
ONTOCUBO: Cube-based Ontology Construction and
Exploration

Carlos Garcia-Alvarado
Pivotal Inc.

San Mateo, CA 95134, USA

Carlos Ordonez
University of Houston

Dept. of Computer Science
Houston, TX 77204, USA

ABSTRACT
One of the major challenges of big data analytics is the
diverse information content on the Internet, which has no
pre-defined structure or classification. This is in contrast
to the well-designed structure of a database specified on an
ER model. In the information retrieval community ontolo-
gies are a standard mechanism to understand interrelation-
ships and structure of documents. With such motivation
in mind, we present a system that enables data manage-
ment and querying of documents based on ontologies, lever-
aging DBMS functionality. In this paper we present ON-
TOCUBO, a novel system based on our research for text
summarization using ontologies and automatic extraction of
concepts for building ontologies using Online Analytical Pro-
cessing (OLAP) Cubes. ONTOCUBO is a database-centric
approach that excels in its performance, due to an SQL-
based single pass summarization phase through the original
data set that computes values such as, keyword frequency,
standard deviation, and lift. This approach is complemented
with a set of User-Defined-Function-based algorithms that
analyze the summarization results for concepts and their in-
terrelationships. Finally, we show in detail our application
that extracts and builds an ontology, but also allows the con-
cept summarizations and allows domain experts to explore
and modify the resulting ontology.

1. INTRODUCTION
Several artificial intelligence, information retrieval, and

natural language processing systems that are used across
semantic web applications have relied on a declarative rep-
resentation of knowledge (ontologies) for effective querying
and exploration of a corpus [5]. Despite the need of these
systems to have an ontology, this labor-intensive task is nor-
mally tailored for a specific domain of knowledge and set of
domain experts, making it cost-prohibitive to build a new
ontology every time that the domain is extended or modi-
fied. Automatic ontology building arises as an alternative
for easing this difficult task. However, automatically find-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: OLAP Cube with Concepts.

ing the concepts and their relationships is especially chal-
lenging in the Internet content without a known structure
or classification. Concept extraction has been approached
through natural language processing [6], clustering [2], sin-
gular value decomposition (SVD), and statistical techniques.
While normal applications of Online Analytical Processing
(OLAP) include business reports and financial analysis [1],
in this work we show that OLAP can also be useful in con-
cept extraction for building ontologies and computing sum-
marizations. More specifically, we show that cuboids of an
OLAP Cube can be used to efficiently obtain classes and
their relationships. In this case, the data is represented by
the collection of keywords and documents, while the level of
aggregation allows us to obtain various combinations of these
keywords to generate concepts. These concepts are now fil-
tered and pruned to compute ontologies. ONTOCUBO is a
novel system inside database management systems (DBMS),
extended from our research shown in [3, 4], in which we in-
tegrated both works and refined the resulting ontologies. A
DBMS is used due to the support for computing efficient
aggregations with SQL queries and the ability to adapt, in
an efficient manner, the cube operator.

2. DEFINITIONS
Let C be a collection, or corpus, of n documents C =
{d1, d2, . . . , dn}, where each document di is composed of a
set of keywords {k1, k2, . . . }. In addition, let xi be a fre-
quency vector of all the different keywords in C for each
document di. Every concept that is part of an ontology is
defined as a class, and the relation between classes is mod-

Figure 2: ONTOCUBO Architecture.

eled as a taxonomy of “is a” or “has a” relationships. An on-
tology O, on the other hand, is a tree-like structure where
the nodes represent dimensions (set of concepts) and the
branches model the relationships between them.

Inside the DBMS, C is stored in a vertical list format.
This list is stored in a distance table D(i, k, p) that contains
the document id, keyword, and position of a keyword in the
di document. A summarization table stores the xi vector of
every document in a vertical format too. The summariza-
tion table is defined as table S(i, k, f), where S contains the
document id, the keyword, and the keyword frequency f .
The size of the OLAP data cubes that generates the classes

(concepts of different keyword lengths) is 2k̂ − 1 cuboids,

where k̂ is the number of most frequent keywords selected
from

∑n
i xi. A cuboid (or depth in the lattice) l of the lattice

is denoted by
(
k̂
l

)
, such that l ≤ k̂. Finally, these classes are

validated with the computation of correlation and lift using
sufficient statistics (represented by n , L, Q). Let L be an
additional set containing the total sum of all the different
keywords in the collection (L =

∑n
i=1 xi). In addition, let

Q be a lower triangular matrix containing the squared mea-
sures between the keywords (Q =

∑n
i=1 xix

t
i. Moreover, lift

λ is computed as λ =
nk,k′

Max(nk,nk′)
, where nk and nk′ are the

number of documents containing keywords k and k′, respec-
tively. The final step of the computation is the aggregation
of measurements by exploiting the ontology generated. The
array of OLAP cubes is exemplified in Figure 1.

