
Big Data Analytics Integrating a Parallel Columnar
DBMS and the R Language

Yiqun Zhang, Carlos Ordonez, Wellington Cabrera
University of Houston, TX, USA

Abstract—Most research has proposed scalable and parallel
analytic algorithms that work outside a DBMS. On the other
hand, R has become a very popular system to perform machine
learning analysis, but it is limited by main memory and single-
threaded processing. Recently, novel columnar DBMSs have
shown to provide orders of magnitude improvement in SQL
query processing speed, preserving the parallel speedup of row-
based parallel DBMSs. With that motivation in mind, we present
COLUMNAR, a system integrating a parallel columnar DBMS
and R, that can directly compute models on large data sets stored
as relational tables. Our algorithms are based on a combination
of SQL queries, user-defined functions (UDFs) and R calls,
where SQL queries and UDFs compute data set summaries
that are sent to R to compute models in RAM. Since our
hybrid algorithms exploit the DBMS for the most demanding
computations involving the data set, they show linear scalability
and are highly parallel. Our algorithms generally require one
pass on the data set or a few passes otherwise (i.e. fewer passes
than traditional methods). Our system can analyze data sets
faster than R even when they fit in RAM and it also eliminates
memory limitations in R when data sets exceed RAM size. On
the other hand, it is an order of magnitude faster than Spark (a
prominent Hadoop system) and a traditional row-based DBMS.

I. INTRODUCTION

There is significant research progress on efficient algorithms
to analyze large data sets, but most of them work outside
a DBMS on flat files. Currently, R package is one of the
most popular open-source systems to perform statistical anal-
ysis due to its extensive library of models and techniques,
intuitive syntax and interpreted language (i.e. interactive).
Unfortunately, as well noted in the literature, R is slow to
analyze large data sets, especially when they do not fit in
RAM. On the other hand, DBMSs and the Hadoop eco-system
are currently the two competing technologies to analyze big
data, both based on automatic data parallelism on a shared-
nothing architecture. Nevertheless, previous research [3] has
shown it is slow to move large volumes of data outside a
DBMS due to double I/O, the need to change blocks to an
external file format and network latency. Moreover, the export
operation needs to be repeated if the database is refreshed
with new records or data sets are rebuilt with new variables
(dimensions). On the other hand, traditional DBMSs are highly
efficient for SQL query processing, but SQL is considered slow
and inadequate for matrix manipulation. Reasons supporting
such perception include the following: There is more flexibility
to develop algorithms in a traditional programming language
like C++; relational tables and arrays are incompatible with
each other; the complex parallel DBMS internal architecture.

Therefore, the problem of performing statistical analysis with
SQL has received scant attention. User-defined functions are
a powerful programming mechanism that can extend SQL
math capabilities, but at the cost of leaving optimization and
memory management to the developer.

Given its wide adoption and standards, SQL will likely re-
main the language of DBMSs. Research in the last decade has
proposed specialized DBMSs to improve SQL performance.
Specifically, column stores [1], [5] provide orders of mag-
nitude of acceleration for analytical SQL queries combining
joins and aggregations. With that motivation in mind, we
present COLUMNAR, an analytic system that can work on
top of a columnar DBMS evaluating optimized SQL queries
and user-defined functions (UDFs) for such architecture. The
main contribution of our research is that key matrix equations
involving large matrices are computed with SQL queries and
UDFs instead of a traditional programming language. In this
manner, we have been able to integrate methods without
disrupting the DBMS architecture and without the need to
modify the DBMS internal source code. Our algorithms can
process a large data set in either one pass or a few passes.
Moreover, all our algorithms have linear scalability on data
set size and they exhibit linear speedup.

COLUMNAR has unique features and advantages compared
to other analytic systems. Unlike most research prototypes
and existing tools, our system directly processes relational
tables, truly performing “in-database” analytics. Our system
can analyze large data sets faster than most external data
mining tools, including the R package and Hadoop systems
(including Spark, a prominent system that has subsumed
MapReduce). From an R perspective, our system eliminates
the RAM limitations in R. Even though there exist R libraries,
like bigmem and snow, to remove the RAM limitations,
they still cannot work in parallel. From a parallel processing
perspective, our system is much faster than Hadoop systems
(like Spark) to analyze large tables running on the same
hardware. In other words, it requires fewer nodes in a parallel
cluster. There exist other systems integrating R and a DBMS
(Vertica, SQL Server etc.) or R and Hadoop (IBM Ricardo,
Teradata Aster), but in general they require transferring data
in RAM back and forth between the DBMS and R.

