Bayesian Variable Selection in Linear Regression in One Pass for
Large Data Sets

Carlos Ordonez Carlos Garcia-Alvarado Veerabhadran Baladandayuthapani
University of Houston ~ University of Houston =~ UT MD Anderson Cancer Center

*

Abstract

Bayesian models are generally computed with Markov Chain Monte Carlo (MCMC) methods. The
main disadvantage about MCMC methods is the large number of iterations they need to sample the
posterior distributions of model parameters, especially for large data sets. On the other hand, variable
selection remains a challenging problem due to its combinatorial search space, where Bayesian models
are a promising solution. In this work, we study how to accelerate Bayesian model computation for vari-
able selection in linear regression. We propose a fast Gibbs sampler algorithm, a widely used MCMC
method, that incorporates several optimizations. We use a Zellner prior for the regression coefficients,
an improper prior on variance and a conjugate prior Gaussian distribution, which enable data set summa-
rization in one pass exploiting an augmented set of sufficient statistics. Thereafter the algorithm iterates
in main memory. Sufficient statistics are indexed with a sparse binary vector to efficiently compute
matrix projections based on selected variables. Discovered variable subsets probabilities, selecting and
discarding each variable, are stored on a hash table for fast retrieval in future iterations. We study how to
integrate our algorithm into a database management system (DBMS), exploiting aggregate User-Defined
Functions for parallel data summarization and stored procedures to manipulate matrices with arrays. An
experimental evaluation with real data sets evaluates accuracy and time performance, comparing our
DBMS-based algorithm, with the R package. Our algorithm is shown to produce accurate results, scale
linearly on data set size and run orders of magnitude faster than the R package.

1 Introduction

Bayesian statistics has been successfully applied in fundamental problems such as regression, variable se-
lection, classification and clustering, among others. The distinctive characteristic about Bayesian models
is their unique ability to incorporate prior knowledge into the statistical analysis [2], honest estimation
of parameter uncertainty and flexibility in accommodating complex data interrelationships via hierarchical
modeling [5, 10]. Bayesian inference typically involves estimation via stochastic search methods, such as
Markov Chain Monte Carlo (MCMC) algorithms, to generate a long sequence of samples from the poste-
rior distribution function [2, 5, 14]. In this work, we study how to optimize MCMC methods to estimate
a Bayesian model on large data sets. The computational challenge about MCMC methods for Bayesian
models is that they generally require a large number of iterations. Therefore, for a large data set residing
on secondary storage, MCMC processing can be extremely slow. We study how to accelerate the Gibbs
sampler, a common MCMC method used to perform variable selection in linear regression [6, 8]. With that
motivation in mind, we introduce a fast Gibbs sampler for variable selection, based on a combination of
Gaussian and non-informative priors, exploiting augmented sufficient statistics, hashing of highly probable
variable combinations and block-based matrices. The optimized algorithm iterates in main memory on a
compressed representation of the data set. We study how to integrate our fast Gibbs sampler with a DBMS.

*(© ACM, 2014. This is the author’s unofficial version of the work. The official version of this article was published in ACM
Transactions on Knowledge Discovery from Data (TKDD Journal), 2014. DOI: 10.1145/

2 Definitions and Background

2.1 Data Set

Let X = {x1,...,z,} be the input data with n points, where each point has d numeric explanatory variables
and a dependent variable Y. To make mathematical notation intuitive, we use matrices with n columns. Thus
the data set X is a (d+ 1) x n matrix, where x; represents a column vector (i.e., a d x 1 matrix). In a similar
manner, Y is 1 x n matrix and y; represents the 7th output value. To avoid confusion, X ; (upper case) refers
to the jth variable and x; (lower case) is the ith point. We will refer to a statistical model as ©, composed
of several vectors, matrices and error statistics.

2.2 Linear Regression and Variable Selection

Linear regression is a predictive model capturing a linear relationship between a response variable Y, and a

set of explanatory variables X = X7,..., Xy [5]. The regression model is given by
Y =37X +e, (1)
where (3 is a (d + 1)-vector (column vector) of regression coefficients 3 = [5o, 51, - - . , Ba], Bo is the Y axis

intercept and e represents error with a Gaussian distribution. The predicted 7; value is defined as ¢j; = 37 =,
where ﬁ is estimated, in general, with the least squares minimization method [10]. To make notation more
concise, X is augmented with n 1s stored in an extra variable X and (3p represents the Y axis intercept.
This augmented matrix is denoted by X.

In general, not all d variables help predict Y. Therefore, it is generally necessary to select subsets of
variables such that they better explain Y. The main computational issue is that there are 2¢ potential variable
combinations. A model of selected variables is represented by a d-vector vy € {0,1}¢, where variable X j 18
selected if y; = 1. Let £ be the number of selected variables for a given y: k = ~vT~. Vector v is used as an
index on selected variables throughout the paper.

2.3 Gibbs Sampler for SSVS

The two most common MCMC methods in Bayesian statistics are the Gibbs sampler and the Metropolis-
Hasting algorithm [5]. We focus on the Gibbs sampler, given its generality and popularity.

