
Optimizing OLAP Cube Processing on Solid State Drives

Zhibo Chen
University of Houston

Houston, TX 77204, USA

Carlos Ordonez
University of Houston

Houston, TX 77204, USA

ABSTRACT
Hardware technology has improved to a point where a solid
state drive (SSD) can read faster than a traditional hard disk
drive (HDD). This unique ability to retrieve data quickly
combines perfectly with OLAP cube processing. In this pa-
per, we study how to improve performance of OLAP cube
processing on SSDs. The main novelty of our work is that
we do not alter the internal subsystems of the DBMS. In-
stead, the DBMS treats the SSD as though it was a reg-
ular HDD. We propose optimizations for SQL queries to
enhance their performance on SSDs. An experimental eval-
uation with the TPC-H database compares performance of
our optimizations on SSDs and HDDs. We found that even
though SSDs have slower write speeds than HDDs, their ex-
cellent read speed more than overcomes this limitation.

1. INTRODUCTION
On-Line Analytical Processing (OLAP) involves the effi-

cient evaluation of queries on a multidimensional cube [4, 2].
Cube processing requires scanning large tables, computing
aggregations at various granularity levels, filtering rows and
writing query results back to the database. Performance ul-
timately depends on CPU speed, RAM speed and the speed
of storage devices. In general, the storage device is the lim-
iting factor for performance. With the amount and diversity
of data increasing each year (i.e., big data), there is a need
to overcome this bottleneck.

Nowadays most DBMSs uses a group of HDDs that con-
nect directly to the motherboard using an IDE, SATA, or
SCSI connection interface. The read and write speeds of
HDDs depends on both the speed at which disks spin and
the density of stored data. Currently, most HDDs spin at a
rate around 7200 RPM, a speed that has not changed much
in the past decade. The main issue is that the disks inside
a HDD have a practical limit on how fast they can spin be-
fore other factors, such as safety and power usage. As such,
even with improvements in media density, there has been
little improvement in read and write speeds. On the other
hand, one of the latest technologies in storage devices, solid
state drives (SSDs), have the promise to solve many of the
issues faced by today’s magnetic hard disk drives (HDDs).
SSDs have no mechanical parts and have performance that
exceeds or matches that of HDDs. Moreover, SSDs con-

c© ACM, 2013 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in DOLAP 2013.
http://dx.doi.org/10.1145/2513190.2513197

sume less power, which is an issue for data centers. We do
not consider the lower limit on the number of writes per
block an issue because it improves every year.Also, OLAP
cube processing is not heavily dependent on write speed, like
transaction processing. Lastg but not least, SSD access and
write speeds keep improving each year [5].

We focus on analyzing whether SSDs have improved to a
point where it is feasible to perform OLAP cube operations
on SSDs instead of HDDs. The novelty of our work comes
from the fact that we do not alter the internal architecture of
the DBMS, choosing instead to use ”as-is”. The motivation
behind our research lies in observing whether improvements
in read and access speeds for SSDs has overcome slow writ-
ing speed. We show SSDs are promising for OLAP cube
processing because DBMS physical operators are generally
read intensive, with a lesser emphasis on writing.

2. DEFINITIONS
We compute aggregations a fact table F with n records

having d cube dimensions [4], and e measure attributes,
where D = {D1, . . . , Dd} and E = {E1, . . . , Ee}. The
lattice is a mathematical structure that represents all sub-
sets of dimensions and their containment with each other.
The size of the lattice depends on d and it is computed as∏

1≤p≤d
cp, where cp is the cardinality of dimension p. Data

values stored within the nodes inside the lattice areobtained
from the measure attributes. We call each subset of dimen-
sions a lattice node, which can be further divided into lattice
groups, each of which represents one specific combination of
values for those dimensions.