Our system has promise of wide application considering
DBMSs with ACID properties and relational query capabilities
remain the standard data management platform and column-
based DBMSs gain wider adoption. As time goes by most
data warehouses will be supported by a columnar DBMS



Vertica
Node 1

Data set X Sgmt. 1 ……

𝐗𝟏

𝚪𝟏

Load

Summarize

𝚪

Combine

Sgmt. 2 Sgmt. N

𝐗𝟐

Load

Summarize

Send

𝐗𝐍

𝚪𝐍

Load

Summarize

Send

……

Model
computation

Vertica
Node 2

Vertica
Node N

R

JDBC

𝚪𝟐

……

Model

Fig. 1. System architecture.

behind to process ad-hoc queries. This scenario will lead to
asking “why” questions once interesting trends and facts are
discovered. Therefore, there will be many data sets stored in
the DBMS that will require analysis with machine learning
models, where the R language or similar statistical systems
come into play. The user will benefit from analyzing such data
sets inside the DBMS: avoiding export bottlenecks, enforcing
secure access and eliminating redundant copies of data in
external computers.

II. DEFINITIONS

The input data set X = {x1, x2, . . . , xn} has n records (or
points) and d attributes (dimensions, features) plus an optional
“supervised” attribute (class G or dependent variable Y ). That
is, n is the data set size and when all attributes are numeric,
d represents dimensionality.

At a basic level, we compute descriptive statistics on the
data set X , which include the global mean µ, the variance-
covariance matrix V (also called Σ) and the correlation matrix
ρ. These descriptive statistics can be computed on subsets of
X as well (e.g. filtering X with some selection predicate).
From a statistical model perspective, our system offers two
kinds of models: supervised and unsupervised models. In
supervised models, as noted above, X has an additional
“target” attribute: a numeric dimension Y (for regression) or
a discrete (categorical) “class” attribute G for classification.
Unsupervised models include PCA (solved with SVD), and
clustering with mixtures of distributions (solved with K-
means). On the other hand, supervised (predictive) models
include: linear regression (solved by least squares) and the
Naı̈ve Bayes classifier (estimating joint class probability as a
product of marginal probabilities).

III. SYSTEM OVERVIEW

A. System Architecture

Our system is based on a client-server architecture between
R and the DBMS, shown in Figure 1. The DBMS is a

parallel cluster with N processing nodes under a shared-
nothing architecture (no shared RAM or disk). The R package
commonly runs on a separate machine or on one of the
N nodes (e.g. the master node), under the assumption that
any computation involving n rows is always evaluated with
SQL (possibly calling a UDF). Numerically intensive matrix
factorizations to solve SVD and least squares are solved by
R, which calls the LAPACK library. The data set, model
matrices and model parameters, are all stored as relational
tables. An R program at the client computer generates opti-
mized SQL queries, connects to the DBMS (via JDBC)submits
dynamically generated SQL queries (possibly calling UDFs)
and at the end of DBMS processing, it retrieves results and
loads them into R data structures (matrices, data frames). R
is responsible for two main tasks: (1) computing the model
exploiting data summarization computed by the DBMS (train
phase); (2) testing the model by applying the model to produce
the “estimated” attribute (test phase). The iterative method
convergence and stopping are managed by an R program.

B. Big Data Analytics with SQL Queries and R

We start by discussing storage in the columnar DBMS,
where indexing is not required. The data set and model
matrices are stored in tables, having a primary key with a
specific combination of matrix subscripts, depending on their
storage layout. Our system uses two fundamental data set
layouts for X: horizontal and vertical. The first layout is a
standard tabular representation which has n rows, each having
d columns. The second layout is based on a pivoted table with
one attribute value per row and up to dn rows, which enables
efficient processing of sparse matrices and which also removes
DBMS limitations on the maximum number of columns. The
I/O efficiency of each layout depends on matrix sparsity and
the specific query physical operator (scan, join, sort). The
data set will be sorted by the matrix subscripts, and will be
segmented and distributed to all the N processing nodes evenly
according to the value of a hash function on the row number i.
This process will be automatic in the columnar DBMS during
the data loading phase once we properly define the table at
creation time.

Computing matrix equations with SQL queries has proven
to be hard to optimize [2]. To get started, it is not possible to
create fixed queries that can efficiently evaluate mathematical
equations because the table definition for the input data set
is not fixed (especially for the horizontal layout with d
columns). Second, evaluating matrix equations with pure SQL
queries usually involves table joins, which are always quite
expensive for DBMSs especially when they are evaluated in
parallel. Therefore, SQL code generation at run-time from
R and developing specialized mathematical UDFs to bypass
table joins are necessary. Statistical methods and data mining
algorithms are also programmed with R in order to take full
advantage of its rich library of models and techniques.