Gibbs Sampler

Given K model parameters © = {61,60s,...,0x} the Gibbs sampler builds a Markov chain by sampling
from the posterior distribution of 8, fixing the remaining KX — 1 model parameters. That is, it builds a
sequence of NN iterations where at each iteration I it draws K samples from the conditional distributions

14l I I— I
U S NS N}

for k = 1... K. In order to explore the joint posterior distribution by sampling it is necessary to specify
a prior distribution 7(-) on each model parameter.

We study how to accelerate the Gibbs sampler to perform stochastic search for variable selection (SSVS)
introduced in the seminal paper [6]. We follow the Gibbs sampler specified in [10], which provides an
algorithm more suitable for optimization than [6] and [7]. Let 8, = {5y U 8|71 = 1} be the [3s of selected
variables and X, be a projection of X on those variables where y; = 1. Vector 3, is k£ 4+ 1 X 1 and matrix
X, is k + 1 x n. Therefore, for the SSVS problem the desired model is © = {3, 0,v}. Then the Gibbs
sampler iterates N times to build the sequence

B0 0] 100 gl G0 (1) gIN] N IV,

where the selected variable subsets will embedded in the sequence ’y[B],’y[B+1],’y[B+2], e ,7[B+N I
where the most promising variable subsets v are expected to appear with higher frequency after the Markov
chain stabilizes after a “burn in” period of B iterations.

Prior Distributions Specification for Gibbs Sampler

We now specify the prior probability distribution of each model © parameter (recall © = {3,0,7}) to
sample from their corresponding posterior distribution, following the SSVS model presented in [10].

We start by explaining priors for 3. Since it is infeasible to define a prior for every potential (2¢
possibilities) we use a single global prior distribution corresponding to the full regression model where
k = d (i.e. all variables are selected). We use the well-known Zellner G-prior [3, 10, 9], in which 3 is
sampled assuming the prior distribution (3|0 2,) follows a normal distribution

ﬁ|0’2,’}/NN(B,CO'2(XXT)_1), 2

where 3 is a prior hyper-parameter (a parameter not in ©) and ¢ > 0 is an input parameter. This prior
distribution corresponds to a two-component mixture of normal distributions on the (s, generally referred
to as the spike-slab distribution [6], where the “spike” corresponds to point-mass at zero and the “slab”
distribution corresponds to a Gaussian distribution with large variance. In an analogous manner, for a set vy
of selected variables y is conditioned as follows:

y‘ﬂy,az,X NNn(ﬂz;X'yaU2[n)- 3)

In a similar manner to (3, the coefficients vector of selected variables (3., is sampled assuming a prior
Gaussian distribution

By|0%, 7 ~ N(By, co? (X, X, 7)), 4)

where 3, and o represent model parameters to estimate.

We now specify the prior for o. To avoid computing the prior correlation structure we opted for a non-
informative prior for o, following the priors specification given in [10]. Model parameter o has an improper
(Jeffrey’s) non-informative prior specified as

m(0?|X) x 072)

Although the prior on o2 is improper, it results in a proper posterior distribution (integrating to 1) not

only for the conditional posterior distribution, but also for the marginal distributions [10]. This prior choice
obviates the user having to introduce and specify hyper-parameters. Based on the /3 prior defined above and
this non-informative prior for o, the Gibbs sampler is simplified to only require the specification of 3 and c.

Finally, we explain the prior specification for v based on a Zellner G-prior [3], which has two versions:
an informative prior for ¢ and a non-informative prior for ¢ [10] !. Vector + has a uniform prior

m(y1X) =277 6)

Vector +y is iteratively sampled for each dimension j with a conditional distribution on the remaining
d — 1 vector dimensions using

TV X, Y v, 72, - V=1 Vi1 - - -5 Vdy) X (] X, YY), (7)

because the full conditional distribution is proportional to the distribution conditioning on X, Y only.
Then based on this prior specification the posterior distribution of v|X, Y satisfies the following respective
equations depending on the chosen prior:

'the Zellner G constant is c in our paper.

(X, Y) o ¢ He+ 1) *FD2yy T
—c(e+ 1)t YXI(X, X)X, VT (8)
—(e+ 1)7AX XT BT

for the informative Zellner prior. Otherwise, it satisfies
(v X,Y) Z He+ 1) FFED2yyT _ (e 41)7t YX3(X7X$)X7YT]‘"/2)

for the non-informative Zellner prior, where ¢ is specified to have a non-informative diffuse prior 7(c) =
1/c and it can be truncated at ¢ = 10° [10]. This non-informative prior for ¢ simplifies usage, but incurs
on higher computational cost. A key advantage provided by -y is that the only potential values for v; are
v; = 0 and ; = 1. Therefore, in order to decide if a variable is selected or not it suffices to compute
po = m(v; = 0|X,Y) and p; = 7(y; = 1|X,Y"), adding both probablities py + p; to get a proper posterior
on ;. Then po/(po+p1) above a randomized threshold in [0,1] decides if variable j is discarded or selected.
Another advantage of the hierarchical version of the Zellner G-prior is that hyper-parameter /3 can be set to
B=0, simplifying Gibbs initialization. Therefore, the only parameters that are necessary to specify for each
Gibbs run are ¢, which can be interpreted as the prior odds that a given set of variables are excluded (i.e. if
7; = 0 then 3; ~ 0) and NV, a sufficiently large number of iterations. Large c values correspond to a very
vague (flat) prior on 3 and they allow data to inform the variable selection. On the other hand, the Gibbs
sampler iterates for a large number of iterations /N until convergence or until the posterior distributions have
been sufficiently explored. Posterior probabilities of each variable X ; can be computed by averaging ~ over
N — B iterations. Variable subsets, represented by different explored +ys, are ranked by their probability of
appearance over the window of N — B iterations.

