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ABSTRACT
Relational DBMSs remain the main data management tech-
nology, despite the big data analytics and no-SQL waves. On
the other hand, for data analytics in a broad sense, there are
plenty of non-DBMS tools including statistical languages,
matrix packages, generic data mining programs and large-
scale parallel systems, being the main technology for big
data analytics. Such large-scale systems are mostly based on
the Hadoop distributed file system and MapReduce. Thus
it would seem a DBMS is not a good technology to analyze
big data, going beyond SQL queries, acting just as a reli-
able and fast data repository. In this survey, we argue that
is not the case, explaining important research that has en-
abled analytics on large databases inside a DBMS. However,
we also argue DBMSs cannot compete with parallel systems
like MapReduce to analyze web-scale text data. Therefore,
each technology will keep influencing each other. We con-
clude with a proposal of long-term research issues, consider-
ing the “big data analytics” trend.

1. INTRODUCTION
DBMS are capable of efficiently updating, storing and

querying large tables. Relational DBMSs have been the
dominating technology to manage and query structured data.
Nowadays there is an explosion of data on the Internet (big
data) represented by web pages, documents, diverse files and
so on. In both worlds the main challenge is to efficiently an-
alyze large data sets. Research on analyzing large data sets
is extensive, and has proposed many efficient algorithms,
data structures, and optimizations to analyze large data
sets. Data mining is concerned with knowledge discovery,
represented by models and patterns in large databases. The
position of this paper is that, despite existing progress, it is
necessary to study the integration of statistical methods and
matrix computations with database systems in more depth.
We present a survey of system infrastructure, programming
mechanisms, algorithms and optimizations that enable ana-
lytics on large data sets inside a DBMS, avoiding exporting
data outside.

There is significant progress on efficient data mining al-
gorithms, but most of them work outside a DBMS on flat
files. Previous research has shown it is slow to move large
volumes of data due to double I/O, change of file format
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and network speed [24]. Therefore, exporting data sets is a
bottleneck to analyze large data sets outside a DBMS [24].
The data set storage layout has a close relationship to algo-
rithm performance. Reducing the number of passes over a
large data set resident on secondary storage, developing in-
cremental algorithms with faster convergence, sampling for
approximation and creating efficient data structures for in-
dexing or summarization remain fundamental algorithmic
optimizations. DBMSs [18] and MapReduce [35] are cur-
rently two competing technologies for data mining on large
data sets, both based on automatic data parallelism on a
shared-nothing architecture. DBMSs can efficiently process
transactions and SQL queries on relational tables. There
exist parallel DBMSs for data warehousing and large-scale
analytic applications, but they are difficult to expand and
they are expensive. On the other hand, MapReduce au-
tomatically distributes analytic operations across a cluster
of computers and it can work on top of a distributed file
system, providing great flexibility, efficiency, expandability
and low cost. Nevertheless, we will explain why there are
many benefits for the end-user when performing data min-
ing inside a DBMS: querying, reducing data inconsistency,
security, fault-tolerance, but mostly avoiding the export bot-
tleneck if data originates from an OLTP database or a data
warehouse.

The problem of integrating statistical and machine learn-
ing methods and models with a DBMS has received moder-
ate attention [18, 4, 25, 32, 33, 24]. In general, such prob-
lem is considered difficult due to a relational DBMS archi-
tecture, the matrix-oriented nature of statistical techniques,
lack of access to the DBMS source code, and the compre-
hensive set of techniques already available in mathematical
languages like Matlab. statistical languages like R, and nu-
merical libraries like LAPACK. As a consequence, in modern
database environments, users generally export data sets to a
statistical or parallel system, iteratively build several mod-
els outside the DBMS, and finally deploy the best model.
In practice, exploratory cube analysis does most of query
processing inside the DBMS, but the computation of statis-
tical models (e.g. regression, PCA, decision trees, Bayesian
classifiers, neural nets) and pattern search (e.g. association
rules) is more commonly performed outside, despite the fact
that DBMSs indeed offer some data mining algorithms. The
importance of pushing statistical and data mining computa-
tions into a DBMS is recognized in [8]; this work emphasizes
exporting large tables outside the DBMS is a bottleneck and
it identifies SQL queries and MapReduce [30] as two com-
plementary mechanisms to analyze large data sets.