3. ONTOCUBO
ONTOCUBO is the result of three phases as shown in

Figure 3: concept extraction, ontology building, and ontol-
ogy summarization. The first phase extracts the most im-
portant concepts by computing the sufficient statistics from
table S, and computing the frequency of the concepts of
size l from table D. The second phase takes the computed
concepts from the previous phase and generates the final
ontology based on the measurements obtained with the suf-
ficient statistics, the frequencies computed with OLAP, and
the hypernyms (semantic relation of the type-of form) given
by an existing conceptualization [8]. The third phase takes
the extracted concepts and generates OLAP cubes with the
computed measurements. In the following subsections, we
present the basic steps for achieving concept extraction, on-
tology building, and the final OLAP Cube summarization
of measurements.

3.1 Document Corpus Preprocessing
The concept extraction, which is a one-time preprocess-

ing step, focuses on computing the frequency of the keywords
and generates combinations between the most frequent ones.
In order to find valid concepts, the following questions must
be answered: (1) Do k1, k2, . . . appear in the same docu-
ments frequently? (2) Are k1, k2, . . . close to each other?
(3) How often do k1, k2, . . . appear together within the cor-
pus? (4) How often is a k found in a di but not in dj?

These questions are answered by computing statistical
measurements (in a single pass through S) such as the cor-
relation between a pair of keywords, the distance between
a pair of keywords, and the ratio between the number of
documents containing a pair of keywords and the maximum
of their frequency (lift). The algorithm for obtaining such
classes is as follows in a single scan on D: (1) Obtain all

available classes by pairing all keywords k̂ within each doc-
ument. (2) For each class, determine the frequency of oc-
currence and average position gap within the corpus. (3)
Filter out all classes whose keywords have a position gap
greater than a user-defined threshold, T . (4) Filter out all
classes whose frequency, correlation, or lift does not meet
user-defined thresholds for all the pairs of keywords in a
class.

3.2 Ontology Building
The second phase is ontology building, which takes a set of

rules based on the correlation, lift and frequencies computed
in the previous step and decides the relation between the
concept in the form of a “is a” or “has a” relation.

Initially, there is a need to determine if there is a rela-
tionship of any type between two classes. In order to do
so, each class is paired with all the other classes within the
class pool. Let each set of two classes be a relationship if for
every possible pair between all the keywords of the concept
there is a high correlation and lift. For example, suppose we
are looking for a relationship between the classes {k1, k2},
{k3, k4}. In order to find out if there is a relationship, we
need to obtain the correlation and lift for the following set of
keywords: {k1, k3}, {k1, k4}, {k2, k3}, and {k2, k4}. Pairing
them would allow us to observe how closely related these two
classes are to one another. A high correlation and a high lift
from any one of these four subsets would confirm that this
is a valid relationship. Otherwise, if these four subsets do
not show a connection, we discard this relationship.

The parent of a class is determined with a heuristic based
on the frequency of appearance of a pair of classes. We
consider a class A be the parent of a class B if the following
criteria is satisfied: (1) The number of documents containing
class A minus the number of documents containing class B
is less than a user threshold θ (e.g. 10%) of total documents.
(2) The number of classes containing keywords in class A is
greater than the number of classes containing keywords in
class B.

If a hypernym is a available for any of the classes, the
class is substituted by the corresponding hypernym. More-
over, during the pairing, all the classes substituted for the
same hypernym are pruned. The rationale behind this step
is to limit the number of instances that are identified as valid
classes. In addition to this, if we discover that several classes
that contained the same hypernyms have been assigned dif-
ferently, we select the relationship with more incidences. If
there is a tie, we take one of the relationships arbitrarily.

Figure 3: ONTOCUBO Building.

3.3 Ontology Exploration
CUBO is an array of data cubes that contain only the

existing dimensions within the fact table D given a set of
dimensions (concepts). However, the notion of CUBO is
based on the premise that a set of documents does not con-
tain all the dimensions in every document. Thus, only a
set of “on-demand” computations of the dimensions are re-
quired for every document. Moreover, our algorithm takes
advantage of this property when computing the aggregation
on superior levels in the hierarchy. In other words, CUBO
has a lazy policy that waits to perform the computations
until it is absolutely necessary. Furthermore, the algorithm
avoids redundant computations by focusing only on storing
those dimensions that contain attributes to aggregate. If the
entire data cube is desired, a post-processing phase can be
executed to compute all the missing combinations.