3 Bayesian Variable Selection in One Pass

3.1 Generalizing Sufficient Statistics

The sufficient statistics for X to compute a family of linear models are n, L, Q) [12], where n is the number
of points, and L and () are defined as follows:

L= (10)

i=1

and .
Q=XX"=) u-a] (11)

We now extend n, L, @ so that the Gibbs sampler can work on summaries of X, Y. Let Z = [1, X, Y]
be a (d + 2) x n matrix where we store the augmented X matrix with Is and Y together. Basically,
Z = {z,...,z,} is mathematically the augmented data set of (d + 2)-vectors. Recall X = [1, X] is the
augmented X matrix with 1s. Let Q = XX% be a (d + 1) x (d + 1) symmetric matrix. We compute
generalized sufficient statistics, up to the second moment, with matrix

=277, (12)
a (d +2) x (d + 2) matrix. Then I" in more detailed form is as follows:

n Yl Yy n LT >y Q Xy
L= | Yo Yza] Yy =| L Q xXyT = [vxT yyT }
Sy Syl Yy? Sy YXT vy”T

Matrix I' can be computed in a single pass, reading X once, updating the) product in main mem-
ory. Notice (XYT)T = YX7T and YYT # Y'Y and I' = T'7. The linear regression model can
be computed from ZZ” as follows. Estimating 3 with the traditional least squares method [5] leads to
B = (XXT)~1XYT. Rewriting this equation based on I gives

B=Q ' (xyT). (13)

Notice the parentheses indicate how the matrix product is derived only from I'. Therefore, I' is a suffi-
cient summary of X,Y to solve linear regression in one pass. The properties below summarize the impor-
tance of I.

Property 1: T' can be computed in a single pass, reading X once.

Property 2: The B vector of estimated regression coefficients with least squares minimization can be
computed reading X once.

3.2 Optimized Sampling from Posterior Probability Distributions

Sampling the posterior distribution of 3, can exploit Q = XXT'. Moreover, Y is not needed directly, but
as the product with XY, which is available in I". Therefore, B~ can be computed from I', eliminating the
need to read the data set X at every iteration.

Under a general Bayesian framework, sampling the posterior distribution of ¢ at iteration I requires
reading Y to compute) . (y; — #)2, which cannot be obtained from I'. The main reason is that I' summarizes
Y with YY7 and as a product X”'Y". Therefore, we change the prior specification to eliminate this posterior
probability computation. As discussed above, we simplify this posterior probability function using a non-
informative prior. Then

0% ~ (0% X) x 072 (14)

As discussed above, to simplify prior specification we use a Zellner G-prior, which introduces a hyper-
parameter 3. Based on I we optimize sampling from the posterior distribution of 3 as follows:

Blo?,y ~ N(B,co?Q1). (15)

In a similar manner, let Q., be Q projected on the variables selected by ~. Then

67‘0'277 ~ N(B’ya CUzQ'y_l)' (16)

As mentioned above, based on the Zellner G-prior, sampling from the posterior distribution of -y does
not depend on Y. Therefore, such computation can exploit I" for both Zellner priors:

(X, Y) o (YYT) —cle+ 1)1 (VXD)(Q)(XYT) = (c+1)7'3,Q,87172 a7)

for the Zellner informative prior. and

m(v|X,Y) ZC (c+1) (k+1)/2[(YYT) —cle+ 1)—1 . (sz)(Qy)(XA,YT)]_n/Q (18)

for the Zellner non-informative prior. Notice matrix expressions in parentheses are efficiently obtained
from I'. In summary, SSVS can iterate in main memory after computing I" reading the data set once.

3.3 Projections of Generalized Sufficient Statistics based on Selected Variables

It is necessary to have an efficient mechanism to get projections of I" as indicated by ~. In SSVS each Gibbs
iteration will work on a subset of X, ..., X, as indicated by the binary vector ~y. Thus we introduce further
notation to compute a projection of I' on specific dimensions indicated by . Let P be a k X d projection
matrix, where k& = 77, such that Pyj=1ify; =1land k' < jand Py = 0if I # jandy; = 0
forj = 1...d,k" = 1...k. Then the matrix product PX is a projection of those dimensions X; such
that v; = 1. Therefore, (PX)(PX)T = PXXTPT = PQPT are the Q projection indicated by ~. It is
expected that k < d to guarantee efficient processing in time O(k?). For instance, if n = 100, d = 10 and
k = 3 then P is 3 x 10, projecting three dimensions such that v; = 1, resulting in a 3 x 100 matrix.

