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Abstract Variable selection in high dimensional data is a challenging problem due to the
exponential number of variable combinations, and Markov Chain Monte Carlo (MCMC)
methods represent the state of the art to solve it. With genomics data this problem be-
comes even more difficult because there are generally more dimensions (variables) than
points (records) leading to slow convergence and numerically unstable solutions. On the
other hand, despite many alternative prototypes and languages, R remains a popular sys-
tem to compute machine learning models. Unfortunately, R can be particularly slow with
heavy matrix computations and the high number of iterations required by MCMC methods.
Moreover, making R scale to large matrices, possibly beyond RAM, requires careful system
integration. Recently, array DBMSs have opened the possibility of manipulating matrices
of unlimited size. With such motivation in mind, we present algorithmic optimizations to
accelerate the computation of variable selection in linear regression with the Gibbs sampler,
a fundamental MCMC method. Such optimizations have the potential to accelerate other
models. We study how to leverage the speed and scalability of the array DBMS to exploit
our optimizations in R. We present a comprehensive experimental evaluation to assess time
efficiency and model quality with a cancer data set containing RNA and miRNA variables
to predict survival time. We show our optimized algorithm combining DBMS and R pro-
cessing is significantly faster than R alone. We show our system allows fast joint analysis
of RNA and miRNA variables, instead of analyzing them separately. Finally, we confirm
our algorithm finds medically significant variables already identified in the biomedical lit-
erature. Our optimized MCMC method for the array DBMS can be easily called from R,
leaving the final model within R runtime in RAM for further interpretation.
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1 Introduction

Many diseases cause changes at the molecular level that drive their development and pro-
gression. Cancer, in particular, involves nuclear structure alterations, such as mutations, am-
plifications, copy number variations (alterations of the DNA of a genome that results in the
cell having an abnormal or, for certain genes, a normal variation in the number of copies
of one or more sections of the DNA), and other events that drastically change chromatin,
nuclear body and chromosome organization (Schirmer and Jose, 2014). Recent advances in
medical technology have enabled researchers to measure the molecular changes in messen-
ger RNA (mRNA) (Debouck and Goodfellow, 1999; Duggan et al, 1999) and microRNA
(miRNA), a non-coding RNA molecule involved in the regulation of gene expression (Bren-
necke et al, 2005). These changes can be used to track the course of the disease and provide
clues to it’s development. The problem lies in the fact that out of thousands of genetic mark-
ers only a few are believed to affect the outcome of the disease and predicting which of
them is relevant is a pressing issue, since it could aid in the development of targeted thera-
pies based on the genetic footprint of the patient.

In order to understand the relationship between the genetic markers and the dependent
variable, researchers are interested in finding models that could standardize how they relate
to one another. However, models containing too many parameters are likely to describe
random noise instead of the underlying relationship between the variables. Such a model will
generally have a poor predictive performance outside the training set and will exaggerate
minor fluctuations in the sample data (Hastie et al, 2001; Sauerbrei et al, 2007). Therefore we
are interested in finding smaller subsets of markers that produce accurate models that are, at
the same time, easy to interpret (Rockova et al, 2012). In statistics and machine learning, the
process of selecting such a subset of relevant features is called feature or variable selection
(George and McCulloch, 1993; George, 2000; Guyon and Elisseeff, 2003).

Data mining problems usually consist of a large number of samples with just a relatively
small number of variables. This is usually the case in marketing or web data, where the prob-
lem could have tens or hundreds of millions of data samples and a few hundred variables.
High dimensional problems are very difficult to solve and manipulate, making it desirable
to find the variables that are most related to the dependent variable. Genomics data differs
from the typical problem in that while the data might have on the order of tens of thousands
of variables, the researcher only counts with no more than a few hundred samples, since it
is difficult and expensive to collect the data from real patients. This is commonly referred as
a small n, large d problem. There are several technical and computational issues that arise
when dealing with this kind of problem. Since the system is over-specified, the solutions
cannot be uniquely determined. Data structures become too large to fit in main memory,
requiring them to be kept in secondary storage. Therefore we must take into account not
only the storage space required for the data set, but also we need to be able to safely and
efficiently store the intermediate data structures required by the algorithm. As an example,
in the case of a genomics data set, a typical covariance matrix could have in the order of hun-
dreds of millions of elements that, depending on the algorithm, may be accessed hundreds
or thousands of times.