The R program is based on two sets of parameters. The
first set of parameters controls SQL code generation (i.e. table
name and layout etc.) and database systems optimizations,



which are tailored to each algorithm (with some essential
math optimizations across multiple models). The second set
of parameters controls the mathematical behavior of each
technique. Examples include the number of clusters, tolerance
threshold for convergence, numeric stability issues, and so on.
We must emphasize that SQL code generated by R represents
a Turing-complete language. That is, we can evaluate any
equation with matrices, no matter how complex it is.

C. Algorithmic Optimizations

We discuss algorithmic optimizations, which are general and
therefore can be applied on any programming languages like
C++ or Java (i.e. beyond SQL). The sufficient statistics of the
multivariate normal distribution are an essential ingredient to
accelerate data mining computations [3]. Our system makes
extensive use of sufficient statistics to reduce the number of
passes on the data set, reaching one pass in most cases. Our
sufficient statistics are basically: the number of data records
n, the linear sum of points L (a d-dimensional vector) and
the quadratic (with cross-products) sum of points Q (a d× d
matrix) [2], [3]: L =

∑n
i=1 xi, Q =

∑n
i=1 xi · xT

i . In order to
reduce data set summarization to a a single matrix multiplica-
tion, we build an extended vector zi in RAM as zi = [1, xi, yi].
Then we compute a fundamental summarization matrix Γ =
Z · ZT [4]. Therefore, Γ becomes a comprehensive summary
of X containing L,Q as sub-matrices. Then Γ is computed
by a single SQL query using self-joins or calling a user-
defined transform function that builds vector zi and updates Γ
in parallel and incrementally. Γ is then used to substitute X .
The global mean and covariance are µ = L/n and V = Q/n−
(L/n)(L/n)T . Correlations ρab are efficiently computed with
ρab = (nQab−LaLb)/(

√
nQaa − L2

a

√
nQbb − L2

b). To com-
pute the global mean, global covariance, PCA, Naı̈ve Bayes
and linear regression sufficient statistics enable computation
of the model in one table scan. For PCA the correlation
matrix ρ is passed to the SVD function in R (which calls
LAPACK). Linear regression is solved using β = Q−1XY T

calling R as well (which also calls LAPACK). Sufficient
statistics are independently computed on k subsets of the
data set for K-means clustering, where the cluster means Cj

and cluster variances are efficiently computed with queries
on small tables. For K-means clustering, we developed an
incremental algorithm that obtains an approximate, but highly
accurate, solution in a few iterations, being much faster than
the standard K-means algorithm.

D. Query Processing Optimizations

From a query processing perspective, we carefully ana-
lyzed each query plan, identifying key optimizations for a
columnar architecture. The following discussion is mainly
about computing data set summarization to later compute the
model in R (i.e. train phase). An important distinction with
cube queries is that statistical analysis generally requires all
columns from the base table, resulting in a so-called super-
projection [1]. We should emphasize that despite the fact
that there exist similarities between row and column DBMS,

there are many important, sometimes subtle, differences in
query optimization between both. A significant difference with
previous research based on row storage [2] is that there are no
indexes: column values are internally maintained sorted at all
times. Columnar DBMSs have two internal storage managers:
a Write-Optimized Storage (WOS) to enable fast loading and a
Read-Optimized Storage (ROS) for query processing. There is
an incremental conversion of new records between the WOS
and the ROS. We will show the WOS to ROS conversion
is a bottleneck to load large data sets. However, since the
WOS runs concurrently as a background process the DBMS
can incrementally consume batches of new records. In this
manner, the DBMS can incrementally analyze high-velocity
data. We now explain query optimization queries on the ROS.
Since equations are evaluated with SQL queries and UDFs,
there are temporary tables and we control how each temporary
table is stored, by choosing an appropriate layout for the
data set, which improves compression and provides ordering
of column values for faster join and partition processing in
UDFs. Query rewriting is essential. A join operation is the
main operation that can degrade performance, if not care-
fully managed. Denormalization is used to compute sufficient
statistics together, eliminating joins in a query. Alternatively,
a user-defined transform function pushes the computation of
the summarization matrix Γ to RAM. The second major
relational operator is a GROUP BY aggregation, which in
general requires sorting by a different set of columns from
the projection. Whenever possible, aggregations are pushed
before joins. There are two choices for join algorithms: merge
joins and hash joins. Notice joins are not sort-merge joins
since they skip a sorting operation. When two tables have the
same primary key they are already sorted. Therefore, we can
use merge joins, resulting in linear performance. On the other
hand, if a merge join is not possible, when one table is small,
whereas as the other table is large, we exploit hash joins. If
both of these cases fail then we define a projection on the
join column to enable a merge join. In short, unlike previous
research [2], merge joins are preferred over hash joins and
nested loop joins are out of consideration. To conclude we
briefly discuss the model test phase, which is efficiently done
by sending data blocks from the DBMS to R to compute the
“estimated” attribute in a new column and then sending such
column back to the DBMS. Such block-based algorithm is
efficiently implemented via a UDF that build R data frames
by block and calls R on each block: data transfer back and
forth happens exclusively in RAM.