We will not explicitly compute matrix products involving P. Instead, we use <y to build an index on
dimensions j such that v; = 1. Based on I" and P we compute 3, as follows: 3, = (PQPT)_IPQ[;. Ina
similar manner, we compute the posterior probability 7(y;|X,Y") as follows:

(X, Y) = (¢ + 1)~ 2yyT — (e + 1)Ly XTI PT(PQPT) L PXY T, (19)

Notice several terms in this long equation are repeated in transposed form: YX7 PT = (PXYT)T and
P 5T — ﬂ PT T
h = (ByP)7

3.4 Optimizing SSVS Algorithm in a DBMS

We assume main memory is limited and secondary storage is unlimited. Therefore, we assume it is not
possible to store X in main memory, but it is feasible for I' and ©. We assume d < n and n is large; this
is the most common case to analyze large data sets. Integrating SSVS with a DBMS is difficult. From
an algorithmic time complexity perspective, the main challenges are: iterating a large number of times to
sample from the posterior distributions, reading X from secondary storage many times and re-computing
7(vj]X,Y’). Consequently, we need to recompute Q5 ! for each dimension at each iteration. From a DBMS
perspective, the main challenges are using a small amount of RAM (i.e. not loading data set in RAM),
fast data set summarization to accelerate the computation of I' and computing matrix operations accurately
and efficiently. We now study how to integrate SSVS with a relational DBMS using SQL programming
mechanisms, especially aggregate User-Defined Functions (UDFs).

Storage

In a DBMS the data set X is stored on a table with an additional column ¢ identifying the point (i.e. a record
identifier like customer id), which is not used for statistical analysis. The table for X in a horizontal layout is
defined as X (i, X1, Xo,..., X4, Y). Notice matrices X is mathematically manipulated with column vectors
and each column will be stored as a table row in a DBMS.

Optimizations in a DBMS

Our SSVS algorithm for d < n has two major phases: (1) computing I'; (2) iterating SSVS in RAM. The
first optimization is to compute I in an aggregate UDF, which a standard programming mechanism on any
DBMS. The main advantages of this aggregate UDF is that I' can be computed in parallel: parallel I/O,
multithreaded processing interleaving I/O with CPU operations and array-based computation in RAM. A
User-Defined Type (UDT) is the interface to pass the vector z; to the UDF: it transforms table rows into
vectors. The aggregate UDF is a significant improvement over previous solutions based on SQL queries
and Table-Valued Functions [11]. SQL queries are evaluated in parallel, but do not allow arrays and matrix
entries are converted to multiple columns, resulting in slow computation. On the other hand, TVFs allow
arrays but I/O is strictly sequential, but with low RAM footprint. Aggregate UDFs remove these limitations
but RAM usage grows proportional to the number of working threads: this results in each thread having its

own local version of I'. Let NV be the number of processing units in a parallel system, each with its own RAM
and disk. Then there are IV local summarization matrices in the UDF processing threads I'1,I'2, ..., 'y,
where 'y = {n;, L;,Qs}. Thenn = 2?7:1 ny, L = Zévzl L;,Q= Zf,vzl Q7. Therefore, I = Zf,vzl T;.

For SSVS iterations, recall the augmented data setis Z = {z1, 22, ..., 2, }. Sampling from the posterior
probability distribution of 7(y|X,Y") requires computing (PQPT)~!, PQ. The most intensive compu-
tation is (PQPT)~1, which takes time O(k3). All those matrix operations are computed in RAM. Our
algorithm is highly efficient, but it does not compute an approximation of ©. In summary, X is read once
and SSVS iterations are performed in main memory.

The second optimization is hashing on frequent variable subsets . We added an important optimization
to accelerate the posterior probability computation for . Since the Markov chain will likely visit some
highly frequent dimension combinations, indicated by =, it does not make sense to recompute such proba-
bilities over and over. Therefore, if a specific -y value was computed before, a hash key based on {j1, j2,... }
s.t. 75, = 1 will give us the pre-computed probability stored in a hash table. Then time goes down from
O(p?) to O(1) for frequent ~y values. We will explain the dimension combination hashing when we present
optimizations in a DBMS. In this case is converted to a string data type, which is the input key for a
hashing function. Since we need to compute pg and p; to sample from the posterior, it is necessary to insert
two keys into the hash table, one with «y; = 0 and another one with «y; = 1. Then if pg or p; are not found
then they are inserted into the hash table. Otherwise, such probabilities are retrieved from the hash table.
Collisions are handled with linear probing. Recall that SSVS is after v dimension combinations such that
their R? is slightly smaller than R? for the full d model. It is tempting to apply a downward closure opti-
mization to ~ (similar to frequent itemset computations) since -y can be seen as an itemset. Unfortunately, v
probabilities do not obey downward closure: adding one dimension «y; = 1 to a previously rejected dimen-
sion combination may increase R2. The size of the hash table is fixed before the stored procedure starts and
it is inversely proportional to c: smaller ¢ values require a larger hash table.