2. PRELIMINARIES

2.1 Definitions
The goal is to analyze a data set X with machine learning

and statistical techniques to compute a model or find pat-
terns (in the case of association rules). In general, X has n

records and d attributes (numeric or categorical). In many
cases, all d attributes are numeric and then X becomes a set
of n points in d-dimensional space. For predictive models,
X has an additional “target” attribute. This attribute can
be a numeric dimension Y (used for regression) or a cate-
gorical discrete attribute G (used for classification). In the
case of cubes, the data set is a fact table F with d discrete
attributes (called dimensions) to aggregate by group and m

numeric attributes called measures.
Machine learning and statistical techniques make exten-

sive use of vectors and matrices. As mentioned above, n is
the total number of records (observations, points), d is the
total number of dimensions (attributes, features) and k is a
common additional size specified in models (e.g. k clusters,
k components). Our system uses the following conventions
for subscripts: i = 1 . . . n, h = 1 . . . d, j = 1 . . . k.

In the relational DBMS the data set X is stored on a ta-
ble with an additional column i identifying the point (e.g.
a customer id), which is not used for statistical purposes.
This leads to table X being defined as X(i, X1, X2, . . . , Xd)
with primary key i. When there is a predicted numeric
dimension Y , X is defined as X(i, X1, X2, . . . , Xd, Y ) and
when there is a categorical attribute G, X is defined as
X(i, X1, X2, . . . , Xd, G). Statistical models are stored in ta-
bles as well. On the other hand, the fact table has the generic
definition F (i, D1, D2, . . . , Dd, A1, A2, . . . , Am).

2.2 Big Data Analytics Overview
We now give an overview of the entire analytic process

going from data preparation to actually deploying and man-
aging models. Each task is explained below.

In general, the first task is to process, transform and clean
several tables to build a data set for analysis. Data trans-
formation involves denormalization (pivoting [9], horizontal
aggregations [27, 22]), binning (discretizing), sampling [7,
6], rescaling and null value imputation, among other trans-
formations. The primary goal of data transformation is to
create clean data sets that can be used as input for a data
mining algorithm.

After a data set has been created, the next task is to ex-
plore its statistical properties. Exploratory analysis includes
ad-hoc queries (i.e., each query leading to a further query),
data quality assessment [11, 26] (i.e. to detect and solve
data inconsistency and missing information), OLAP cubes,
and spreadsheets [38] (which provide an interactive environ-
ment to define formulas among data elements). In general,
no models are computed. Thus exploratory analysis reveals
the “what”, “where” and “when”, but not ”why”.

The last task is to compute statistical models or discover
patterns hidden in the data set. Statistical and machine
learning models include both descriptive and predictive mod-
els such as regression, clustering classification, PCA, statis-
tical tests, time series and so on. On the other hand, pat-
tern search is represented by cubes [15], association rules
[2], and their generalizations, like sequences and graphs. Fi-
nally, model management is a subtask of model computa-
tion, which includes scoring (model deployment, inference

[17]), model exchange (with other tools) and versioning (i.e.,
a history of models).

3. SYSTEM INFRASTRUCTURE

3.1 Storage and Indexing
Most systems use three fundamental data set storage lay-

outs, which influence I/O efficiency:

• Row storage: This is the most common storage lay-
out, in which X is stored on a tabular format which
has n rows, each having d columns. Several rows are
generally stored together in a single block.

• Column storage: This is a novel layout tailored to an-
alytical query processing [36]. In this case the data set
is stored by column across several blocks, which en-
ables efficient projection of subsets of columns. There
is separate storage for the d columns, each having the
primary key (or address) of each record and the cor-
responding column value. In the transaction layout,
for efficiency purposes, only a subset of dimensions for
each record is actually stored (e.g. excluding binary
dimensions equal to zero).

• Key-value storage: This layout is the so-called trans-
action data set, stored on a normalized table with one
attribute value per row and up to dn rows.

Three row storage layouts stand out: a standard horizon-
tal layout having one row per input point, a long pivoted
table with one attribute value per row or a transposed ta-
ble having records as columns. Each layout provides trade-
offs among I/O speed, space and programming flexibility,
depending on the required mathematical computation, data
set dimensionality and the existence of null/zero values. Col-
umn stores provide limited flexibility in layouts. On the
other hand, a vertical row layout is the most common for
key-value stores like MapReduce [35], but column stores are
being explored.

