
Managing Big Data Analytics Workflows
with a Database System

Carlos Ordonez Javier Garcı́a-Garcı́a
University of Houston UNAM University

USA Mexico

Abstract—A big data analytics workflow is long and complex,
with many programs, tools and scripts interacting together. In
general, in modern organizations there is a significant amount
of big data analytics processing performed outside a database
system, which creates many issues to manage and process big
data analytics workflows. In general, data preprocessing is the
most time-consuming task in a big data analytics workflow. In
this work, we defend the idea of preprocessing, computing models
and scoring data sets inside a database system. In addition, we
discuss recommendations and experiences to improve big data
analytics workflows by pushing data preprocessing (i.e. data
cleaning, aggregation and column transformation) into a database
system. We present a discussion of practical issues and common
solutions when transforming and preparing data sets to improve
big data analytics workflows. As a case study validation, based on
experience from real-life big data analytics projects, we compare
pros and cons between running big data analytics workflows
inside and outside the database system. We highlight which tasks
in a big data analytics workflow are easier to manage and faster
when processed by the database system, compared to external
processing.

I. INTRODUCTION

In a modern organization transaction processing [4] and data
warehousing [6] are managed by database systems. On the
other hand, big data analytics projects are a different story.
Despite existing data mining [5], [6] functionality offered by
most database systems many statistical tasks are generally
performed outside the database system [7], [6], [15]. This
is due to the existence of sophisticated statistical tools and
libraries, the lack of expertise of statistical analysts to write
correct and efficient SQL queries, a somewhat limited set of
statistical algorithms and techniques in the database system
(compared to statistical packages) and abundance of legacy
code (generally well tuned and difficult to rewrite in a different
language). In such scenario, users exploit the database system
just to extract data with ad-hoc SQL queries. Once large tables
are exported they are summarized and further transformed
depending on the task at hand, but outside the database system.
Finally, when the data set has the desired variables (features),
statistical models are computed, interpreted and tuned. In
general, preprocessing data for analysis is the most time
consuming task [5], [16], [17] because it requires cleaning,
joining, aggregating and transforming files, tables to obtain
“analytic” data sets appropriate for cube or machine learning
processing. Unfortunately, in such environments manipulating

data sets outside the database system creates many data man-
agement issues: data sets must be recreated and re-exported
every time there is a change, models need to be imported
back into the database system and then deployed, different
users may have inconsistent versions of the same data set in
their own computers, security is compromised. Therefore, we
defend the thesis that it is better to transform data sets and
compute statistical models inside the database system. We
provide evidence such approach improves management and
processing of big data analytics workflows. We argue database
system-centric big data analytics workflows are a promising
processing approach for large organizations.

The experiences reported in this work are based on analytics
projects where the first author participated as as developer
and consultant in a major DBMS company. Based on ex-
perience from big data analytics projects we have become
aware statistical analysts cannot write correct and efficient
SQL code to extract data from the database system or to
transform their data sets for the big data analytics task at hand.
To overcome such limitations, statistical analysts use big data
analytics tools, statistical software, data mining packages to
manipulate and transform their data sets. Consequently, users
end up creating a complicated collection of programs mixing
data transformation and statistical modeling tasks together. In
a typical big data analytics workflow most of the development
(programming) effort is spent on transforming the data set: this
is the main aspect studied in this article. The data set represents
the core element in a big data analytics workflow: all data
transformation and modeling tasks must work on the entire
data set. We present evidence running workflows entirely
inside a database system improves workflow management and
accelerates workflow processing.

The article is organized as follows. Section II provides
the specification of the most common big data analytics
workflows. Section III discusses practical issues and solutions
when preparing and transforming data sets inside a database
system. We contrast processing workflows inside and outside
the database system. Section IV compares advantages and
time performance of processing big data analytics workflows
inside the database system and outside exploiting with external
data mining tools. Such comparisons are based on experience
from real-life data mining projects. Section V discusses related
work. Section VI presents conclusions and research issues for



future work.

II. BIG DATA ANALYTICS WORKFLOWS

We consider big data analytics workflows in which Task
i must be finished before Task i + 1. Processing is mostly
sequential from task to task, but it is feasible to have cycles
from Task i back to Task 1 because data mining is an iterative
process. We distinguish two complementary big data analytics
workflows: (1) computing statistical models; (2) scoring data
sets based on a model. In general, statistical models are
computed on a new data set, whereas scoring takes place after
the model is well understood and an acceptable data mining
has been produced.

