
Data Mining Algorithms as a Service in the Cloud
Exploiting Relational Database Systems

Carlos Ordonez
University of Houston

USA

Javier García-García
Instituto Politécnico Nacional

Mexico

Carlos Garcia-Alvarado
Greenplum/EMC

USA

Wellington Cabrera
University of Houston

USA

Veerabhadran
Baladandayuthapani
UT MD Anderson C.C.

USA

Mohammed S. Quraishi
University of Houston

USA

ABSTRACT
We present a novel cloud system based on DBMS technol-
ogy, where data mining algorithms are offered as a service.
A local DBMS connects to the cloud and the cloud system
returns computed data mining models as small relational ta-
bles that are archived and which can be easily transferred,
queried and integrated with the client database. Unlike
other analytic systems, our solution is not based on MapRe-
duce. Our system avoids exporting large tables outside the
local DBMS and thus it avoids transmitting large volumes
of data to the cloud. The system offers three processing
modes: local, cloud and hybrid, where a linear cost model is
used to choose processing mode. In hybrid mode processing
is split between the local DBMS and the cloud DBMS. Our
system has a job scheduler with FIFO, SJF and RR policies
to enhance response time and get partial results early. The
cloud DBMS performs dynamic job scheduling, model com-
putation and model archive management. Our system in-
corporates several optimizations: local data set summariza-
tion with sufficient statistics, sampling, caching matrices in
RAM and selectively transmitting small matrices, back and
forth. We show that in general the most efficient computing
mechanism is hybrid processing: summarizing or sampling
the data set in the local DBMS, transferring small matrices
back and forth, leaving mathematically complex methods as
a task for the cloud DBMS.

1. INTRODUCTION
Cloud computing represents a new paradigm in which

hardware and software are offered as a service on the Inter-
net, supported by a cluster of computers, providing parallel
processing and ample storage [1]. Such approach simpli-
fies IT management and reduces costs. On the other hand,
DBMSs supporting SQL remain the dominant data man-
agement technology to process transactions (OLTP) and to
build large data warehouses (for OLAP, data mining) [5].
Analyzing large databases remains one of the most impor-
tant challenges, where data mining comes into play. How-
ever, in practice, data mining is commonly processed outside

c© ACM, 2013 . This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in SIGMOD 2013.
http://doi.acm.org/10.1145/2463676.2465240

the DBMS with statistical or math packages (e.g. Matlab,
R). Such programs do not scale to large data sets and re-
quire exporting relational tables, which is slow and compro-
mises security. In addition, large normalized tables cannot
be directly analyzed to compute a data mining model. This
is because most models require variables not available as
columns on a table in the database. Therefore, preprocess-
ing tables with joins, aggregations and various mathematical
transformations is generally required to build a data set. We
should mention that for large scale analytics SQL (includ-
ing UDFs) and MapReduce are now the main programming
alternatives [5]. However, in MapReduce it is necessary to
transfer and store the database (or data set) on the cloud,
which may not be a practical or acceptable solution. De-
spite its shortcomings, we demonstrate SQL, extended with
UDFs and Stored Procedures, is a promising alternative for
database analytics in a cloud service model.

Considering the motivation explained above, we present
a cloud computing prototype that offers data mining algo-
rithms as a service. We consider that the cloud service can
be external, on the Internet, outside the firewall (possibly a
slow connection) or internal, inside the firewall (fast and se-
cure local network). Our system incorporates optimizations
to minimize I/O, to reduce data redundancy and to avoid
transmitting large volumes of data, which are practical bot-
tlenecks in a cloud environment. There are important differ-
ences with other cloud systems. Unlike other cloud systems,
our cloud coordinates DBMS processing and it is not based
on Hadoop and MapReduce. Another difference is that we
show that in certain cases a “small” cloud is feasible, instead
of a large cloud with “infinite” and elastic resources. As-
suming the user has a local DBMS, but wants to exploit a
cloud for data mining, there are several alternatives to split
processing between the local DBMS and the cloud, instead
of moving the entire database to the cloud. Therefore, the
local DBMS participates in cloud processing.