Storage in DBMSs is built around blocks of rows or columns
of simple data types (i.e. numbers and strings) with similar
size. On the other hand, key-value stores are designed to
store strings of highly variable size. There has been a surge
on array database systems, like SciDB [5] and ArrayStore
[34], but with different storage and query evaluation mech-
anisms from SQL. Such systems are making some impact
on the academic world, complementing Matlab and R, but
their future impact is uncertain for corporate databases.

3.2 Parallel Processing
Currently, the best parallel architecture for DBMSs and

cloud systems is shared-nothing, having N processing units.
These processing units can be N threads on a single CPU
server (including multicore CPUs) or N physical nodes (each
one with its own RAM and secondary storage). In row stores
tables are horizontally partitioned into sets of rows for par-
allel processing. Thus there exist sequential and parallel
versions of database physical operators: table scan, external
merge sort and joins. Similarly, in column stores columns are
partitioned into blocks, which are in turn distributed among
processing units. MapReduce [12, 35] trails behind DBMSs
to evaluate such parallel physical operators on equivalent
hardware, although the gap gradually shrinks with RAM-
based processing [40].



3.3 Programming Alternatives
We distinguish three solutions to program data mining al-

gorithms to analyze large data sets stored on a DBMS: (1)
with SQL queries and UDFs without modifying the DBMS
source code; (2) with an efficient systems language like C++
extending internal DBMS source code. (3) with program-
ming languages in external systems, including parallel sys-
tems. The first alternative allows processing data ”in-situ”,
avoiding exports outside the DBMS. The second one is fea-
sible for open-source DBMSs and developers of industrial
DBMSs. The last alternative is the most flexible, allowing
many customized optimizations, has shortest development
time and therefore the most popular.

Performing data mining with SQL queries and UDFs has
received moderate attention. A major SQL limitation is
its lack of ability to manipulate non-tabular data structures
requiring pointer manipulation. When data mining com-
putations are evaluated with SQL queries a program auto-
matically creates queries combining joins, aggregations and
mathematical expressions. The methods to generate SQL
code are based on the input data set, the algorithm param-
eters and tuning query optimizations. SQL code genera-
tion exploits relational query optimizations including forc-
ing hash-joins [25], clustered storage for aggregation [25,
24], denormalization to avoid joins and reduce I/O cost
[23], pushing aggregation before joins to compress tables and
balancing row distribution among processing units. This
alternative covers the scenario where most processing on
large tables is done inside the DBMS, but partial process-
ing is done on small tables exported outside the DBMS [32]
with an external mathematical library or statistical pro-
gram. Given DBMS overhead and SQL lack of flexibility to
develop algorithmic optimizations SQL is generally slower
than a systems language like C++. But as hardware ac-
celerates and memory grows such gap in speed becomes less
important. SQL has been enriched with object-relational ex-
tensions like User-Defined Functions (UDFs), stored proce-
dures and User-Defined Types, with aggregate UDFs being
the most powerful for data mining. SQL extensibility mecha-
nisms include User-Defined Functions (UDFs), stored proce-
dures, and table-valued functions UDFs represent a compro-
mise between modifying the DBMS source code, extending
SQL with new syntax and generating SQL code. UDFs rep-
resent an important extensibility feature, now widely avail-
able (although not standardized) in most DBMSs. UDFs
include scalar, aggregate and table functions with aggregate
UDFs being the most powerful, providing a simplified par-
allel programming interface. UDFs can take full advantage
of the DBMS processing power when running in the same
address space as the query optimizer (i.e. unfenced [32] or
unprotected mode). UDFs do not increase the computation
power of SQL, but they make programming easier and many
optimizations feasible since they are basically C code frag-
ments, which allow pushing more mathematical processing
into main memory. However, query optimization techniques
need to be adapted because UDFs work in main memory,
parallel execution needs customized optimizations UDFs are
fed by table scan operators, UDFs cannot call relational op-
erators and cost functions are different. Data structures,
incremental computations and matrix operations are cer-
tainly difficult to program with SQL and UDFs due to the
relational DBMS architecture, limited flexibility of the SQL
language and DBMS subsystems overhead, but they can be

optimized and they can achieve a tight integration with the
DBMS. SQL can achieve linear scalability on data set size
and dimensionality to compute several models. It has been
shown that SQL is somewhat slower (not an order of mag-
nitude slower) than C++ (or similar language) [23], with
relative performance getting better as data set size increases
(because overhead decreases). There is research on adapt-
ing and optimizing numerical methods to work with large
disk-resident matrices [29, 39], but only a few work in the
DBMS realm [24, 18].