A typical big data analytics workflow to compute a model
consists of the following major tasks (this basic workflow can
vary depending on users knowledge and focus):

1) Data preprocessing: Building data sets for analysis (se-
lecting records, denormalization and aggregation)

2) Exploratory analysis (descriptive statistics, OLAP)
3) Computing statistical models
4) Tuning models: add, modify data set attributes, fea-

ture/variable selection, train/test models
5) Create scoring scripts based on selected features and best

model
This modeling workflow tends to be linear (Task i executed

before Task i+1), but in general it has cycles. This is because
there are many iterations building data sets, analyzing variable
behavior and computing models before and acceptable can
be obtained. Initially the bottleneck of the workflow is data
preprocessing. Later, when the data mining project evolves
most workflow processing is testing and tuning the desired
model. In general, the database system performs some denor-
malization and aggregation, but it is common to perform most
transformations outside the database system. When features
need to be added or modified queries need to be recomputed,
going back to Task 1. Therefore, only a part of the first task
of the workflow is computed inside the database system; the
remaining stages of the workflow are computed with external
data mining tools.

The second workflow we consider is actually deploying a
model with arriving (new) data. This task is called scoring [7],
[12]. Since the best features and the best model are already
known this is generally processed inside the database system.
A scoring workflow is linear and non-iterative: Processing
starts with Task 1, Task i is executed before Task i + 1 and
processing ends with the last task. In a scoring workflow tasks
are as follows:

1) Data preprocessing: Building data set for scoring (select
records, compute best features).

2) Deploy model on test data set (e.g predict class or target
value), store model output per record as a new table or
view in the database system.

3) Evaluate queries and produce summary reports on scored
data sets joined with source tables. Explain models by
tracing data back to source tables in the database system.

Building the data set tends to be most important task in both
workflows since it requires gathering data from many source
tables. In this work, we defend the idea of preprocessing big
data inside a database system. This approach makes sense only
when the raw data originates from a data warehouse. That
is, we do not tackle the problem of migrating processing of
external data sets into the database system.

III. TASKS TO PREPARE DATA SETS

We discuss issues and recommendations to improve the data
processing stage in a big data analytics workflow. Our main
motivation is to bypass the use of external tools to perform
data preprocessing, using the SQL language instead.

A. Reasons for Processing big data analytics workflows Out-
side the database system

In general, the main reason is of a practical nature: users
do not want to translate existing code working on external
tools. Commonly such code has existed for a long time
(legacy programs), it is extensive (there exist many programs)
and it has been debugged and tuned. Therefore, users are
reluctant to rewrite it in a different language, given associated
risks. A second complaint is that, in general, the database
system provides elementary statistical functionality, compared
to sophisticated statistical packages. Nevertheless, such gap
has been shrinking over the years. As explained before, in a
data mining environment most user time is spent on preparing
data sets for analytic purposes. We discuss some of the most
important database issues when tables are manipulated and
transformed to prepare a data set for data mining or statistical
analysis.

B. Main Data Preprocessing Tasks

We consider three major tasks:
1) selecting records for analysis (filtering)
2) denormalization (including math transformation)
3) aggregation
Selecting Records for Analysis: Selection of rows can be

done at several stages, in different tables. Such filtering is done
to discard outliers, to discard records with a significant missing
information content (including referential integrity [14]), to
discard records whose potential contribution to the model
provides no insight or sets of records whose characteristics
deserve separate analysis. It is well known that pushing
selection is the basic strategy to accelerate SPJ (select-project-
join) queries, but it is not straightforward to apply into multiple
queries. A common solution we have used is to perform as
much filtering as possible on one data set. This makes code
maintenance easier and the query optimizer is able to exploit
filtering predicates as much as possible.

In general, for a data mining task it is necessary to select
a set of records from one of the largest tables in the database
based on a date range. In general, this selection requires a
scan on the entire table, which is slow. When there is a
secondary index based on date it is more efficient to select
rows, but it is not always available. The basic issue is that such



transaction table is much larger compared to other tables in the
database. For instance, this time window defines a set of active
customers or bank accounts that have recent activity. Common
solutions to this problem include creating materialized views
(avoiding join recomputation on large tables) and lean tables
with primary keys of the object being analyzed (record,
product, etc) to act as filter in further data preparation tasks.