3. CUBE PROCESSING ON SSDS
In this section, we will explain some operations within

a database, which features of the storage device they uti-
lize, and provide a comparison between solid state drives
and hard drives. We first explain some basic database op-
erations (Insert, Table Scan, Join, and Group-By) that are
vital to fast OLAP processing. Then, we will analyze how
SSD technology affects OLAP operations, such as slicing and
pivoting. Next, we will show an optimization that affects
SSDs in a different way than HDs. Then, we will analyze
whether these storage drives will affect the execution speed
of User-Defined Functions (UDFs) [1, 8]. Finally, we will
analyze how SSD technology affects cube exploration oper-
ations, such as slicing and pivoting.

We separate OLAP cube operations into two main cate-
gories: generation and exploration. In the cube generation
phase, entire or partial OLAP cubes are created through ag-



gregations. This phase involves the traversal of the entire
or a part of the dimensional lattice. In the cube exploration
phase, database operations involve retrieving subgroups or
subnodes from cubes that have already been computed.

In terms of the storage drives, we consider read speed to
be the speed at which the DBMS is able to retrieve blocks of
data from the storage drive. At the same time, write speed
involves the speed at which the DBMS is able to write blocks
of data to the storage drive. Since we are working on a naive
DBMS, we do not assume either sequential or random data
blocks.

3.1 Cube Generation with Queries
Since we are only using a DBMS, the generation phase

must be entirely composed of SQL queries. One method
of accomplish this is by performing a Group-By statement
on each combination of the dimensions. These results are
then inserted into a final table that holds all computed val-
ues of the OLAP cube. Since one aggregation is performed
per combination of dimensions, we would need to perform
2d aggregations followed by an equal number of Insert state-
ments [9]. This method combines the best and worst aspects
of a solid state drive. The aggregations involve mostly read
speed, which is the best feature of a SSD. However, the insert
portion involves many small writes, which is the worst situ-
ation for a SSD. When comparing the best with the worst,
we find that SSDs still should hold a small advantage over
HDs.

3.2 Cube Generation with CUBE Operator
Another approach to cube generation lies with the CUBE

operator, a built-in routine that helps calculate OLAP cubes
giving the dimensions as input. For CUBE operations, most
computations are performed in main memory, which greatly
improves the performance of cube generation. However,
while the CUBE operator definitely helps performance, it
does not utilize the benefits of a solid state drive because of
two main reasons: (1) most of the execution time is spent
in memory processing. As a result, this portion of the ex-
ecution is independent of the storage device. (2) the entire
operation only requires one table scan and one large write.
Comparing SSDs and HDDs, this approach should have sim-
ilar results on both because the CUBE operator does not
rely much on the read/write speeds of the storage device.
In addition, the CUBE operator is not available in all com-
mercial DBMSs, making portability problematic. This is an
example of a query involving the CUBE operation on three
dimensions of the TPC-H Orders table:

SELECT O_ORDERSTATUS, O_SHIPPRIORITY, O_ORDERPRIORITY

,MAX(O_TOTALPRICE)

FROM TPCH_ORDERS

GROUP BY O_ORDERSTATUS, O_SHIPPRIORITY, O_ORDERPRIORITY

WITH CUBE;

3.3 Optimization of Cube Generation
For both cube generation approaches mentioned above,

the advantage of a solid state drive are not exploited. In
general, any queries involving solid state drives should focus
on its ability to access data at a fast rate while avoiding
writes as much as possible. Should writes not be avoidable,
then it is better to write a large amount of data at once
as opposed to writing smaller chunks many times. Thus,
our goal for optimizing cube generation is to minimize the
number of writes while maximizing the number of reads.

We found that the query operation UNION ALL can help
optimize OLAP cube generation in solid state drives by do-
ing exactly what is mentioned before. UNION ALL allows
several SELECT statements to be stacked together, and,
when combined with an Insert statement, allows for the in-
formation from several SELECTs to be grouped and written
at the same time. In addition to this, an Insert statement of
several Select statements with union is faster than obtain-
ing the same result using several Inserts. This is due to the
addition of an overhead for every query statement that is
processed by the database. For example, if we compare one
hundred Insert statements with one Insert statement con-
taining one hundred unions, then the latter would be faster
because it only involves one overhead as opposed to one hun-
dred.