The third optimization is exploiting matrices stored as a single block for Q. Matrices are allocated as
one-dimensional arrays on contiguous memory space, like traditional numerical linear algebra algorithms
[4]. Such arrays provide faster performance than two-dimensional arrays because memory is less frag-
mented. Also, address computation for an entry [i, j] is faster. We apply a fast matrix inversion with an
LU decomposition. This optimization is key to compute (PQP7T)~! (the projected matrix of Q based on
~), which is the bottleneck for SSVS. The remaining matrix products can be efficiently computed inside the
stored procedure. Notice that the hash table can significantly decrease the number of times sub-matrices
(projections) from Q need to be inverted.

3.5 Time Complexity and I/O Cost

We summarize time efficiency based on O() and I/O cost for both SSVS versions. We assume row-based
storage with either d values or n values per row. Also, here we assume k represents average v length. Vector
~v is used as a hash key to get probabilities in time O (k). Since dimension combinations vary and we allocate
ample space for the hash table there are generally no collisions. Therefore, the time to insert or retrieve from
the hash table is O(k).

Summarization with I" is computed in time O(d?n). On the other hand, the I/O cost is n I/Os to read
X. There is a second pass to compute regression error o in time O(dn) with an additional n I/Os. Once
I is computed, each SSVS iteration per variable takes time O(k3), where k < d, which rapidly decreases
to O(k) in some iterations as the Markov chain stabilizes. During iterative behavior SSVS takes time
O(dk3N), where N depends on the probabilistic distribution of data. Overall, time is O(d?n + dk3N).

Table 1: Data sets sizes and time comparison: DBMS versus R package (defaults for input parameters
¢c=1000, N = 10000; * means more than 3 hours).

Data set d n | DBMS R
activity 41 2871079 46.0 *
airplane 40 7154 14.6 *
car 7 398 0.2 409
caterpillar 10 33 02 59
deathrate 15 60 0.7 112
isolet 617 7797 * *
parkinsons 20 5875 2.1 *
slump 7 103 0.1 59
violence 101 1995 119.4 *
yearpredict | 89 463715 18.0 *

4 Experimental Evaluation

We present an experimental evaluation analyzing accuracy and time performance with several real data
sets. We use the R statistical package as the golden standard to compare accuracy. When comparing our
optimized Gibbs algorithm running on the DBMS with the Gibbs sampler running on the R package, we
analyze real data sets that can fit in main memory. Time complexity and scalability are analyzed with a real
data set having high d, replicating rows several times to get larger n.

4.1 Setup and Data Sets

We present our experimental evaluation on the Microsoft SQL Server 2008 DBMS, which supports TVFs
and aggregate UDFs. The physical row size limit was 8,000 bytes which translates into d ~ 1000. The
hardware configuration for the DBMS server was one Quadcore CPU running at 2.13 GHz per core, 4 GB
of RAM and 1 TB on disk. The aggregate UDF, the TVF and SP were programmed in the C# language.

The data sets (described below) were available as relational tables in the DBMS and as plain text files
when analyzed by the R package. In general, the DBMS cache memory was cleared before each run to make
sure the data set was read from secondary storage. Experiments were repeated seven times, discarding the
minimum and maximum times, computing the average from the remaining five runs. All times are reported
in seconds by default. In general, we stopped program execution when time went beyond one hour.

Table 1 shows d and n for the real data sets, used to evaluate time performance and accuracy. All data
sets were obtained from the UCI Machine Learning repository.

4.2 Parameters Specified by the User

We used the Zellner informative prior by default since its computation is more efficient. Therefore, the two
main algorithm parameters controlled by the user are ¢, the mixing constant in the Zellner prior and [V, the
number of iterations.

Recall there is a burn-in period given by B to get a stable Markov chain. Table 2 shows how c influences
time. A small ¢ value is used to trigger significant mixing between ; = 0 and -y; = 1. At the other extreme,
high ¢ values favor v; = 0 (i.e., not selecting variable 7). We can observe time grows as c decreases,
but it does not vary significantly. Therefore, our optimized SSVS algorithm allows the user to explore the
posterior distribution well with no concern about time performance. In general, getting an acceptable model
O under MCMC methods requires many trial and error runs, where each run requires a large number of
iterations (thousands for some problems).

Table 2: Parameters: varying c (mixing) and N (MCMC iterations); times in seconds (defaults for input
parameters ¢ = 1000, N = 5000).

& N
Data set 10 100 1000 10000 100000 | 5000 10000 20000
activity 8.2 9.0 145 14.6 142 | 145 27.2 53.2
airplane 146 146 14.6 14.7 146 | 14.6 29.1 58.5
car 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.7
caterpillar 0.5 0.4 0.3 0.2 0.2 0.3 0.7 1.5
deathrate 1.6 0.9 0.9 0.7 0.6 0.9 1.9 4.1
parkinsons 3.8 2.9 2.4 2.2 2.1 2.4 4.4 8.7
slump 0.2 0.2 0.2 0.1 0.1 0.2 0.5 1.1
yearpredict | 369.6 321.6 3222 2757 1954 | 322.2 5053 986.2
violence 113.9 1104 1134 1194 117.2 | 113.4 2204 4454

Table 2 shows time growth for iterations in the thousands as the number of iterations doubles. Clearly,
time grows in the same proportion exhibiting linear behavior. Based on previous research [11], in general
N = 5000 can produce good results. Therefore, N = 20000 is a pessimistic guarantee about performance.
Based on these experimental results, we set ¢ = 1000, N = 10000 and B = 1000 as default values. When
time performance is an issue in the R package, especially for large n, we set N = 5000 and B = 500 in
order to finish in no more than three hours.