Our system provides important advantages. The cloud
system can reduce local workload, it can accelerate process-
ing and it can simplify multiple model management. Our
system offers several off the shelf models ready to use; there
is no need to install data mining software on the local com-
puters, neither on the DBMS server nor on the local work-
station (but such option is available). Since all computations
are done in SQL the data set, intermediate tables and data
mining models can be queried. Another advantage is that



OLTP databases can be directly analyzed, bypassing a data
warehouse. On the other hand, the I/O bottleneck to load
large data sets into the cloud can be avoided. When data
records remain in the DBMS security is easier to enforce.
Our system simplifies database and model management and
reduces data redundancy because tables can be preprocessed
and summarized locally. Our system extends the DBMS
with management of models: the cloud stores a history of
computed models, together with their parameters and data
set information (columns, provenance) as well as data min-
ing job information. There exist many databases, which do
not require massively parallel programming. Moreover, in
general, a large transaction table or web data need to be
summarized (aggregated) before a data mining model can
be computed (where MapReduce is a good complement [5]).
All processing is done in standard SQL queries, giving the
user the ability to write queries for every processing stage
and to integrate diverse DBMSs. Our system supports the
full data mining cycle: preprocessing tables to build data
set, computing a model on the data set, tuning statistical
parameters of such model and deploying the model.

2. SYSTEM OVERVIEW

2.1 System Architecture
We assume there is a client DBMS server with a large data

set that requires analysis. We assume the user needs the fol-
lowing services: (1) data mining algorithms provided by the
cloud, (2) reducing the local DBMS workload for heavy data
mining processing, or (3) model management provided by
the cloud. The cloud system has a powerful DBMS server,
prepared to analyze data set summaries, data set samples or
a combination. There is an additional front-end cloud man-
agement server responsible for handling data mining job re-
quests, monitoring server progress, estimating cost for three
alternative processing modes, and managing jobs. The min-
imum “system” requirement are that both DBMS servers
(local and cloud) can evaluate standard SQL queries and ag-
gregate UDFs. The cloud DBMS has SQL stored procedures
(SPs) and UDFs ready to use. Alternatively, UDFs and SPs
can be installed on the local DBMS. From a “systems” per-
spective, database processing happens in the DBMS server
with SQL queries (possibly calling UDFs). To connect to
the cloud system on the Internet, there is a web application
responsible for communicating the local computer and the
cloud. Our system considers network speed, data set size
and iterative versus non-iterative method to decide how to
process a data mining job.

Our system offers data mining algorithms for large data
sets as a DBMS service on the Internet. Our system splits
work between the cloud and the local DBMS to minimize
I/O and data transmission. After a model is computed, the
cloud sends back SQL queries for scoring, which are used to
tune the model, evaluate (test) accuracy on an independent
data set or deploy the model to a production environment.
Finally, the cloud offers a service to manage and query statis-
tical models. The model database includes input data sets,
selected columns, model input parameters, model quality,
job parameters and job processing time, among others.

2.2 Data Sets and Statistical Models
The data set X = {x1, x2, . . . , xn} has n records and d

attributes (numeric or categorical). In several models all

Figure 1: Processing Mode: Local, Hybrid, Cloud.

attributes are numeric (i.e. d is dimensionality), where cat-
egorical attributes are mapped to binary dimensions. Such
data set is stored as a relational table with d columns and
an additional primary key column (we call it i). We assume
the data set was built before by preprocessing (joining, ag-
gregating, transforming) tables in the local database. The
user is responsible for providing the data set table, where the
primary key will be automatically excluded from analysis.