Due to the diminishing of overheads, lattice generation us-
ing union statements instead of multiple INSERT-SELECT
statements should result in an improvement regardless of
the type of storage device that is being used. However, hav-
ing stated this, this optimization should have a much higher
effect on solid state drives than on hard drives. The ratio-
nale is that by reducing overhead and collecting multiple
small writes into one large write, we are able to diminish
the negativity caused by SSDs slow write speed. If we use
the union operation to combine all the Select statements of
a cube generation, then we have a total of 2d aggregations
with only one Insert statement. While this INSERT will
contain many records, a solid state drive is able to handle
this situation better than 2d INSERTs. In addition, UNION
ALL is a standard SQL statement that is portable among
DBMSs.

3.4 Cube Generation with UDFs
In our previous research, we showed that OLAP opera-

tions could be efficiently processed using UDFs [1]. For this
paper, we also analyzed the effect of solid state drives on
the speed of the UDFs. This situation is not as clear cut as
its SQL counterparts. For the algorithm used in the UDF,
as the dataset is scanned, the dimensional lattice is held in
main memory. Once the dataset has been scanned once, the
lattice is complete and then written to the storage device.
Since the read speed within a UDF is often very fast, the
bottlenecks for the UDF are the main memory speed and
the write speed for storing the final results. Which of these
two speeds are more important to the final execution times
depends on on the number of dimensions in the dataset. If
the dimensionality is low, then the main memory speed com-
prises most of the execution time. This is due to the fact that
low dimensionality datasets do not create large dimensional
lattices, which means there will not be much data to be
written to disk. In this case, the storage devices would not
have a large influence on the final execution time since we
consider all other computer parts, including main memory,
to the same between the SSD and the HD. As the dimen-
sionality increases, the size of the final lattice also increses,
causing more data to be written to disk. As a result, when
the dimensionality of the dataset is higher (12-15 dimen-
sions), the write speed of the disk becomes more important
than the main memory speed. In these situations, the SSD
would not perform as well as the HDD because of its slower
write speed.

3.5 Cube Exploration



OLAP exploration techniques assists the user in travers-
ing the OLAP cube and extract specific information from a
larger set of data. This is one of the perfect situations for
solid state drives because these techniques mostly involve
many reads with only a few writes. In these sets of opera-
tions, we assume that the entire or partial lattice has been
computed. Thus, in order to obtain results, the query needs
only to return the appropriate tuples.

An example of the an exploration technique is slicing and
dicing, which allow for retrieval of certain groups from the
OLAP cube. A slicing of the cube in question involves the
removal of a dimension while dicing generally involves re-
moving two or more dimensions. When translated to SQL,
these can be represented by one or more Select statements
with predicates that constraint the amount of data returned.
More specifically, the predicates and columns returned re-
flects the dimensions that are sought by the user. Since we
have explained that Select statements are faster in SSD than
HD, we can also predict that the solid state drive will also
out-perform the hard drive in these exploration techniques.

Additional techniques such as pivoting can also be rep-
resented by sets of Select statements. One of the methods
involves the use of CASE statements within the SQL query
to facilitate the pivoting. Each of these statements would
represent one column of the final table. Though this oper-
ation is more complex that slicing and requires more writes
than a retrieval of groups, the total number of reads still far
exceeds the amount of writes. As such the fast read speed of
a solid state drive allows this storage device to excel beyond
the performance that a normal hard drive can attain.

4. EXPERIMENTAL RESULTS
We conducted our experiments with a commercial DBMS

installed in a server with 2.2GHz CPU and 1GB of RAM. In
the following subsections, we will present experiments that
will compare the performance of a Seagate 160GB magnetic
Hard Drive and a Patriot 64GB Solid State Drive.

4.1 Large Input Table
We used a large table to compare the speed of an HDD

versus an SSD. Thus our fact table is a pre-processed version
of the ORDERS table from the TPC-H benchmark database,
created with default parameters (scale factor 1). We used
total price attribute as the measure attribute and the re-
maining columns as dimensions. In addition, we also pro-
cessed the date attribute in order to increase the number of
dimensions. As a result, our final TPC-H ORDERS table
had the following characteristics: n=1.5 million, d=9, and
e=1. Finally, we also used the TPCH-CUSTOMER table as
a referenced dimension table to compute joins.