Developing fast algorithms in C++ or Java was the most
popular alternative in the past. This was no coincidence
as a high-level programming language provides freedom to
manipulate RAM and minimize I/O. Modifying and extend-
ing the DBMS C (or C++) source code (open source code or
proprietary), yields algorithms tightly coupled to the DBMS.
This alternative has been the most common for commercial
DBMSs and it includes extending SQL with new syntax.
This alternative includes low-level APIs to directly access
tables through the DBMS file system (cursors [32], blocks
of records with OLEDB [21]). This alternative provides fast
processing, but also has disadvantages. Given the DBMS
complex architecture and lack of access to DBMS source
code it is difficult for end users and researchers to incorpo-
rate new algorithms or change existing ones. Nowadays, this
alternative is not popular for parallel processing.

The most popular alternative to process large data sets
in parallel outside a DBMS is currently MapReduce [35],
helped by the fact that the Hadoop file system is open-
source and robust. For the most part a cloud computing
model is the norm, where the cloud offers hardware and soft-
ware as service. Even though some DBMSs have achieved
some level of integration between SQL and MapReduce (e.g.,
Greenplum [18], HadoopDB [1], Teradata AsterData [14]),
in most cases data must be moved from the DBMS storage to
the MapReduce file system. Some recent systems that have
enabled SQL capabilities on top of the distributed Hadoop
file system, integrating some information retrieval capabili-
ties into SQL, include Hive [40], ODYS [37] and AsterixDB
[3]. In statistics and numerical analysis the norm is to de-
velop program in non-systems languages like R, Matlab, SAS
and Fortran, which do not scale to large data sets. Thus
analysts generally split computations between such pack-
ages and MapReduce [10], pushing demanding computations
with heavy I/O on large data sets into MapReduce. In gen-
eral, the integration of mathematical packages like the R
language, Matlab or scientific computing programming lan-
guages remains limited. The RIOT [41] system introduces
a middleware solution to provide transparent I/O in the R
statistical package with large matrices (i.e. the user does
not need to modify R programs to analyze large matrices).
RIOT does address the scalability problem, but outside the
DBMS. Unfortunately, RIOT cannot efficiently analyze data
inside a DBMS.

3.4 Algorithm Design and Optimizations
Efficient algorithms are central on database systems. Their

efficiency depends on the data set layout, iterative behav-
ior, numerical method convergence and how much primary
storage (RAM memory) is available. There are two major
goals: decreasing I/O and accelerating convergence. Most
statistical algorithms have iterative behavior requiring one
or more passes over the data set per iteration [24]. The



most common approach to accelerate an algorithm is to re-
duce the number of passes scanning the large data set, with-
out decreasing (or even increasing) model quality (e.g. log-
likelihood, squared error and node purity. The rationale is
to decrease I/O cost, but also to reduce CPU time. Many
algorithms attempt to reduce the number of passes to one,
processing the data set in sufficiently large blocks. Neverthe-
less, additional iterations on the entire data set are generally
needed to guarantee convergence to a stable solution. Re-
ducing the number of passes is highly related to incremental
algorithms, which can update the model as more records
(points) are processed. Incremental algorithms with matri-
ces on secondary storage are an important solution. Algo-
rithms updating the model online based on gradient-descent
methods have shown to benefit several common models [18]
and they can be integrated as a UDF into the DBMS ar-
chitecture. Stream processing represents an important vari-
ation of incremental algorithms to the extreme that each
point is analyzed once, or even skipped. Building data set
summaries that preserve its statistical properties is an es-
sential optimization to accelerate convergence. Most algo-
rithms build summaries based on sufficient statistics, most
commonly for the Gaussian and Bernoulli densities. Suffi-
cient statistics have been extended and generalized consid-
ering independence and multiple subsets from the data set,
benefiting a big family of linear models. Data set squash-
ing keeps high order moments (sufficient statistics beyond
power 2) on binned attributes to compress a data set in a
lossy manner; statistical algorithms on squashed data need
to be modified considering weighted points.