4.3 Performance and Optimizations

Table 1 compares our optimized Gibbs sampler running on the DBMS with the reference Gibbs sampler
from [10] running on the R package. All data sets can be loaded in main memory by R. However, recall
that the data set X is summarized with I'. Therefore, the DBMS does not load X in main memory. In both
cases the data set is initially read from secondary storage. We can see that in every case the DBMS is at least
two orders of magnitude faster than the R package. For the wine data set, where n is largest the DBMS is
four orders of magnitude faster than R. Time in R heavily depends on n and to a lesser extent on d. For the
DBMS, since n is small to influence heavy I/O time does not show a dependence on n. On the other hand,
time is impacted by d, but it is not proportional to 2¢. These results prove that our optimized Gibbs sampler
is much faster even if R can load the data set in main memory. The main reason is that the - projection of
XXT and the corresponding matrix inverse are recomputed by R at every iteration. The second reason is
of course hashing the most frequent variables combinations, avoiding the entire re-computation altogether.
Needless to say, R would be slower if the data set was read from secondary storage at every iteration (not
much slower since MCMC computations are CPU bound).

We turn our attention to analyzing the impact of each optimization individually, turning it on and off.
All optimizations are turned on by default in order to get shorter running times. Some optimizations may
interact together; we explain when that happens in order to correctly interpret results. We focus on analyzing
time growth varying d since d is the most challenging problem size. We analyze the Isolet data set, which
has high d = 617. We randomly replicate points and randomly sample dimensions to obtain large data sets.
As justified above, the default values for method parameters are ¢ = 1000 and N = 10000.

Table 3 compares three programming solutions to compute I': with an SQL query using standard aggre-
gations (sum() and count()), a table-valued function exploiting a cursor interface to read X and an aggregate
UDF. The three summarization programming solutions read the data set once. Clearly, the aggregate UDF
is two orders of magnitude faster than the SQL query and two to three times faster than the TVF. The trend
indicates the gap between the TVF and the aggregate UDF increases as d grows. The most important reasons
are parallel processing with multiple threads and the ability to exploit arrays for blocked matrices. The SQL

Table 3: Optimizations: Summarization with I', hashing -y and blocked matrices (Isolet data set, n =1M).

d | SQL query TVF Aggr. UDF | hash=Y hash=N | Blocked=Y Blocked=N
20 44 14 11 17 76 17 20
40 155 32 19 35 428 35 50
60 352 59 25 52 1374 52 105
80 762 92 33 96 * 96 317

100 1154 202 44 134 * 134 629

Table 4: Accuracy: Comparing DBMS and R package on variable probability estimation (absolute and

relative error).

Dataset max abs avgabs maxrel avgrel
car 0.003 0.001 0.188 0.054
caterpillar 0.008 0.004 0.190 0.069
deathrate 0.039 0.013 0.300 0.127
slump 0.008 0.003 0.263 0.111

query creates a wide table with d + d? /2 columns, resulting in an inefficient aggregation for I'. On the other
hand, the TVF can exploit arrays, but works in a sequential fashion.

Table 3 shows the importance of the hashing optimization. The impact at low d is modest, but at high
d it becomes so significant that the program cannot finish in one hour. This optimization simply avoids
re-computing the probability of exactly the same variable combination turning one variable on and off when
sampling. Notice that this optimization is based on the assumption that 3 does not change across iterations.

We now evaluate the importance of using matrices stored as a single block like numerical linear algebra
algorithms [4], compared to bi-dimensional arrays, as shown on Table 3. We can see the difference becomes
significant as d grows. The explanation is simple. Memory management is more efficient for matrices stored
as a single block and address computation of one entry is faster as well.

4.4 Accuracy

We now analyze accuracy. Since MCMC methods work with random numbers it is expected to have variation
in results. Table 4 compares probability estimation per variable as follows. We use the Gibbs sampler R
program for variable selection from [10] as the reference. We ran the R program and our UDF with the same
parameters: the mixing value ¢, burn-in period B and number of iterations N. We only show results for
data sets when R could finish within 2 hours. Otherwise, R was stopped. The output were the probabilities
per variable across all y; models. That is, we derived their prior probability adding ~y; and dividing by
N — B, which are numbers in [0,1]. We then computed two error measures: absolute error and relative
error per variable. Since probabilities are real numbers in [0,1] absolute error is a reasonable accuracy
measure. Nevertheless, we also computed relative error taking the R estimation as the reference value (i.e.,
dividing absolute error by the value computed by R). Table 4 reports the average and maximum for both
error measures. Notice the maximum relative error across all d variables is a very sensitive error measure,
especially when probabilities are close to zero. We can see our Gibbs sampler has two digits of precision for
average absolute error (i.e. 99% accurate) and about 96% accuracy considering maximum absolute error.
For relative error, given the random nature of MCMC computations error is higher, but still low: around
90% for average relative error and 50% for maximum relative error, which again, it is a pessimistic error
estimation.