All our statistical models share a common matrix foun-
dation, which enables efficient summarization and general-
ized optimizations [3, 2]. Our system only offers statisti-
cal models that can be computed with sufficient statistics
and which can produce accurate results with samples. Un-
supervised models include PCA (to reduce dimensionality;
solved with Singular Value Decomposition (SVD)) and K-
means clustering (to group similar points; iterative). On the
other hand, supervised (predictive) models include: linear
regression (solved by SVD decomposition), variable selec-
tion (in linear regression, a computationally intensive prob-
lem, solved with a Bayesian MCMC method) and the famous
Näıve Bayes (NB) classifier. In supervised models, X has an
extra “target” attribute: a dependent variable Y (numeric in
regression) or a discrete“class” attribute G (for Näıve Bayes,
generally 0/1). Such extra column translates into an extra
column in the input table. In summary, the system offers a
full spectrum of widely used models.

2.3 Job Processing
A data mining job can be processed in three modes: (1)

Local, exploiting the local DBMS, (2) Cloud, transferring
the data set (if small and fast network) or samples (if large)
to the cloud, (3) Hybrid, combining local and cloud pro-
cessing. Local processing makes sense when the data set
is relatively small, the DBMS is fast and the model can
be obtained in a few runs. That is, there is a good idea
about the final model. Cloud and hybrid processing are use-
ful when the data set is large, when the local DBMS has
a heavy workload, when multiple models are combined or
when many trial/error runs are required (e.g., a new project,
exploratory analysis). Figure 1 compares the three process-
ing modes, step by step.

Our cloud system offers two kinds of algorithms from an
I/O perspective: a fixed number of passes (one or two) or
multiple passes (iterative). Näıve Bayes and PCA models
can be computed in a single pass. Linear regression requires
two passes: one to find coefficients and a second one to eval-
uate fit (squared error). Other algorithms require multiple
passes. K-means takes many iterations to converge. The
system also provides an incremental K-means version that



gives an approximate solution in a few passes. Lastly, a
Bayesian method used for variable selection needs only one
pass on the data set, but takes thousands of iterations per-
formed in RAM.

Our system has the capability to estimate running time
based on a simple linear cost model that takes into ac-
count local I/O speed, transmission speed, cloud I/O speed,
data set sample size, physical database operator and spe-
cific model for each processing mode, explained below. We
basically fit a linear regression model where each parame-
ter has a weight that gets periodically adjusted based on a
batch of jobs. Since most data mining algorithms require
reading the entire data set a table scan is the basic physical
operator. Therefore, the user can make an informed decision
about processing mode. Model computation with sufficient
statistics and samples takes a few seconds.

We now explain our system job scheduler, which aims
to provide interactive response time. Our system provides
FIFO job scheduling by default. There is a wait time thresh-
old ψ. If the job queue grows and wait time of an individ-
ual job goes beyond ψ then the system switches to Shortest
Job First (SJF), giving priority to jobs working on sufficient
statistics. Finally, if the system is in SJF mode the queue is
long, most jobs take long time to compute and wait time goes
beyond ψ then the system switches to Round Robin (RR)
where users can visualize “early” results, based on incremen-
tal model computation or samples. In RR mode processing
large data sets in the cloud DBMS is postponed. The sys-
tem backtracks from RR to SJF and from SJF to FIFO as
the workload decreases.

2.4 Data Mining Algorithmic Optimizations
We now provide a technical explanation of optimizations.

Matrices with sufficient statistics (multidimensional data set
summaries) are exploited to accelerate data mining algo-
rithms. In an orthogonal manner, sufficient statistics can
be computed on samples, providing fast model approxima-
tion, whose accuracy can be controlled [4]. Alternatively,
they can be computed on the entire data set (if small). The
sufficient statistics we exploit are n (a count of points), the
linear sum of points L (a d-dimensional vector) and their
quadratic (with cross-products) sum of points Q (a d × d