Sampling (including randomized algorithms and Monte
Carlo methods) is another acceleration mechanism that can
accelerate processing by computing approximate solutions
(only when an efficient sampling mechanism exists), but
which always requires additional samples (e.g. bootstrap-
ping) or extra passes over the entire data set to reduce ap-
proximation error: skewed probabilistic distributions and
extreme values impact sampling quality. Data structures
tailored to minimize I/O cost using RAM efficiently are an-
other important mechanism. The most common data struc-
tures are balanced trees, tries, followed by hash tables. Trees
are used to index transactions (FP-tree), itemsets (with a
hash-tree combo) or to summarize points.

4. MODELS AND PATTERNS
Research on analyzing big data sets can be broadly clas-

sified into the following categories:

1. Statistical models, which involve matrices, vectors and
histograms. Such models are computed by a combina-
tion of numerical and statistical methods.

2. Patterns, which involve exploratory search on a dis-
crete combinatorial space (cubes, association rules, item-
sets, sequences, graphs). Such patterns are commonly
discovered by search algorithms exploring a lattice or
a graph.

4.1 Models: Supervised and Usupervised
Here we present models in two major groups: unsuper-

vised models (clustering, dimensionality reduction) and su-
pervised models (classification, regression, feature selection,
variable selection).

We start with clustering, one of the most well-known unsu-
pervised data mining techniques. The data set is partitioned
into subsets, so that points in the same subset are similar
to each other. Clustering is commonly used as a building
block for more complex models. Techniques that have been
incorporated internally in a DBMS include K-means cluster-
ing and hierarchical clustering. Scalable K-means can work
incrementally in one pass performing iterations on weighted
points in main memory. This algorithm is also based on
sufficient statistics. The algorithm relies on a low-level di-
rect access to the file system which allows processing the
data set in blocks. SQL has been successfully used to pro-
gram clustering algorithms in SQL, such as K-means [23]
and the more sophisticated EM algorithm [25]. Distance is
the most demanding computation in these algorithms. It
is feasible to develop an incremental version [23] with SQL
queries, that requires a few passes (even two) on the data
set; this approach is somewhat similar to iterated sampling
(bootstrapping), with the basic difference that each record
is visited at least once. UDFs further accelerate distance
computation [24] by avoiding joins altogether. The EM al-
gorithm represents an important maximum likelihood esti-
mation method. Reference [25] represents a first attempt to
program EM clustering (solving a Gaussian mixture prob-
lem) in SQL, proving it was feasible to program a fairly
complex algorithm entirely with SQL code generation. In
[25] several alternatives for distance computation are ex-
plored pivoting the data set and distances to reduce I/O
cost. Mixture parameters are updated with queries com-
bining aggregations and joins. This SQL solution requires
multiple iterations and two passes per iteration. Deriving
incremental algorithms, exploiting sufficient statistics and
accelerating processing for EM with UDFs are open prob-
lems. Subspace clustering is a grid-based approach, which
incorporates several optimizations similar to frequent item-
set mining (discussed below). The data set is binned with
user-defined parameters, which is easily and efficiently ac-
complished with SQL. SQL queries traverse the dimension
lattice in a level-wise manner making one pass of each size.
Acceleration is gained with aggressive pruning of dimension
combinations. PCA, an unsupervised technique, is the most
popular dimensionality reduction method. PCA computa-
tion can be pushed into a DBMS by computing the sufficient
statistics for the correlation matrix with SQL or UDFs in
one table scan. It is possible to solve PCA with a complex
numerical method like SVD entirely in SQL. Such approach
enables fast analysis of very high dimensional data sets (e.g.
microarray data). Moreover, this solution is competitive
with a state of the art statistical system (R package). PCA
has also been solved summarizing the data with an aggregate
UDF and computing SVD with the LAPACK library [28],
giving two orders of magnitude performance improvement.