The algorithm for obtaining the CUBO given an ontology
O, input corpus D, dimensions and a maximum ontology
depth is shown in [4]. The result is temporarily stored in R
that contains a level, combination of classes (combo) and the
aggregation measurements. Furthermore, the entire compu-
tation of all the data cubes is computed through a single
scan over the filtered data set. This additional scan can
be avoided if the desired measurement is already contained
from the original ontology generation. CUBO is composed
of three major steps: load ontology (which is computer as
part of ONTOCUBE), computation of on-demand combina-
tions and the data cube aggregation. The final step of our
algorithm stores the resulting data cubes into a relational
table.

4. SYSTEM OVERVIEW
ONTOCUBO is a standalone system developed entirely

in C# as two modules: a thin client that uses ODBC to
connect to the DBMS and call plain SQL queries, and User-
defined functions (UDFs) deployed inside the DBMS. This
is also shown in Figure 3, in which the tasks performed with
SQL queries are contained in white boxes, while the tasks
performed in user-defined functions are contained in shaded
boxes.

The computation of the sufficient statistics (stored for
later user in a new table) is executed with an efficient SQL
query of the form:

Figure 4: ONTOCUBO Exploration.

SELECT S1.kid as k1, S2.kid as k2
, sum(S1.f) as L1
, sum(S2.f) as L2
, sum(S1.f*S1.f) as Q1
, sum(S2.f*S2.f) as Q2
, sum(S1.f*S2.f) as Q12
FROM S as S1, S as S2
WHERE S1.kid<=S2.kid AND S1.i=S2.i
GROUP BY S1.kid, S2.kid

Notice that the keyword was replaced by a surrogate that
allows an efficient computation. In addition to this, in-
dexes were added in the surrogate keys in order to obtain
an efficient join. Also notice that this query would compute
the sufficient statistics for the whole collection C, and this
should be limited for the most frequent keywords k̂.

The computation of the OLAP cuboids and resulting on-
tologies are then obtained inside a table-valued function
(which is a type of UDF that allows returning a table) by
calling:

SELECT * FROM ONTOCUBE(’D_table’,2,10,2,0.10)

Where the first parameter represents the distance table,
the second parameter has the cuboid(s) l, the third param-

eter contains the top-k keywords for exploring k̂, the fourth
parameter represents the maximum gap between keywords
T , and the last parameter is the parent class validation cri-
terion θ.

In Figure 4, the main screen of ONTOCUBO is shown.
Our system allows the user to select a location in the file
system containing the corpus to import. In addition to this,
the application takes as possible input a file containing an
existing conceptualization; otherwise WordNet 2.1 is used
[7]. Another setting needs to be provided to the program,
such as the connection details for the DBMS and the tuning
parameters l (a full lattice is also possible but the system
is constrained by the memory allocated to the DBMS), T ,
and θ during the ontology building. Once all the parame-
ters have been set, the user can start the automatic concept
extraction and ontology building. Progress of the execution
is shown in the status bar of ONTOCUBO, and the current
ontology is shown to the user “on-the-fly”. In Figure 4, the
domain expert has the option of exploring and modifying
the resulting ontology directly in our application, which in-
cludes adding, removing, or modifying an existing class; as
well as adding and removing an existing relationship. Our
system also allows exporting the resulting ontology as RDF
or OWL files. The last step of our system allows building
with the resulting ontology an OLAP cube with the desired

measurements. As such, a CUBO is built through a single
pass on the original data set, via a TVF, unless the required
summarizations were already computed as part of the ontol-
ogy computation.

Our application has been tested, as shown in [3], by us-
ing data sets of sport news. The main advantage of ON-
TOCUBO is that the minimum number of parameters that
are required to be tuned allows our system to be used in
a variety of data sets. Furthermore, our single pass suffi-
cient statistics computations, in-main memory OLAP com-
putation, and rules allow the building of an ontology in an
efficient manner.

5. SYSTEM DEMONSTRATION
Our demonstration will show how it is possible to obtain

automatically generated ontologies from medium size doc-
ument collections, including digital libraries, with OLAP
Cubes and show the resulting CUBO. A local computer will
show how a large data set, remotely available, is explored
efficiently and generates ontologies without human interven-
tion. All the algorithms (sufficient statistics, summariza-
tions, measurements, and generated pairs) will be available
as UDFs. In addition, the user will have the opportunity
to explore every partial result of the entire ontology gener-
ation. The data set and the algorithms will be loaded in
a remote machine running an instance of a commercial re-
lational database system on a computer with 32 bit CPU,
4 GB RAM and 1 TB on disk. Resulting tables will be
transferred to a local computer using ODBC. The user will
analyze text data sets of different sizes, such as dbpedia
(∼ 70 GBs), Reuters 21578 (∼ 20 MBs), and a data set of
sports news articles (∼ 1 GB). These articles are already
preprocessed and stored in the format defined in Section 2.