Denormalization: In general, it is necessary to gather data
from many tables and store data elements in one place.
It is well-known that on-line transaction processing (OLTP)
database systems update normalized tables. Normalization
makes transaction processing faster and ACID [4] semantics
are easier to ensure. Queries that retrieve a few records
from normalized tables are relatively fast. On the other hand,
analysis on the database requires precisely the opposite: a large
set of records is required and such records gather information
from many tables. Such processing typically involves complex
queries involving joins and aggregations. Therefore, normal-
ization works against efficiently building data sets for analytic
purposes. One solution is to keep a few key denormalized
tables from which specialized tables can be built. In general,
such tables cannot be dynamically maintained because they
involve join computation with large tables. Therefore, they
are periodically recreated as a batch process. The query
shown below builds a denormalized table from which several
aggregations can be computed (e.g. similar to cube queries).

SELECT
customer_id

,customer_name
,product.product_id
,product_name
,department.department_id
,department_name

FROM sales
JOIN product

ON sales.product_id=product.product_id
JOIN department

ON product.department_id
=department.department_id;

For analytic purposes it is always best to use as much
data as possible. There are strong reasons for this. Statistical
models are more reliable, it is easier to deal with missing
information, skewed distributions, discover outliers and so on,
when there is a large data set at hand. In a large database
with tables coming from a normalized database being joined
with tables used in the past for analytic purposes may involve
joins with records whose foreign keys may not be found
in some table. That is, natural joins may discard potentially
useful records. The net effect of this issue is that the resulting
data set does not include all potential objects (e.g. records,
products). The solution is define a universe data set containing
all objects gathered with union from all tables and then use
such table as the fundamental table to perform outer joins. For
simplicity and elegance, left outer joins are preferred. Then
left outer joins are propagated everywhere in data preparation

and completeness of records is guaranteed. In general such
left outer joins have a “star” form on the joining conditions,
where the primary key of the master table is left joined with
the primary keys of the other tables, instead of joining them
with chained conditions (FK of table T1 is joined with PK
of table T2, FK of table T2 is joined with PK of T3, and so
on). The query below computes a global data set built from
individual data sets. Notice data sets may or may not overlap
each other.
SELECT
,record_id
,T1.A1
,T2.A2
..
,Tk.Ak
FROM T_0

LEFT JOIN T1 ON T_0.record_id= T1.record_id
LEFT JOIN T2 ON T_0.record_id= T2.record_id
..
LEFT JOIN Tk ON T_0.record_id= Tk.record_id;

Aggregation: Unfortunately, most data mining tasks require
dimensions (variables) that are not readily available from
the database. Such dimensions typically require computing
aggregations at several granularity levels. This is because most
columns required by statistical or machine learning techniques
require measures (or metrics), which translate as sums or
counts computed with SQL. Unfortunately, granularity levels
are not hierarchical (like cubes or OLAP [4]) making the use
of separate summary tables necessary (e.g. summarization by
product or by customer, in a retail database). A straightforward
optimization is to compute as many dimensions in the same
statement exploiting the same group-by clause, when possible.
In general, for a statistical analyst it is best to create as many
variables (dimensions) as possible in order to isolate those
that can help build a more accurate model. Then summariza-
tion tends to create tables with hundreds of columns, which
make query processing slower. However, most state-of-the-
art statistical and machine learning techniques are designed
to perform variable (feature) selection [7], [10] and many of
those columns end up being discarded.

A typical query to derive dimensions from a transaction
table is as follows:

SELECT
customer_id
,count(*) AS cntItems
,sum(salesAmt) AS totalSales
,sum(case when salesAmt<0 then 1 end)
AS cntReturns

FROM sales
GROUP BY customer_id;

Transaction tables generally have two or even more levels
of detail, sharing some columns in their primary key. The
typical example is store transaction table with individual
items and the total count of items and total amount paid.
This means that many times it is not possible to perform a
statistical analysis only from one table. There may be unique
pieces of information at each level. Therefore, such large



tables need to be joined with each other and then aggregated
at the appropriate granularity level, depending on the data
mining task at hand. In general, such queries are optimized
by indexing both tables on their common columns so that
hash-joins can be used.