4.2 OLAP Cube Generation
We first conducted experiments on cube generation us-

ing the following three approaches: (1) Multiple Individual
Aggregations, (2) CUBE operator, and (3) Merging Aggre-
gations using UNION ALL.

4.2.1 Multiple Aggregation Queries
Table 1 shows the time it takes to create the entire lattice

when the number of dimensions is increased for different size
datasets. These experiments involve the writing of the final
cube into a larger result table. However, notice that the
large writes do not seem to affect the SSD as much as in our

Table 1: Times for Lattice Generation.
d HDD SSD HDD SSD HDD SSD

n=2M n=2M n=4M n=4M n=8M n=8M
1 3.1 2.2 11.6 6.0 14.0 12.3
2 7.9 7.1 24.6 18.9 50.0 38.3
3 17.8 16.9 50.8 44.9 94.2 90.9
4 38.7 37.5 105.1 98.3 202.5 197.5
5 81.9 81.0 216.1 208.6 423.9 415.7
6 172.7 170.5 445.9 436.1 874.9 862.2
7 365.3 361.0 926.8 912.2 1812.2 1785.4
8 804.9 797.6 2046.4 2027.5 3883.1 3829.4

Table 2: Performance of CUBE Varying d.
d HDD SSD HDD SSD HDD SSD

n=2M n=2M n=4M n=4M n=8M n=8M
1 2.6 0.9 5.6 1.8 13.5 4.0
2 3.1 2.6 6.5 5.0 13.6 10.1
3 3.6 2.9 7.2 5.9 13.7 11.9
4 4.1 3.4 7.6 6.9 15.2 13.8
5 4.4 4.0 8.2 7.9 16.7 15.8
6 4.8 4.4 9.8 9.4 19.2 18.9
7 5.8 5.4 10.6 10.4 20.9 20.7
8 11.2 11.1 16.7 16.4 27.6 27.3
9 18.4 18.2 24.6 24.1 37.0 36.5

experiment on Insert statements. This is because the writes
that are involved in this experiment involves a few thousand
records as opposed to the millions that we had previously
tested. We can also observe that HDDs are not as fast as
SSDs for all the dimensions that we ran tests on. We can
see that solid state drives average over 15% faster than hard
drives. The reasoning behind such improvements is that in
the generation of a full lattice, the most common operation
that was used is aggregations, or Group-By statements. As
the dimensionality increases, there are more groups to write
to disk, causing the SSD performance to decrease until it is
nearly equal to that of the HD.

4.2.2 CUBE Operator
We now test lattice generation with a built-in function,

CUBE, that, when given a set of dimensions, will calculate
all supersets of the dimensions. While this function is re-
stricted to a maximum number of dimensions of 10, we will
not be testing up to that limit in our experiments. Instead,
we used CUBE to generate the full OLAP cube for both hard
drives and solid state drives. We also varied two parame-
ters: the number of records and the number of dimensions.
Table 2 shows that solid state drives are faster regardless of
an increase in the number of dimensions. This trend also
continues when the number of records is varied. The per-
formance gap between the SSD and the HDD is not large
because a majority of the execution time depends on CPU
and memory speed. In addition, only one table scan and one
Insert step is used by this operator. As a result, the SSD

Table 3: Performance of CUBE Varying n.
n HDD SSD HDD SSD HDD SSD

d=1 d=1 d=4 d=4 d=9 d=9
500K 0.9 0.3 1.0 0.9 13.5 13.1
1M 1.8 0.5 1.9 1.8 15.1 14.2
2M 3.0 0.9 3.6 3.4 18.4 17.9
4M 6.3 1.6 7.5 6.9 24.6 24.0
8M 14.2 3.1 14.8 13.7 37.6 36.1