10

5 Related Work

We start our discussion with work on the Gibbs sampler used on variable selection. Formulating variable
selection as a Bayesian statistics problem was proposed in the seminal paper [6], where the Gibbs sampler
builds a Markov chain with frequent variable subsets selected. This work presents the hierarchical formu-
lation of the SSVS problem, defines informative priors for all parameters and discusses guidelines to assess
convergence. Linear regression dates back a long time. A good introduction to linear regression and the
least squares method to fit a line to a set of points is presented in [5]; our basic definitions closely follow
this work. Accelerating Bayesian model computation on large data sets has been studied before [14], where
the fundamental idea is to use importance sampling, giving higher weight to high probability regions of the
posterior distribution, making an additional pass on the data set to adjust weights. The basic issue is that
model accuracy is sacrificed since MCMC methods rely on sampling from the entire data set. This work fo-
cuses on Hidden Markov models (HMMs) and logistic regression and studies both the Gibbs sampler and the
more general Metropolis-Hastings method. In contrast, our method gets an exact estimation of the posterior
probabilities from the entire data set in one pass. For linear regression, importance sampling would be less
efficient since it requires reading the data set several times and it rests on the assumption there is an efficient
and accurate sampling mechanism in the DBMS. Later, [10] presents several mathematical simplifications to
model equations to make Bayesian variable selection simpler. The most important contribution of this work
is to explain the importance of a non-informative prior on the regression coefficients to simplify sampling
from the posterior distribution. Then regression coefficients of selected variables at each iteration are esti-
mated from common regression coefficients across all models. Adapting and extending this optimization,
our generalized sufficient statistics become the only ingredient needed to sample variables at each iteration,
eliminating the need to read the data set at each iteration. We want to point out that the reference Gibbs
sampler programmed in R used in our experiments was the publically available version from [10]. Our
optimized SSVS method can be extended beyond normal linear models to generalized linear models such
as exponential family models (binary, Poisson, ordinal data) through latent Gaussian variable formulations,
such as those proposed in [1].

Despite the prominence of linear regression in statistics there is little work studying how to accelerate
it to analyze large data sets that cannot fit in RAM. Integrating linear regression with a DBMS has received
limited attention. Generalized sufficient statistics for several statistical models are proposed in [12], where
linear regression is one of such models. This works shows sufficient statistics enable faster computation
reducing the number of passes the data set needs to be read. It is also shown the most efficient SQL mech-
anism to compute sufficient statistics in a DBMS are aggregate UDFs. This paper briefly studies only the
full dimensional regression problem (i.e. it does not study variable selection). In contrast, we study how to
accelerate the Gibbs sampler for variable selection and how to efficiently compute projections of sufficient
statistics to select many subsets of variables.

The most closely related works are [11] and [13], where sufficient statistics for the full dimensional
regression problem are adapted for Bayesian variable selection and Singular Value Decomposition (SVD),
respectively. In [11] there is a less general and significantly less efficient derivation of the accelerated Gibbs
sampler, based on an informative Zellner prior, which requires careful tuning of model parameters. In con-
trast, our optimized SSVS algorithm is based on a Zellner non-informative prior, resulting in an easier to use
algorithm and faster sampling from the posterior distributions. This work exploits SQL queries and TVFs
as the main mechanism to summarize the data set, but it does not explore aggregate UDFs which are much
faster and enable parallel processing. From a numerical computation perspective, blocked matrices are not
considered either. We should emphasize the aggregate UDF is a significant optimization over SQL queries
and Table-Valued Functions (TVFs) [11]: SQL queries are evaluated in parallel, but do not allow arrays
leading to matrix entries being stored as multiple columns. On the other hand, TVFs allow arrays, but I/O
and processing is sequential. In other words, data set summarization with aggregate UDFs is significantly
faster due to parallelism and arrays. Data summarization with sufficient statistics in our SSVS algorithm

11

generalizes previous work on solving PCA with SVD [13]. There are several important differences though.
We have been able to summarize the data set with a single matrix (I'), augmenting the data set with 1s and
the dependent variable Y, computing it with a single outer product. It was not evident that all equations
involving X or Y could exploit I'. The previous SVD algorithm exploited SQL queries, which could not
fully exploit parallel processing and arrays for blocked matrix operations.