Combining Denormalization and Aggregation: Multiple pri-
mary keys: A last aspect is considering aggregation and
denormalization interacting together when there are multiple
primary keys. In a large database different subsets of tables
have different primary keys. In other words, such tables are
not compatible with each other to perform further aggregation.
The key issue is that at some point large tables with different
primary keys must be joined and summarized. Join operations
will be slow because indexing involves foreign keys with large
cardinalities. Two solutions are common: creating a secondary
index on the alternative primary key of the largest table, or
creating a denormalized table having both primary keys in
order to enable fast join processing.

For instance, consider a data mining project in a bank that
requires analysis by customer id, but also account id. One
customer may have multiple accounts. An account may have
multiple account holders. Joining and manipulating such tables
is challenging given their sizes.

C. Workflow Processing

Dependent SQL statements: A data transformation script is
a long sequence of SELECT statements. Their dependencies
are complex, although there exists a partial order defined by
the order in which temporary tables and data sets for analysis
are created. To debug SQL code it is a bad idea to create
a single query with multiple query blocks. In other words,
such SQL statements are not amenable to the query optimizer
because they are separate, unless it can keep track of historic
usage patterns of queries. A common solution is to create
intermediate tables that can be shared by several statements.
Those intermediate tables commonly have columns that can
later be aggregated at the appropriate granularity levels.

Computer resource usage: This aspect includes both disk
and CPU usage, with the second one being a more valuable
resource. This problem gets compounded by the fact that
most data mining tasks work on the entire data set or large
subsets from it. In an active database environment running
data preparation tasks during peak usage hours can degrade
performance since, generally speaking, large tables are read
and large tables are created. Therefore, it is necessary to
use workload management tools to optimize queries from
several users together. In general, the solution is to give data
preparation tasks a lower priority than the priority for queries
from interactive users. On a longer term strategy, it is best
to organize data mining projects around common data sets,
but such goal is difficult to reach given the mathematical
nature of analysis and the ever changing nature of variables
(dimensions) in the data sets.

Comparing views and temporary tables: Views provide
limited control on storage and indexing. It may be better
to create temporary tables, especially when there are many

primary keys used in summarization. Nevertheless, disk space
usage grows fast and such tables/views need to be refreshed
when new records are inserted or new variables (dimensions)
are created.

Scoring: Even though many models are built outside the
database system with statistical packages and data mining
tools, in the end the model must be applied inside the database
system [6]. When volumes of data are not large it is feasible
to perform model deployment outside: exporting data sets,
applying the model and building reports can be done in no
more than a few minutes. However, as data volume increases
exporting data from the database system becomes a bottleneck.
This problem gets compounded with results interpretation
when it is necessary to relate statistical numbers back to the
original tables in the database. Therefore, it is common to build
models outside, frequently based on samples, and then once
an acceptable model is obtained, then it is imported back into
the database system. Nowadays, model deployment basically
happens in two ways: using SQL queries if the mathematical
computations are relatively simple or with UDFs [2], [12] if
the computations are more sophisticated. In most cases, such
scoring process can work in a single table scan, providing
good performance.

IV. COMPARING PROCESSING OF WORKFLOWS INSIDE
AND OUTSIDE A DATABASE SYSTEM

In this section we present a qualitative and quantitative
comparison between running big data analytics workflows
inside and outside the database system. This discussion is
a summary of representative successful projects. We first
discuss a typical database environment. Second, we present a
summary of the data mining projects presenting their practical
application and the statistical and data mining techniques
used. Third, we discuss advantages and accomplishments for
each workflow running inside the database system, as well
as the main objections or concerns against such approach
(i.e. migrating external transformation code into the database
system). Fourth, we present time measurements taken from
actual projects at each organization, running big data analytics
workflows completely inside and partially outside the database
system.

A. Data Warehousing Environment

The environment was a data warehouse, where several
databases were already integrated into a large enterprise-wide
database. The database server was surrounded by specialized
servers performing OLAP and statistical analysis. One of those
servers was a statistical server with a fast network connection
to the database server.

First of all, an entire set of statistical language programs
were translated into SQL using Teradata data mining program,
the translator tool and customized SQL code. Second, in every
case the data sets were verified to have the same contents in
the statistical language and SQL. In most cases, the numeric
output from statistical and machine learning models was the
same, but sometimes there were slight numeric differences,



given variations in algorithmic improvements and advanced
parameters (e.g. epsilon for convergence, step-wise regression
procedures, pruning method in decision tree and so on).