The variable selection problem can be solved in different ways. For data sets with a
relatively small number of variables, we could tackle the problem using a brute force or
exhaustive approach. However, since the number of different subsets from a set of d vari-
ables is 2d , and for data sets with thousands of variables, it is clearly not feasible to test
all of them. Common approaches are iterative in nature. The learner usually start from an
arbitrary solution and then progressively improves it. Hill climbing methods (Caruana and
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Freitag, 1994), such as Forward Selection, Backward Elimination, Forward Step-wise Selec-
tion and Backward Step-wise Elimination are effective at finding good performing subsets
of attributes but are prone to getting trapped in local maxima. This problem can be solved
using Simulated annealing techniques and Genetic algorithms (Moore et al, 2001), however
solutions are complex and typically require large high performance computing (HPC) clus-
ters for optimal performance. Another kind of technique that combines feature selection and
visualization is Targeted projection pursuit (Faith et al, 2006). However this method, while
powerful, is mostly optimized towards visualization in two or three dimension plots, and not
appropriate for finding sets of tens of dimensions.

We propose and evaluate a stochastic variable selection algorithm for linear regression
on high dimensional genomics data sets, based on the Gibbs Sampler, a fundamental MCMC
method, widely used Bayesian statistics and machine learning. Our main processing infras-
tructure was SciDB (Stonebraker et al, 2013), an array database system designed for science
data management, working in tandem with R (Ihaka and Gentleman, 1996), the most popular
open-source statistical software. SciDB implements an innovative array model for efficient
storage and manipulation of large multidimensional arrays as well as efficient mathematical
and relational operators on those arrays. Our optimized algorithm exploits sufficient statis-
tics on the input data set, which take the form of matrices, extending our previous work, on
the Gamma summarization operator (Ordonez et al, 2014b), to speed up the computation of
complex matrix equations. Having a bioinformatics application in mind, we analyze a data
set of gene expressions of Glioblastoma Multiforme (brain tumor) patients to predict their
survival time after diagnosis. In summary, our main contributions are:

– The introduction of the first MCMC method optimized to run on an array DBMS using
sufficient statistics,

– a pre-processing phase working entirely inside the DBMS, that reduces the data set to a
much lower dimensionality using variable pre-selection, but without discarding impor-
tant models,

– a library that can be called by R, without requiring changes to the R run-time, while at
the same time it removing R’s RAM and speed limitations,

– a careful experimental evaluation on a cancer data set.

2 Related Work

In this section we will provide a brief review of the prior art in variable selection, efficient
solutions to this problem in relational databases, and some background on the system used
for this work.

2.1 Methods for Variable Selection

The Variable Selection (VS) problem has been shown in (Natarajan, 1995) and (Garey and
Johnson, 2002) to be NP-complete. As such, considerable attention has been devoted to
finding approximate solutions by methods that converge in a reasonable amount of time.
We will briefly review some of the most popular algorithms to calculate solutions to this
problem.
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Stepwise Regression

The basic idea behind Stepwise Regression (Hocking, 1976) is adding or deleting variables
one at the time. Let us define the Residual Sum of Squares (RSS) as the sum of the squares
of the deviations of predicted from actual empirical values of data.

RSS =
N

∑
i=1

(
yi−α−∑

j
β jxi j

)2

(1)

where (xxxi,yi) is the data set and N is the number of data points in the data set.
Forward selection (FS) starts with no variables and adds the variable that yields the

largest single degree of freedom. This process continues until some stopping criterion is
satisfied.

The variable i is added to the the p-term equation if

Fi = maxi

(
RSSp−RSSp+i

σ̂2
p+i

)
> Fin (2)

In this equation RSSp is the residual sum of squares for the p-term equation and the sub-
script p+ i refers to quantities calculated if the variable with index i is added to the p-term
equation.

Backward elimination (BE), conversely, starts with all the variables being included and
each step eliminates the variable with the smallest F-ratio. In other words, the variable i is
eliminated if

Fi = maxi

(
RSSp−i−RSSp

σ̂p
2

)
< Fout (3)

In this case, p− i refers to quantities calculated when the variable i is deleted from the
current p-term equation.