5.1 Demonstration Goals
Our demonstration aims to spur the discussion of au-

tomatic ontology generators, the research challenges (e.g.
OLAP), and the possibility of using the SQL language and
User-Defined Functions for ontology extraction and OLAP
Cube summarizations. The main contribution of our work
is that we bring together the exploration power of OLAP
to extract ontologies in a new manner. In this paper, we
proposed an extension to ONTOCUBE and CUBO, two
novel proposals that exploits OLAP techniques for building
ontologies and compute summarizations inside a relational
database management system. The core of the proposal is
a system that relies on obtaining in an efficient manner the
sufficient statistics with a one-pass SQL query for comput-
ing the correlation and lift from pairs of keywords from a
corpus. Moreover, an efficient in-main-memory user-defined
function OLAP algorithm is exploited to efficiently generate
cuboids (or the entire lattice is desired) of sets of keywords
and are verified if they are valid classes. Later, an ontol-
ogy is then built and refined by using hypernyms support,
which showed to be important for avoiding returning on-
tologies with a large number of instances. We found that
OLAP Cubes are a suitable candidate for this type of appli-
cation. This is due to the fact that the dimensionality limi-
tation that accompanies OLAP when generating the lattice
is never met, because we rarely need to generate the entire
lattice (we mostly have concepts with less than 4 keywords
which are represented by cuboids with depth less than 3).

Thus in this demonstration we will emphasize the follow-

ing points: (1) It is possible analyze efficiently large text
data sets within a relational database management system.
(2) OLAP Cubes can be used to gather the required sum-
marizations. (3) Understand how multiple heuristics can be
applied for generating an ontology in an automated fashion.
(4) Understand the in-memory processing for OLAP Cubes
using User-Defined Functions.

5.2 Demonstration Scenarios
The user will have the opportunity to navigate the original

data sets through a graphical user interface. After selecting
the desired text data set, the user will have the opportunity
of choosing if the ontology is going to generated in an auto-
mated fashion from the entire data set or from a sample of
keywords. In addition, the user has the capability of assign-
ing a value to several parameters, such as: the number of
keywords to pair ĥ, position gap between keywords T , key-
word frequency, correlation value, lift and the parent class
threshold. The user will also have the capability of adding
new hypernym for any of the classes.

Once the desired parameters have been set, the user will
observe how the ontology is generated online and explore
the early results in the GUI. It is also possible to explore
the intermediate and final results by querying the resulting
tables stored in the server.

With the final result, the user will have the opportunity of
resolving conflicts or exporting the results as RDF or OWL
files. Additionally, the user will be capable of querying the
resulting ontology and performing additional analysis of the
results stored in tables. Finally, the user will be able to com-
pute the CUBO with the desired measurements. For exam-
ple the frequency of the concepts in a document, frequency
average of the concepts in document, or average correlation
among the involved concepts, among many others.

6. REFERENCES
[1] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast

and dynamic OLAP exploration using UDFs. In
SIGMOD, pages 1087–1090, 2009.

[2] N. Choi, I.Y. Song, and H. Han. A survey on ontology
mapping. ACM Sigmod Record, 35(3):34–41, 2006.

[3] C. Garcia-Alvarado, Z. Chen, and C. Ordonez.
ONTOCUBE: efficient ontology extraction using OLAP
cubes. In Proc. of ACM CIKM, pages 2429–2432, 2011.

[4] C. Garcia-Alvarado and C. Ordonez. Query Processing
on Cubes Mapped from Ontologies to Dimension
Hierarchies. In Proc. ACM DOLAP Workshop, pages
57–64, 2012.

[5] A.Y. Halevy and J. Madhavan. Corpus-based
knowledge representation. In Proc. of Joint Conference
on Artificial Intelligence, volume 18, pages 1567–1572,
2003.

[6] A. Maedche and R. Volz. The ontology extraction and
maintenance framework text-to-onto. In Proc. of ICDM
Workshop on Integrating Data Mining and Knowledge
Management, 2001.

[7] G.A. Miller. Wordnet: A lexical database for english.
Communications of the ACM, 13(11):39–41, 1995.

[8] S. Scott and S. Matwin. Text classification using
WordNet hypernyms. In Proc. of the Conference Use of
WordNet in Natural Language Processing Systems,
pages 38–44, 1998.