IV. EXPERIMENTAL VALIDATION

We present experiments to evaluate the performance of our
system compared to Spark and R. Since our algorithms do
not change the accuracy of matrices and final results, it is
unnecessary to measure statistical or numeric accuracy.

A. Experimental Setup

We ran all the systems on a machine that has a Quad Core
CPU, 4GB of RAM and 1TB SATA disk running Ubuntu



Server 14.04. The columnar DBMS was HP Vertica 7.2. We
ran only one parallel system at a time, while the rest were
shut down.

The data set we used was the network intrusion data
set obtained from the KDD Cup repository (KDD 99). The
original KDDnet data set has n = 10M data records and
d = 38 attributes. We sampled and replicated the KDDnet to
get varying n (data set size) and d (dimensionality), without
altering its statistical properties. All the data sets were avail-
able as CSV files on disk for R, on HDFS for Spark, and as
relational tables in a vertical layout (i, j, v) for HP Vertica. In
Vertica, the relational tables for the data sets were ordered by
the matrix subscripts i, j, and were segmented across the nodes
by modularhash(i), a hash function that helps distribute the
data evenly. The ordering and segmentation were specified in
the table definition, and the data was segmented and sorted at
loading time (i.e. No other separate projection is created).

B. Performance Comparison

We now compare the performance of our system computing
the data set summarization against SQL queries with joins,
Spark and R. Since R cannot work in parallel, in this com-
parison we only use N = 1 (number of the processing nodes)
and vary n and d.

Table I shows the result of the comparison. If the compu-
tation still cannot finish after 20 minutes, we report “stop”.
We only compared the time to compute the summaries of the
data set Γ because Γ can be consumed by R and the time to
compute PCA or LR is 1 second for d ≤ 100. From the result
we can see the approach using SQL queries calling UDFs is
the fastest for all data sets. In particular, it is one order of
magnitude faster than SQL with joins because our UDF can
bypass the expensive self-join. Meanwhile, our UDF approach
is much faster than R and Spark. The table showed that when
n grows from 100K to 1M, the time for R becomes more than
10 times slower. This indicates that the scalability of R

degrades a lot due to the limit of the RAM as the size of the
data set continue to grow. The comparison between our UDF
and Spark shows that although Spark scales well as the data
set gets larger, it cannot get as efficient as our UDF due to the
CSV parsing and JVM overhead.

TABLE I
PERFORMANCE COMPARISON: COLUMNAR VS. SQL QUERIES WITH

JOINS, R AND SPARK (TIME IN SECS.)

COLUMNAR
n d UDF join query R Spark

10K 10 0.05 0.29 0.11 0.27
20 0.08 0.74 0.23 0.31
40 0.14 1.86 0.49 0.63
80 0.25 5.45 0.98 1.10

100K 10 0.33 3.48 1.16 1.36
20 0.52 7.64 2.38 2.70
40 1.03 15.59 5.04 4.82
80 1.97 40.86 10.75 10.00

1M 10 2.8 28.31 16.46 11.30
20 4.68 63.86 29.65 23.00
40 9.54 163.17 61.78 47.47
80 22.36 stop 273.86 95.69

REFERENCES

[1] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier, L. Doshi, and
C. Bear. The Vertica analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[2] C. Ordonez. Integrating K-means clustering with a relational DBMS using
SQL. IEEE Transactions on Knowledge and Data Engineering (TKDE),
18(2):188–201, 2006.

[3] C. Ordonez. Statistical model computation with UDFs. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 22(12):1752–1765,
2010.

[4] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma operator for big
data summarization on an array DBMS. Journal of Machine Learning
Research (JMLR): Workshop and Conference Proceedings (BigMine
2014), (36):61–96, 2014.

[5] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Fer-
reira, E. Lau, A. Lin, S. Madden, E.J. O’Neil, P.E. O’Neil, A. Rasin,
N. Tran, and S.B. Zdonik. C-Store: A column-oriented DBMS. In Proc.
VLDB Conference, pages 553–564, 2005.