6 Conclusions

Variable selection is a fundamental problem in statistics whose solution requires exploring a large combi-
natorial search space. Bayesian MCMC methods solve this problem with a stochastic search. In this paper,
we focused on optimizing the Gibbs sampler, a popular MCMC method, to select variables in linear regres-
sion. We introduced an optimized MCMC algorithm that can analyze a large data set resident on secondary
storage in one pass, making stochastic search iterations in main memory on a summarized representation of
the data set. Mathematically, the most difficult optimization aspect was to specify Zellner informative and
non-informative priors to exploit sufficient statistics on every matrix equation. As a result, all posterior prob-
ability functions are based on rewritten equations involving augmented sufficient statistics, combining the
explanatory variables and the dependent variable. From a database system perspective, the most important
optimizations, in order of importance, were parallel data summarization with aggregate UDFs, dimension
indexing for efficient projection, hashing variable subsets and block-based matrix operations. Hashing on
frequent variable subsets avoids repeatedly computing the posterior probabilities turning each variable on
and off. The resulting algorithm iterates in main memory by sampling from the posterior distribution of a
summarized representation of the data set. Secondary benefits include avoiding the need to sample the data
set or to reduce the number of iterations, which would hinder proper convergence of the MCMC method.
Experiments on real data sets evaluate accuracy and performance comparing our DBMS-based algorithm
and the R package. Our algorithm is shown to be as accurate as R, but orders of magnitude faster. By
comparing the time to export a large data set, our approach is shown to be preferable even if the data set
originally resides outside the DBMS. We emphasize our algorithm has a minimal set of parameters: only a
mixing constant and a maximum number of iterations. We show the mixing constant, controlling the breadth
of stochastic search, does not affect performance significantly. On the other hand, since each iteration is fast
it becomes feasible to efficiently run the Gibbs sampler for a large number of iterations. Hashing frequent
variable subsets accelerates iterations as the Markov chain stabilizes. The algorithm is theoretically and
experimentally proven to have linear scalability on data set size, which tends to be most important challenge
for large data sets. On the other hand, our algorithm has quasi-linear time complexity on dimensionality,
which is significantly faster than an exhaustive search with exponential time complexity.

Given the difficulty to optimize Bayesian MCMC methods and the inherent combinatorial explosion
of variable subsets there are many research issues. We intend to extend stepwise variable selection to be
guided by stochastic search. Since Bayesian statistics allow an experienced analyst to incorporate existing
model knowledge, we want to give the user the ability to incorporate priors on model parameters favoring
parsimonious models, maintaining fast computation. It is necessary to develop further database optimiza-
tions for high dimensional data sets that cannot fit in main memory. In particular, we want to study external
hash tables for a large number of variable subsets. Given alternative acceleration approaches, it is neces-
sary to understand the accuracy and efficiency tradeoffs between sampling and summarization with suffi-
cient statistics. The Gibbs sampler can only be applied when it is possible to sample the posterior of one
model parameter conditioning on the rest, which is not always feasible. Therefore, it is necessary to study
which mathematical and database optimizations can work on more general MCMC methods, such as the
Metropolis-Hastings algorithm. Going beyond, linear regression is not the only problem which can benefit
from Bayesian methods. We want to optimize Bayesian methods for other prominent statistical models such
as logistic regression, Gaussian mixtures and Hidden Markov models, covering the whole unsupervised and
supervised spectrum.

12

Acknowledgments

This work was supported by NSF grants grants IIS 0914861 and IIS 0915196.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

A. Albert and S. Chib. Bayesian analysis of binary and polychotomous response data. Journal of the
American Statistical Association, 88(422):669-679, 1993.

V. Baladandayuthapani, R.J. Carroll, and B.K. Mallick. Spatially adaptive bayesian penalized regres-
sion splines (p-splines). Journal of Computational & Graphical Statistics, Volume 14:378-394, 2005.

G. Celeux, M. El Anbari, J.M. Marin, and C. P. Robert. Regularization in regression: Comparing
Bayesian and frequentist methods in a poorly informative situation. Bayesian Analysis, 7(2):477-502,
2012.

J.W. Demmel. Applied Numerical Linear Algebra. STAM, 1st edition, 1997.

A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data Analysis. Chapman and Hall/CRC,
2003.

Edward I. George and Robert E. McCulloch. Variable selection via Gibbs sampling. Journal of the
American Statistical Association, 88(423):881-889, 1993.

E.I. George and R.E. McCulloch. Approaches for bayesian variable selection. Statistica Sinica, 7:339—
374, 1997.

F. Li and N.R. Zhang. Bayesian variable selection in structured high-dimensional covariate spaces
with applications in genomics. Journal of the American Statistical Association, 105(491), 2010.

F. Liang, R. Paulo, G. Molina, M.A. Clyde, and J.O. Berger. Mixtures of g priors for Bayesian variable
selection. Journal of the American Statistical Association, 103(481), 2008.

J.M. Marin and C.P. Robert. Bayesian Core: A Practical Approach to Computational Bayesian Statis-
tics. Springer, 2007.

M. Navas, C. Ordonez, and V. Baladandayuthapani. On the computation of stochastic search variable
selection in linear regression with UDFs. In Proc. IEEE ICDM Conference, pages 941 — 946, 2010.

C. Ordonez. Statistical model computation with UDFs. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 22(12):1752-1765, 2010.

C. Ordonez, N. Mohanam, C. Garcia-Alvarado, P.T. Tosic, and E. Martinez. Fast PCA computation in
a DBMS with aggregate UDFs and LAPACK. In Proc. ACM CIKM Conference, 2012.

G. Ridgeway and D. Madigan. Bayesian analysis of massive datasets via particle filters. In Proc. ACM
SIGKDD, pages 5-13. ACM New York, NY, USA, 2002.

13