matrix): L =
∑

n

i=1
xi, Q =

∑
n

i=1
xix

T

i . Sufficient statistics
matrices are mathematically constrained for each model (full
matrix, diagonal matrix, multiple sets). These matrices al-
low deriving multiple means, variance and correlation matri-
ces that are ubiquitous in our models. Therefore, depending
on the model, one or multiple sets of L and Q are computed,
where matrix Q can be constrained diagonal or full. For NB
there are k = 2 sets of sufficient statistics: two point counts
(i.e. n becomes a 2-d vector), two L d-vectors and two diag-
onal matrices Q. In K-means L,Q are computed on k data
subsets and each Q is assumed diagonal. For PCA, variable
selection and linear regression there is a single set of L,Q and
Q is non-diagonal (a full, dense matrix). Sufficient statistics
can be computed with SQL queries (aggregation GROUP-
BY queries, medium speed), or they can be computed faster
with an aggregate UDF (much faster, not portable), which
requires setup (downloading the UDF, compiling it and re-
leasing it to the DBMS). Issues about UDFs include: lack
of portability, limited memory manipulation capabilities, a
main memory threshold and constrained I/O functionality
inside UDF code. For large data sets sampling is an impor-

tant mechanism to accelerate computation, but which in-
troduces approximation error [4]. Sampling is exploited for
very large data sets or iterative algorithms like K-means.
We offer two sampling methods to approximate models [4]:
geometric sampling and bootstrapping. Sampling is iter-
ated until error in sufficient statistics is sufficiently small.
By exploiting native DBMS sampling mechanisms, samples
on large data sets can be collected in time an order of mag-
nitude smaller than a table scan. Caching tables in RAM is
applied whenever tables are small enough. This is the case
for sufficient statistics matrices, model matrices and sam-
ple data subsets. A key optimization is to maintain a large
sample in RAM to run the scoring script returned by the
cloud. In summary, our system exploits both local and re-
mote server CPU and server RAM, minimizing I/O locally
and externally (in the cloud).

3. SYSTEM DEMONSTRATION
Our demonstration will illustrate our DBMS-based cloud

service, showing how the local DBMS with large data sets
can exploit the remote cloud DBMS server for fast process-
ing and statistical model management. The local DBMS will
be running on a portable computer and the cloud DBMS will
be remotely available. All algorithms (summarization, sam-
pling, model computation) will be available as UDFs and
SPs. Both local DBMS and the cloud DBMS server will run
Microsoft SQL Server on computers with 32 bit CPUs, 4
GB RAM and 1 TB on disk. Tables will be transferred with
bulk utilities and DBMS query connections will use ODBC.
Our system is programmed in C# in Microsoft SQL Server.

The local database will contain real data sets, coming
from the UCI Machine Learning repository, replicating them
(both on d and n) to get larger data sets. Specifically, the
user will analyze large, high dimensional data sets, where
n= 100k, 1M, 10M and d = 10, 50, 100, 200.

3.1 Demonstration Goals
We will emphasize these main points: (1) Providing data

mining algorithms as a service in the cloud that is fast and
easy to use (no complicated setup, no external packages
needed). (2) Combining local and external processing; il-
lustrating how to split processing between the local DBMS
and the cloud, to overcome export I/O and network com-
munication bottlenecks. (3) Understanding our linear cost
model to decide processing mode. Comparing efficiency of
three processing modes. Showing that external processing of
large data sets in the cloud is a bottleneck due to transmis-
sion, uploading and I/O time. (4) Understanding interaction
between data mining jobs requirements and job scheduler.
The user will understand when processing goes from FIFO
to SJF, and from SJF to RR, to provide good quality of
service (QoS). (5) Understanding impact of optimizations,
especially sampling and sufficient statistics acting as data
compression mechanisms. (6) Emphasizing our system is
different from most cloud proposals: we exploit DBMS tech-
nology instead of Hadoop. Moreover, we avoid transmitting
large volumes of data to the cloud and there is a small time
to start a job. (7) Model archive management, going beyond
data management, enabled by keeping a history of past mod-
els and jobs, indexed by data set, columns, statistical model,
model quality metrics and job parameters.

3.2 Demonstration Scenarios



The user will open a GUI to connect to a local DBMS and
the cloud DBMS. The GUI will guide the user to navigate
the data mining process step by step.