Table 4: Breakdown of UDF Execution Times Vary-

ing n. n=1.5M.
n HDD SSD HDD SSD

d=4 d=4 d=9 d=9
1M 1.2 1.1 83.4 83.5
2M 2.2 1.8 84.2 84.2
4M 4.1 3.2 86.8 85.4
8M 7.2 5.9 89.1 88.1

Table 5: Breakdown of UDF Execution Times Vary-

ing d. n=1.5M.
d Read Dataset Generate Lattice Write to Disk

(HD/SSD) (sec) (HD/SSD) (sec) (HD/SSD) (sec)
2 0.4 / 0.4 0.2 / 0.2 0.6 / 0.6
4 0.7 / 0.7 0.5 / 0.4 1.2 / 1.1
6 5.4 / 5.2 4.9 / 4.6 10.3 / 9.8
8 21.8 / 19.6 19.9 / 21.6 41.7 / 41.2
9 35.9 / 32.1 47.5 / 51.4 83.4 / 83.5

is unable to use its fast read speed to gain an advantage on
the HD.

4.2.3 Merging Aggregations with UNION
In this section, we are performed a similar set of exper-

iments as in Section 4.2.1. The only difference is that we
applied our optimization of using UNION ALL to merge all
the small Insert/aggregation statements into one large Insert
statement with many aggregations. Figure 1(1) and Figure
1(2) show graphs of the results as we varied both d and n,
respectively. We can see that while the SSD and HDD both
benefited from this optimization, the SSD was more affected.
The reasoning behind this separation lies in the faster ac-
cess speed of a solid state drive as opposed to a hard drive.
By combining all inserts into one, we are lessening the effect
of SSDŠs low write speed while enhancing the effects of its
faster read speed.

4.2.4 Cube generation with UDFs
In this section of the experiments, we show the execution

times of processing OLAP queries using UDFs. Figure 2
shows these execution times when varying d and n. The re-
sults that we obtained are as expected since the difference
between the SSD and HDD are fairly parallel for increas-
ing number of tuples, but their paths cross for increasing
dimensionality.

In this section of the experiments, we show the execu-
tion times of processing OLAP queries using UDFs. Table
4 shows these execution times when varying d and n. The
results that we obtained are as expected since the difference
between the SSD and HDD are fairly parallel for increas-
ing number of tuples, but their paths cross for increasing
dimensionality. The increasing n does not affect the dimen-
sionality and, thus, does not affect the size of the lattice
stored in memory. We can see that for low dimensionali-
ties, the SSD gradually becomes faster than HDD because
at such dimensionality, the memory usage and times are not
as important as the time to scan the entire table. However,
as the dimensionality increases, the time to create and up-
date the lattice begins to become a larger percentage of the
overall execution time. As a result, the table scan is not as
important, and the two storage drives are virtually parallel
in their performance.

Table 6: Times for Slicing from Lattice. d=9. Total

number of groups=860K
Query # Groups % All HDD SSD % Diff

Q1 154668 18.0% 11.6 4.5 61.2%
Q2 752 0.1% 3.1 0.6 80.6%
Q3 476 0.1% 3.1 0.6 80.6%
Q4 16 0.0% 3.0 0.6 80.0%

Figure 3: Performance of Pivoting Varying n.

For the increasing dimensionality experiments, Table 5,
the trend was less stable. We found that the overall execu-
tion times for the SSD and HDD are quite similar to one
another. For low dimensionality, the time to generate the
lattice overshadows the time to write the results to disk. Due
to this situation, the SSD, with its faster read speed, enjoys
slightly better performance than the HD, with its slightly
faster write speed. However, as dimensionality increases,
more and more data are written to disk, causing the write
speed to gradually become more important than the read
speed.

4.3 OLAP Cube Exploration
The second portion of OLAP processing involves the ex-

ploration and transformation of the computed OLAP cube.
In the following two sections, we will compare the perfor-
mance of solid state drives to hard drives in terms of slicing
and dicing and the pivoting of the final results. Note that
these experiments assume that the OLAP cube has already
been computed and stored in a large result table.