B. Organizations: statistical models and business application

We now give a brief discussion about the organizations
where the statistical code migration took place. We also
discuss the specific type of data mining techniques used in
each case. Due to privacy concerns we omit discussion of
specific information about each organization, their databases
and the hardware configuration of their database system
servers. The big data analytics workflows were executed on the
organizations database servers, concurrently with other users
(analysts, managers, DBAs, and so on).

We now describe the computers processing the workflow
in more detail. The database system server was, in general,
a parallel multiprocessor computer with a large number of
CPUs, ample memory per CPU and several terabytes of
parallel disk storage in high performance RAID configurations.
On the other hand, the statistical server was generally a smaller
computer with less than 500 GB of disk space with ample
memory space. Statistical and data mining analysis inside the
database system was performed only with SQL. In general, a
workstation connected to each server with appropriate client
utilities. The connection to the database system was done with
ODBC. All time measurements discussed herein were taken
on 32-bit CPUs over the course of several years. Therefore,
they cannot be compared with each other and they should
only be used to understand performance gains within the same
organization.

The first organization was an insurance company. The
data mining goal involved segmenting customers into tiers
according to their profitability based on demographic data,
billing information and claims. The statistical techniques used
to determine segments involved histograms and clustering.
The final data set had about n = 300k records and d = 25
variables. There were four segments, categorizing customers
from best to worst.

The second organization was a cellular telephone service
provider. The data mining task involved predicting which
customers were likely to upgrade their call service package
or purchase a new handset. The default technique was logistic
regression [7] with stepwise procedure for variable selection.
The data set used for scoring had about n = 10M records and
d = 120 variables. The predicted variable was binary.

The third organization was an Internet Service Provider
(ISP). The predictive task was to detect which customers were
likely to disconnect service within a time window of a few
months, based on their demographic data, billing information
and service usage. The statistical techniques used in this case
were decision trees and logistic regression and the predicted
variable was binary. The final data set had n = 3.5M records
and d = 50 variables.

C. Database system-centric big data analytics workflows:
Users Opinion

We summarize pros and cons about running big data analyt-
ics workflows inside and outside the database system. Table I
contains a summary of outcomes. As we can see performance
to score data sets and transforming data sets are positive
outcomes in every case. Building the models faster turned
out not be as important because users relied on sampling to
build models and several samples were collected to tune and
test models. Since all databases and servers were within the
same firewall security was not a major concern. In general,
improving data management was not seen as major concern
because there existed a data warehouse, but users acknowledge
a “distributed” analytic environment could be a potential
management issue. We now summarize the main objections,
despite the advantages discussed above. We exclude cost as a
decisive factor to preserve anonymity of users opinion and
give an unbiased discussion. First, many users preferred a
traditional programming language like Java or C++ instead
of a set-oriented language like SQL. Second, some specialized
techniques are not available in the database system due to their
mathematical complexity; relevant examples include Support
Vector Machines, Non-linear regression and time series mod-
els. Finally, sampling is a standard mechanism to analyze large
data sets.

D. Workflow Processing Time Comparison

We compare workflow processing time inside the database
system using SQL and UDFs and outside the database system,
using an external server transforming exported data sets and
computing models. In general, the external server ran existing
data transformation programs developed by each organization.
On the other hand, each organization had diverse data mining
tools that analyzed flat files. We must mention the comparison
is not fair because the database system server was in general
a powerful parallel computer and the external server was a
smaller computer. Nevertheless, such setting represents a com-
mon IT environment where the fastest computer is precisely
the database system server.

We discuss tables from the database in more detail. There
were several input tables coming from a large normalized
database that were transformed and denormalized to build
data sets used by statistical or machine learning techniques.
In short, the input were tables and the output were tables as
well. No data sets were exported in this case: all processing
happened inside the database system. On the other hand,
analysis on the external server relied on SQL queries to extract
data from the database system, transform the data to produce
data sets in the statistical server and then building models or
scoring data sets based on a model. In general, data extraction
from the database system was performed using bulk utilities
which exported data records in blocks. Clearly, there was an
export bottleneck from the database system to the external
server.

Table II compares performance between both workflow pro-
cessing alternatives: inside and outside the database system. As



TABLE I
ADVANTAGES AND DISADVANTAGES ON RUNNING BIG DATA ANALYTICS WORKFLOWS INSIDE A DATABASE SYSTEM.