We now turn our attention to supervised techniques. De-
cision trees is a fundamental technique that recursively par-
tition a data set to induce predictive rules. Sufficient statis-
tics for decision trees are important to reduce number of
passes numeric attributes are binned and row counts per
bin or categorical value are computed. The splitting phase
is generally accelerated using a condensed representation of
the data set. Table-Valued Functions have been exploited
to implement primitive decision tree operations. UDFs im-
plement primitives to perform attribute splits, reducing the
number of passes over the data set; this work also proposes a



prediction join, with new SQL syntax, to score new records.
Reducing the number of passes on the data set to two or
one using SQL mechanisms is an open problem. Exploit-
ing MapReduce [13] to learn an ensemble of decision trees
on large data sets using a cluster of computers is studied
in [30]. This work introduces optimizations to reduce the
number of passes on the data set.

We now discuss regression models, which are popular in
statistics. Sufficient statistics for linear models (including
linear regression) are generalized and implemented as a prim-
itive function using aggregate UDFs, producing a tightly
coupled solution. Basically sufficient statistics for clustering
(as used by K-means) are extended with dimension cross-
products to estimate correlations and covariances. Matrix
equations are mathematically transformed into equivalent
equations based on sufficient statistics as factors. The key
idea is to compute those sufficient statistics in one pass, with
SQL queries or even faster with aggregate UDFs. The equa-
tions solving each model can be efficiently evaluated with a
math library, exporting small matrices whose size indepen-
dent from data set size. Linear regression has been inte-
grated with the DBMS with UDFs, exploiting parallel exe-
cution of the UDF in unfenced mode. Moreover, it is feasible
to perform variable selection exploiting sufficient statistics
[24]. Bayesian statistics are particularly challenging because
MCMC methods require thousands of iterations. Recent re-
search [20] shows it is feasible to accelerate a Gibbs sampler
to select variables in linear regression under a Bayesian ap-
proach, exploiting data summarization. Database systems
have been extended with model-based views in order to man-
age and analyze databases with incomplete or inconsistent
content, to incrementally build regression and interpolation
models, extending SQL with syntax to define model views.

We close discussing Support Vector Machines (SVMs),
which are a mathematically sophisticated classifier. SVMs
achieve a perfect separation of classes in a higher dimen-
sional space, but have quadratic time complexity. Two fun-
damental SVM aspects need to be considered: kernel func-
tions (mapping points to a higher dimensional space) and
solving quadratic programming, a mathematically difficult
problem. For instance, kernel functions have been integrated
with a DBMS [19]. SVMs have been accelerated with hier-
archical clustering and incremental matrix factorization.

4.2 Patterns: Cubes, Itemsets and Graphs
Pattern search is a different problem from statistical mod-

els because algorithms work in a combinatorial manner on
a discrete space. Patterns include cubes, itemsets (associ-
ation rules) [2], as well as their generalization to sequences
(considering an order on items) and graphs. Given their
generality and close relationship to social networks mining
large graphs are currently the most important topic.

Cubes represent a mature research topic, but widely used
in practice in BI tools. Most approaches avoid exploring
the entire cube by pruning the search space. Methods in-
crease the performance of multidimensional aggregations, by
combining data structure for sparse data and cell precom-
putation at different aggregation levels of the lattice. The
authors of [16] puts forward the plan of creating smaller,
indexed summary tables from the original large input table
to speed up aggregating executions. In [31] the authors ex-
plore tools to guide the user to interesting regions in order
to highlight anomalous behavior while exploring large data

cubes. Large lattices are explored with greedy algorithms.
Association rules were by far the most popular data min-

ing topic in the past. Frequent itemset is generally re-
garded as the fundamental problem is association rule min-
ing, solved by the well-known level-wise A-priori algorithm
(exploiting the downward closure property). The common
approach to mine association rules is to view frequent item-
set search as optimizing multiple GROUP-BYs. From a
DBMS perspective, exploiting SQL queries, UDFs and lo-
cal caching are explored in [32]. This work studies how to
write efficient SQL queries with k-way joins and nested sub-
queries to get frequent itemsets, but did not explore UDFs
deep enough as they were more limited back then. SQL
is shown to be competitive, but the most efficient solution
(local caching) is based on creating a temporary file inside
the DBMS, but apart from relational tables. We believe
the slightly slower solution in SQL is more valuable in the
long term. Recursive queries can search frequent itemsets,
yielding a compact piece of SQL code, but unfortunately,
this solution is slower than k-way joins. Relational division
and set containment can solve frequent itemsets search, pro-
viding a complementary solution to joins. The key issue is
that relational division requires different query optimization
techniques, compared to SPJ operators. There has been an
attempt to adapt data structures, like the FP-tree, to work
in SQL, but experimental evidence over previous approaches
is inconclusive. Mining frequent itemsets over sliding win-
dows has been achieved with aggregate UDFs, interfacing
with external programs. Table UDFs can update an entire
cube in RAM in one pass for low dimensional data sets.
Thus the dimension (or itemset) lattice can be maintained
in main memory. The drawback is that TVFs require a cur-
sor interface that disables parallel processing. The lattice is
the main hindrance to perform processing with SQL queries
because it cannot be easily represented as a tabular struc-
ture and because SQL does not have pointers and requires
joins instead. There exists work on mining graphs (which
represents a more general problem) with SQL, but solving
narrow issues. Instead most work has focused on studying
algorithms with MapReduce. For the most part, mining
graphs with queries or UDFs remains unexplored.