4.3.1 Slicing and Dicing
Slicing and dicing involves the retrieval of different sets

of dimensions from the OLAP cube. Table 6 shows that
solid state drives are much faster than hard drives for the
retrieval of slices of the data cube. The reasoning behind
these results lies in the face that the SSD holds a large ad-
vantage over the HDD when it comes to read speed. Since
slicing or dicing can be simplified to a single or multiple
Select statements that extract previously calculated values,
access speed is more important than write speed. Even if
writing to disk is involved, the large advantage in reading
time helps the solid state drive consistently stay ahead of
the hard drive.

4.3.2 Pivoting
Another intricate part of OLAP operations is the pivoting

command. With this, the user is able to transform a table
by making rows into columns and vice versa. This technique



(1) Cube Generation Using UNION Varying d. (2) Cube Generation Using UNION Varying n.

Figure 1: Performance of OLAP with UNION ALL.

(1) Cube Generation Using UDFs Varying d. (2) Cube Generation Using UDFs Varying n.

Figure 2: Performance of OLAP using UDFs.

Figure 4: Performance of Pivoting Varying Cardi-

nality.

is somewhat in the middle of retrieval and full cube compu-
tation when it comes to performance. A pivot does not lean
heavily towards writes or reads. Instead, pivot requires a
combination of the two in order to obtain the results. We
conducted experiments that varied both in the n and in the
cardinality of the column to be pivoted. Figure 3 and Figure
4 shows that solid state drives performed better than hard
drives in both situations. These results can be explained by
the fact that the speed of pivoting is based more on data
access speed and memory speed than writing, which occurs
only at the end. Since memory speed is the same for both
SSD and HD, the main difference falls on access speed, which
is dominated by the solid state drive.

4.4 Discussion
The purpose of this paper is to answer the question of

whether it is beneficial to perform OLAP processing on a
solid state drive. Table 7 provides a summary of some of
the experiments from this paper. If we only observe the
performance aspects of the comparison, then it is definitely
worth it to switch out traditional hard drives for solid state
drives with regard to the faster OLAP query execution. Our
experiments have shown that for a majority of the OLAP
operations, the SSD performed far better than the HD, es-
pecially when optimization is applied. Additionally, even
though SSDs have a limited number of writes, they are still
far more stable than traditional hard drives. If a SSD is
dropped onto the floor, the user can be sure that no parts
had been jolted around.

On the other hand, when we consider the costs of pur-
chasing a solid state drive as opposed to a magnetic hard
drive, there is a large different. The average SSD often costs
nearly ten times more than a similar HD. The question be-
comes one of whether the improvements in performance can
offset the additional costs of switching to solid state drives.
While the answer is quite hazy and depends largely on the
financial status of the organization, the future should bring
a more concrete answer. As we observe the trends for SSDs,
we can see that, in the past few years, these storage drives
have been rapidly dropping in price. As with many other
technological devices, the longer we wait, the less expensive
the device. Additionally, the read and write speeds of solid
state drives are continuing to increase at an impressive rate.
As a result, it is not far fetched to believe that within a few
years, solid state drive technology will have developed to a
point where they can outperform hard drives on both read
and write speeds. If we couple this with lowering costs, then
in the near future, we know that the benefits of the solid



state drive might overcome the shrinking cost difference be-
tween these two types of storage devices.

5. RELATED WORK
For this paper, we analyze the feasibility of performing

OLAP operations using solid state drives. To the best of
our knowledge, no one has conducted such an analysis. The
authors of [7] consider flash drives to have a large poten-
tial to be used in database servers. Nevertheless, recent
work regarding solid state technology and the DBMS has
focused on altering the basic architecture or algorithms of
the database. A 3-level memory system is proposed using
flash as the middle layer in [3]. The authors in [10] propose a
new join algorithm to be used in a PAX-based system. Sim-
ilarly, [7] proposes changing the current database algorithms
to better utilize solid state drives. Also, in [6], the author
looks into the possibility of using SSD for enterprise DBMSs.
However, the authors only looked at how the SSD would as-
sist in low-level tasks, such as transaction logging, and not
at how it would affect the actual SQL performance. In con-
tract, our research is conducted on a commercial database
and looks into utilizing tools that are already present, with-
out changing any algorithms.