Insur. Phone ISP
Advantages:
Improve Workflow Management X X X
Accelerate Workflow Execution X
Prepare data sets more easily X X X
Compute models faster without sampling X
Score data sets faster X X X
Enforce database security X X
Disadvantages:
Workflow output independent X X
Workflow outside database system OK X X
Prefer program. lang. over SQL X X
Samples accelerate modeling X X
database system lacks statistical models X
Legacy code X

TABLE II
WORKFLOW PROCESSING TIME INSIDE AND OUTSIDE A DATABASE

SYSTEM (TIME IN MINUTES).

Task outside inside
Build model:
Segmentation 2 1
Predict propensity 38 8
Predict churn 120 20
Score data set:
Segmentation 5 1
Predict propensity 150 2
Predict churn 10 1

TABLE III
TIME TO COMPUTE MODELS INSIDE THE DATABASE SYSTEM AND TIME TO

EXPORT DATA SET (SECS).

n× 1000 d SQL/UDF BULK ODBC
100 8 4 17 168
100 16 5 32 311
100 32 6 63 615
100 64 8 121 1204

1000 8 40 164 1690
1000 16 51 319 3112
1000 32 62 622 6160
1000 64 78 1188 12010

introduced in Section II we distinguish two big data analytics
workflows: computing the model and scoring the model on
large data sets. The times shown in Table II include the time
to transform the data set with joins and aggregations the time
to compute the model and the time to score applying the best
model. As we can see the database system is significantly
faster. We must mention that to build the predictive models
both approaches exploited samples from a large data set. Then
the models were tuned with further samples. To score data
sets the gap is wider, highlighting the efficiency of SQL to
compute joins and aggregations to build the data set and then
computing mathematical equations on the data set. In general,
the main reason the external server was slower was the time
to export data from the database system. A secondary reason
was its more limited computing power.

Table III compares processing time to compute a model
inside the database system and the time to export the data
set (with a bulk utility and ODBC). In this case the database

system runs on a relatively small computer with 3.2 GHz, 4
GB on memory and 1 TB on disk. The models include PCA,
Naive Bayes and linear regression, which can be derived from
the correlation matrix [7] of the data set in a single table
scan using SQL queries and UDFs. Exporting the data set is
a bottleneck to perform data mining processing outside the
database system, regardless of how fast the external server is.
However, exporting a sample from the data set can be done
fast, but analyzing a large data set without sampling is much
faster to do inside the database system. Also, sampling can
also be exploited inside the database system.

V. RELATED WORK

There exist many proposals that extend SQL with data
mining functionality. Most proposals add syntax to SQL
and optimize queries using the proposed extensions. Several
techniques to execute aggregate UDFs in parallel are studied
in [9]; these ideas are currently used by modern parallel
relational database systems such as Teradata. SQL extensions
to define, query and deploy data mining models are proposed
in [11]; such extensions provide a friendly language interface
to manage data mining models. This proposal focuses on man-
aging models rather than computing them and therefore such
extensions are complementary to UDFs. Query optimization
techniques and a simple SQL syntax extension to compute
multidimensional histograms are proposed in [8], where a
multiple grouping clause is optimized.

Some related work on exploiting SQL for data manipulation
tasks includes the following. Data mining primitive operators
are proposed in [1], including an operator to pivot a table
and another one for sampling, useful to build data sets. The
pivot/unpivot operators are extremely useful to transpose and
transform data sets for data mining and OLAP tasks [3],
but they have not been standardized. Horizontal aggregations
were proposed to create tabular data sets [13], as required
by statistical and machine learning techniques, combining
pivoting and aggregation in one function. For the most part
research work on preparing data sets for analytic purposes in
a relational database system remains scarce. Data quality is a
fundamental aspect in a data mining application. Referential
integrity quality metrics are proposed in [14], where users can



isolate tables and columns with invalid foreign keys. Such
referential problems must be solved in order to build a data
set without missing information.

Mining workflow logs, a different problem, has received at-
tention [18]; the basic idea is to discover patterns in workflow
process logs. To the best of our knowledge, there is scarce
research work dealing with migrating data preprocessing into
a database system to improve management and processing of
big data analytics workflows.