5. THE FUTURE: RESEARCH ISSUES
Analyzing large volumes of relational and diverse text

data together (i.e., big data analytics) rapidly growing adds
a new level of difficulty and thus it nowadays represents a
major research direction. The default storage mechanism
in most DBMSs will likely remain row-based, but column
stores [36] show promise to accelerate statistical processing,
especially for feature selection, dimensionality reduction and
cubes. Solid state memory may be an alternative for small
volumes of data, but it will likely remain behind disks on
price and capacity. Sharing RAM among multiple nodes
in fast network can help loading large data sets in RAM.
Shared disk is not a promising alternative due to the I/O
bottleneck.

In parallel processing the major goal will remain the ef-
ficient evaluation of mathematical equations independently
on each table partition, balancing workload, minimizing row
redistribution. With the advances in fast network commu-
nication, larger RAM, multicore CPUs and larger disks the
future default system will probably remain a shared-nothing
parallel architecture with N processing units, each one with



its main memory and secondary storage (disk or solid state
memory). Matrices are used extensively in mathematical
models, computed with parallel algorithms. Thus we believe
it is necessary to extend a DBMS with matrix data types,
matrix operators and linear algebra numerical methods. In
particular, it is necessary to study efficient mechanisms to
integrate SQL with mathematical libraries like LAPACK.
Array databases go in that direction, but they are incom-
patible with SQL and traditional relational storage mecha-
nisms, resulting in multiple copies of the same data. Most
likely, SQL will incorporate array storage mechanisms with
a new data type and primitive operators.

Some common simple data mining algorithms may make
their way to DBMS source code, whereas others may keep
growing as SQL queries or UDFs. But most new data min-
ing and statistical algorithms will be developed in languages
like C++ or R. Given the similarity between MapReduce
jobs and aggregate UDFs it is likely DBMSs will support
automated translation from one into the other. Also, there
will be faster interfaces to move data from one platform
into the other. Extending SQL with new clauses is not a
promising alternative, because SQL syntax is overwhelming
and DBMS source code is required (many proposals have
been simply forgotten). Combining SQL code generation
and UDFs needs further study to program and optimize
complex statistical and numerical methods. State-of-the-
art data mining algorithms generally have or are forced to
achieve linear time complexity in data set size. Can SQL
queries callings UDFs match such time complexity exploit-
ing relational physical operators (scan, join, sort)? There is
evidence it can.

Future research will keep studying incremental model com-
putation, block-based processing, data summarization, sam-
pling and data structures for secondary storage under se-
quential and parallel processing. Developing incremental al-
gorithms, beyond clustering and decision trees, is definitely
challenging due to the need to reconcile parallel process-
ing and incremental learning. Incorporating sampling as a
primitive acceleration mechanism is a promising alternative
to analyze large data sets, but approximation error must
be controlled. Model selection is about selecting the best
model out of several competing models; this task requires
building several models with slightly different parameters or
exploring several models concurrently. From the mathemat-
ical side the list is extensive. Overall, models involving time
remain difficult to compute with existing DBMS technology
(they are better suited to mathematical packages). Hidden
Markov Models (HMMs) are a prominent example. Non-
linear models (e.g. non-linear regression, neural networks)
also deserve attention, but their impact is more limited. We
anticipate recursive queries and aggregate UDFs will play a
central role to analyze large graphs in a DBMS, whereas the
state of the art for large graphs in social networks will be
MapReduce.
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