After connecting to the local DBMS and the cloud via
ODBC the system will determine internal parameters for
the cost model: CPU speed, RAM size, data set size and
data mining model size. The user will initially pick a data
set, input columns and a data mining model. The system
will then measure local DBMS I/O speed, network speed and
cloud DBMS I/O speed to read and transmit data. Based
on these parameters the system will estimate cost and pro-
cessing time for the three processing modes.

The user will compare the three processing modes: (a)
Local processing, computing model locally, but storing the
model in the cloud at the end. The user will understand
how to quickly download/install SQL stored procedures and
UDFs. However, all programs will be preinstalled. We will
show sampling and caching in RAM matrices accelerate lo-
cal processing. The user will observe local processing is best
for small data sets and it does not exploit hardware from
the cloud. (b) Cloud processing. Here the user will experi-
ence this processing mode is best for iterative algorithms, an
overloaded local DBMS or to perform trial/error runs. The
user will observe a slow upload operation to send a large
data set to the cloud and then sending back the scored data
set. That is, network transmission (Internet) and upload
into the cloud are two bottlenecks, even if the data set is
compressed. Thus the user will understand sampling on the
local DBMS is needed (next scenario). Also, we will explain
security issues and encryption overhead when the data set
goes outside the firewall. Additionally, the user can compare
the time it takes to load the data set or to load samples to
MapReduce. (c) Hybrid processing, where the user will see
an interesting interaction, step by step, sharing processing
between the local DBMS and the cloud. The user will ex-
perience how sampling and caching in RAM accelerate local
processing. We will show hybrid processing is best for algo-
rithms with a fixed number of passes, and a low workload
DBMS, and slow for iterative algorithms. The user will see
sufficient statistics are locally computed quite fast, then they
are quickly sent to the cloud, where models are computed.
Finally, models and SQL queries for scoring are sent back, to
evaluate accuracy. The user will understand the most time-
consuming part is computing sufficient statistics and thus
it makes sense to compute them locally. We will emphasize
that since sufficient statistics are small matrices they can be
transmitted fast. This processing mode will be shown to be
competitive (marginally slower) with local processing, but
simpler to manage.

This data mining job processing demonstration will con-
clude allowing the user to submit several demanding jobs.
The user will set several ψ values going from 5 to 20 sec-
onds, to understand interactive processing. The GUI will
show how the overloaded cloud DBMS server switches from
FIFO to SJF. The user will request data mining without
sampling (accurate, but slow). Such longer jobs will make
the system scheduling switch from SJF to RR, where sev-
eral users can see progress and partial results on the data
mining computation. To conclude the demonstration, we
will demonstrate how our system extends data management
to statistical model management. The user will try several
simple queries to retrieve models based on data set, quality
(assuming familiarity with data mining), date run, elapsed

time and parameters. We will illustrate practical situations
where the user needs to compare models, select best mod-
els, go back to a previous successful model or export it to
an external statistical tool (e.g., the R package) for further
processing and visualization.

Acknowledgments
This research work was partially supported by National Sci-
ence Foundation grants IIS 0914861 and IIS 0915196. We
thank Rogelio Montero-Campos, Julio Vega and José Luis
Alvarez, from UNAM University, for helping in the develop-
ment of our system.

4. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D.A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Commun. ACM, 53(4):50–58, 2010.

[2] M. Navas, C. Ordonez, and V. Baladandayuthapani.
On the computation of stochastic search variable
selection in linear regression with UDFs. In Proc. IEEE
ICDM Conference, pages 941 – 946, 2010.

[3] C. Ordonez. Statistical model computation with UDFs.
IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752–1765, 2010.

[4] C. Ordonez and S.K. Pitchaimalai. Fast UDFs to
compute sufficient statistics on large data sets
exploiting caching and sampling. Data and Knowledge
Engineering, 69(4):383–398, 2010.

[5] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. MapReduce and
parallel DBMSs: friends or foes? Commun. ACM,
53(1):64–71, 2010.