On the OLAP side, little research has been published re-
garding the improvement of performance when using solid
state drives. The focus has been in developing new data
structures or pushing more calculations into main memory.
For example, the authors of [11] proposes the use of a con-
densed version of an OLAP cube that utilizes prefix and
suffix redundancy reduction to generate smaller lattices. On
the main memory side, our previous work in [1] uses user-
defined functions to improve the performance of cube gen-
eration. While this paper has the same goals of improving
performance, we analyze it from the point of altering hard-
ware instead of algorithms.

6. CONCLUSIONS
In this paper, we showed that the SSD is able to perform

at or above that of the HDD for complex OLAP operations
such as cube generation, slicing, and pivoting. We showed
that in cases where the number of reads and writes are simi-
lar to each other, the SSD is not able to outperform the HD
by as much as other situations. However, we also showed
that there are methods by which one can tip the balance in
favor of SSD by minimizing small random writes and maxi-
mizing reads. Both storage devices performed equally well in
terms of lattice generation without optimizations, but once
the optimizations were applied, the SSD was much better
than the HD. We also observed that solid state drives do not
have a large impact on user-defined functions. However, an
interesting situation was discovered in which the execution
time of a fully optimized lattice generation performed in a
SSD with SQL was actually faster than performing the same
generation using a UDF. Finally, we provided a discussion
on the benefits of using solid state drives for OLAP oper-
ations as opposed to traditional magnetic hard drives. We
concluded that at the current time, the decision for which
storage device is better becomes more of a business decision
than a computer science decision.

For future work, we want to study other kinds of solid
state drives. We want to conduct a more thorough analysis
of storage strategies and compare their impact on perfor-

mance. We also want to explore more SQL query optimiza-
tions that take advantage of how SSDs read and write data
blocks. Finally, we want to repeat our experimental analy-
sis on other DBMSs to verify our findings and understand
general trends.

7. REFERENCES
[1] Z. Chen and C. Ordonez. Efficient OLAP with UDFs.

In Proc. ACM DOLAP Workshop, pages 41–48, 2008.

[2] C. Garcia-Alvarado, Z. Chen, and C. Ordonez. OLAP
with UDFs in digital libraries. In Proc. ACM CIKM
Conference, pages 2073–2074, 2009.

[3] G. Graefe. The five-minute rule twenty years later,
and how flash memory changes the rule. In Proc.
ACM DaMoN Workshop, 2007.

[4] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh.
Data cube: A relational aggregation operator
generalizing group-by, cross-tab and sub-total. In
ICDE Conference, pages 152–159, 1996.

[5] C. Hwang. Nanotechnology enables a new memory
growth model. Proceedings of the IEEE,
91(11):1765–1771, 2003.

[6] S. Lee, B. Moon, C. Park, J. Kim, and S. Kim. A case
for flash memory SSD in enterprise database
applications. In Proc. ACM SIGMOD Conference,
pages 1075–1086, 2008.

[7] S.W. Lee and B. Moon. Design of flash-based DBMS:
an in-page logging approach. In Proc. ACM SIGMOD
Conference, pages 55–66. ACM, 2007.

[8] C. Ordonez. Statistical model computation with
UDFs. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[9] C. Ordonez and Z. Chen. Evaluating statistical tests
on OLAP cubes to compare degree of disease. IEEE
Transactions on Information Technology in
Biomedicine (TITB), 13(5):756–765, 2009.

[10] M. Shah, S. Harizopoulos, J. Wiener, and G. Graefe.
Fast scans and joins using flash drives. In Proc. ACM
DaMoN Workshop, 2008.

[11] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and
Y. Kotidis. Dwarf: shrinking the petacube. In ACM
SIGMOD Conference, pages 464–475, 2002.


