be neglected. Plot (b) presents the trends
when increasing the number of transactions in the data set.
Notice that all the algorithms present linear scalability. In
addition, all the incremental versions perform at least half
the time of their corresponding KM algorithm. Plot (c)
shows the trend close to linear when increasing the number
of dimensions. The trend of both algorithms KM and incre-
mental is similar for the window and regular versions. This
is due to the fact that the update of the model takes O(d)
and it takes the same time in all the algorithms. However,
the trend of the Standard K-Means algorithm seems to re-
main constant when d = 1000, and this is due to the fact
that the squared error of the Standard K-Means in the data
set is already within the tolerance value and is converging
in the first iteration. As a result, the traditional K-Means
seems to be faster due to the fact that it only performs an
update operation of the model at the end of the execution.
The last plot (d) shows the linear scalability with respect to
the number of clusters. Notice that the incremental algo-
rithm always performs faster than the standard KM. Also
notice that in all the plots, the multithreaded version has
a 25% to 30% speed up with respect to the non-threaded
version. Also, the equivalent multithreaded versions (e.g.
IKM-MT and IncWinKM-MT) take almost the same time.
As a result, the multithreaded versions significantly reduce
window management time. The improvement is from 66%
to 75% of the non-threaded version’s performance.

5. RELATED WORK
Specialized database systems, such as [1] and [19], have

been developed to manage stream data. Nevertheless, these
systems require modifying the system model and creating
an SQL extension to monitor and manage data streams. In
contrast, our research relies on traditional DBMS, where we
have implemented and deployed our proposed algorithms us-
ing user-defined functions. In a similar manner, STREAM
is a system that tries to extend SQL to support stream-
oriented primitives [3]. Like our research, the authors in-

cluded a sliding window approach to perform queries on
evolving data streams. However, as in [1] and [19], the
authors had to extend the functionality by creating a spe-
cialized stream system. In previous research (see [17]), we
have proposed the usage of user-defined functions in order
to compute several data mining models in a DBMS. How-
ever, we have not extended these functionalities to deal with
stream data. Likewise, the authors in [16] and [18] propose
optimization for distance computations within the DBMS.
However, they are not focused on binary data. Finally,
this paper extends the previous work in [15] by incorporat-
ing the presented optimizations within the DBMS in order
to compute efficient clustering of binary data streams in a
DBMS using user-defined functions. Moreover, this paper
contributes even further to OLAP aggregation using binary
stream clustering with the proposal of a multithreaded In-
cremental Window KM algorithm for analyzing intervals of
data streams.

6. CONCLUSIONS
This paper proposed a window-based incremental k-means

algorithm for computing aggregations in a fact table of bi-
nary data streams. Some optimizations included comput-
ing sufficient statistics, efficient nearest cluster computa-
tion with a precomputed ∆ vector for the Euclidean dis-
tance, sparse operations, and multithreading. It is impor-
tant to notice that this IKM one-pass algorithm was imple-
mented within a traditional DBMS using user-defined func-
tions. Moreover, the distance computation is optimized for
sparse binary vectors. The proposed improvements are fairly
easy to incorporate in the standard K-Means. The WIKM
algorithm and some variants were compared with real and
synthetic data sets. The proposed Incremental K-Means
showed faster performance than the standard K-Means and
gives solutions of comparable quality. In a similar manner,
the Incremental Window K-Means was found to outperform
the Standard Window K-Means with a similar quality in
the results. In addition to this, both incremental algorithms
showed linear scalability in the number of points, number
of dimensions, number of clusters and average transaction
size. However, sparse matrix addition reduces the effect of
increasing the number of clusters and the average transac-
tion size. It was also found that a smaller window size will
decrease the quality of the results due to the fact that the
centroids will be updated with only a few transactions. De-
spite this, there is a trade-off between the size of the window,
the amount of memory required for holding the sufficient
statistics, and the amount of time the algorithm requires to
manage the subwindows. Using multithreading also showed
an improvement of 25% to 30% in the Incremental K-Means.
However, the real improvement was in the window version
of the algorithm, due to the fact that maintaining multi-
threading balances the load of the processor. As a result,
the multithreaded window version had a performance similar
to that of the non-window versions.

Future work on this research includes incorporating a vari-
ation of the triangle inequality for speeding up the selec-
tion of the nearest cluster. Additional improvements can
be made in the selection of the best models, in which a
mixed evaluation between the squared error and cluster en-
tropy can be used to select the best resulting models. More
complex initialization approaches can be used to initialize
C. Possible variations of the incremental algorithm may in-



Table 4: Transactional data sets experiments for ten models when modifying T, n, d and k (time in seconds).

a) Varying average transaction size d = 100, k = 10, n = 100k. b) Varying data set size T = 4, d = 10, k = 10.

c) Varying number of dimensions T = 4, n = 100k, k = 10. b) Varying number of clusters T = 4, d = 10, d = 10.

clude different reseeding strategies for outlier transactions.
We believe a further acceleration of Incremental K-Means is
possible by using approximation, heuristics for cluster selec-
tion, randomization, or sampling.
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