VI. CONCLUSIONS

We presented practical issues and discussed common solu-
tions to push data preprocessing into a database system to
improve management and processing of big data analytics
workflows. It is important to emphasize data preprocessing
is generally the most time consuming and error-prone task
in a big data analytics workflow. We identified specific data
preprocessing issues. Summarization generally has to be done
at different granularity levels and such levels are generally not
hierarchical. Rows are selected based on a time window, which
requires indexes on date columns. Row selection (filtering)
with complex predicates happens on many tables, making code
maintenance and query optimization difficult. In general, it is
necessary to create a “universe” data set to define left outer
joins. Model deployment requires importing models as SQL
queries or UDFs to deploy a model on large data sets. Based
on experience from real-life projects, we compared advantages
and disadvantages when running big data analytics workflows
entirely inside and outside a database system. Our general
observations are the following. big data analytics workflows
are easier to manage inside a database system. A big data
analytics workflow is generally faster to run inside a database
system assuming a data warehousing environment (i.e. data
originates from the database). From a practical perspective
workflows are easier to manage inside a database system
because users can exploit the extensive capabilities of the
database system (querying, recovery, security and concurrency
control) and there is less data redundancy. However, external
statistical tools may provide more flexibility than SQL and
more statistical techniques. From an efficiency (processing
time) perspective, transforming and scoring data sets and
computing models are faster to develop and run inside the
database system. Nevertheless, sampling represent a practical
solution to accelerate big data analytics workflows running
outside a database system.

Improving and optimizing the management and processing
of big data analytics workflows provides many opportunities
for future work. It is necessary to specify models which take
into account processing with external data mining tools. The
data set tends to be the bottleneck in a big data analytics
workflow both from a programming and processing time
perspectives. Therefore, it is necessary to specify workflow
models which can serve as templates to prepare data sets. The
role of the statistical model in a workflow needs to studied in
the context of the source tables that were used to build the
data set; very few organizations reach that stage.

REFERENCES

[1] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman. Non-stop
SQL/MX primitives for knowledge discovery. In ACM KDD Conference,
pages 425–429, 1999.

[2] J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. MAD
skills: New analysis practices for big data. In Proc. VLDB Conference,
pages 1481–1492, 2009.

[3] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria. PIVOT and
UNPIVOT: Optimization and execution strategies in an RDBMS. In
Proc. VLDB Conference, pages 998–1009, 2004.

[4] R. Elmasri and S.B. Navathe. Fundamentals of Database Systems.
Addison-Wesley, 4th edition, 2003.

[5] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for
extracting useful knowledge from volumes of data. Communications of
the ACM, 39(11):27–34, November 1996.

[6] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2006.

[7] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical
Learning. Springer, New York, 1st edition, 2001.

[8] A. Hinneburg, D. Habich, and W. Lehner. Combi-operator-database
support for data mining applications. In Proc. VLDB Conference, pages
429–439, 2003.

[9] M. Jaedicke and B. Mitschang. On parallel processing of aggregate
and scalar functions in object-relational DBMS. In ACM SIGMOD
Conference, pages 379–389, 1998.

[10] T.M. Mitchell. Machine Learning. Mac-Graw Hill, New York, 1997.
[11] A. Netz, S. Chaudhuri, U. Fayyad, and J. Berhardt. Integrating data

mining with SQL databases: OLE DB for data mining. In Proc. IEEE
ICDE Conference, pages 379–387, 2001.

[12] C. Ordonez. Statistical model computation with UDFs. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE), 22(12):1752–1765,
2010.

[13] C. Ordonez and Z. Chen. Horizontal aggregations in SQL to prepare
data sets for data mining analysis. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 24(4):678–691, 2012.

[14] C. Ordonez and J. Garcı́a-Garcı́a. Referential integrity quality metrics.
Decision Support Systems Journal, 44(2):495–508, 2008.

[15] C. Ordonez and J. Garcı́a-Garcı́a. Database systems research on data
mining. In Proc. ACM SIGMOD Conference, pages 1253–1254, 2010.

[16] D. Pyle. Data preparation for data mining. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1999.

[17] E. Rahm and D. Hong-Hai. Data cleaning: Problems and current
approaches. IEEE Bulletin of the Technical Committee on Data En-
gineering, 23(4), 2000.

[18] W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L. Maruster,
G. Schimm, and A. J. M. M. Weijters. Workflow mining: a survey of
issues and approaches. Data & Knowledge Engineering, 47(2):237–267,
2003.