Hybrid methods use a mixture of FS and BE. The main criticism against stepwise meth-
ods is that they ignore variable combinations ((Mantel, 1970)). Furthermore, stepwise meth-
ods are computationally expensive and prone to overfitting (Caruana et al, 2004).

The Lasso Method

In the Lasso method (Tibshirani, 1996; Kolar et al, 2011) some of the coefficients are shrunk
and others are set to 0 using an operator called the “Lasso” (Least Absolute Shrinkage and
Selection Operator). The original technique used quadratic programming to find:

(
α̂, β̂

)
= arg min

 N

∑
i=1

(
yi−α−∑

j
β jxi j

)2
 , (4)

where (xxxi,yi) is the data set, ∑i xi j/N = 0, ∑i x2
i j/N = 1 (normalized set) and the β coeffi-

cients are subject to the condition ∑ j |β j| ≤ t (t is a tuning parameter). Wainwright (2009)
shows the necessary and sufficient conditions on the dimensionality of the vector β , the
number of selected variables (sparsity index) k, and the number of observations N for which
it is possible to find the set

(
α̂, β̂

)
using the Lasso. The Lasso uses a regularization term

that enables finding sparse coefficient vectors, which is equivalent to the non-informative
prior in our model specification. Our approach does not require such term.
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Least Angle Regresssion

Least Angle Regression (LARS) (Efron et al, 2004) is a selection algorithm that can be
modified to implement the Lasso and Forward Stagewise linear regression. Meinshausen
and Bühlmann (2006) use a neighborhood estimate, coupled with the Lasso to estimate
solutions to the variable selection problem in high dimensional data sets. Wasserman and
Roeder (2009) study the general application of these methods to the high dimensional prob-
lem. Orthogonal matching pursuit (OMP) (Tropp, 2004; Tropp and Gilbert, 2007; Zhang,
2011) is a greedy algorithm that can be used for variable selection in signal processing.
This algorithm can be proven to converge quickly to the signal of interest. However it is
unknown if OMP converges on noisy measurements (Needell et al, 2008). OMP algorithms
are useful to detect a hidden sparse signal, a somewhat similar problem to variable selection.
That is, they can help identifying a signal where there is a significant fraction of dimension
values that are zero. In contrast, our problem is more general: in microarray data there exist
multiple signals, each with different variable combinations

Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) (Fukushima, 1992; Boyd et al,
2011) is a type of Augmented Lagrangian scheme that uses dual variables with partial up-
dates. ADMM soles the constrained problem minx,y f (x)+ g(y) with the constraint x = y.
While this can lead to highly parallel and efficient algorithms to select variables, ADMM as-
sumes the cost function to minimize can be decomposed into a sum of two simpler functions
(generally convex, but they can be non-convex, (Derbinsky et al, 2013)). This decomposi-
tion aspect is orthogonal to the data set being dense or sparse or the data set having more
dimensions than points. Comparing ADMM and SSVS is an interesting issue for future
work.

Other Methods and Applications

Guyon et al (2010) present a survey of several methods for variable selection and the
premises behind the different methodologies and algorithms to achieve parsimonious mod-
els. Davies et al (2014) use Bayesian variable selection to predict antigenic variability and
to identify sites that are important to the neutralization of the FMD virus (Foot-and-Mouth
disease). The varying-coefficient model has been applied to the variable selection model in
high dimensional data by Xue and Qu (2012). In this work the authors show that this method
is able to select true models at a higher frequency than the LASSO and SCAD approaches,
but their method is a local minimizer and combining it with other methods to provide a
global minimum makes it more computationally intensive.

2.2 Learning Methods in Relational Database Systems

The efficient computation of analytic algorithms in a DBMS has received moderate atten-
tion. Ordonez (2010) shows several machine learning models that can be optimized by
sufficient statistics using User Defined Functions (UDF). As we will see in Section 3.2,
sufficient statistics are fundamental for the optimization of our Bayesian variable selection
algorithm. Other models can also take advantage of sufficient statistics, for instance: Naive
Bayes (Pitchaimalai et al, 2010) and Clustering with a mixture of Gaussians (Matusevich and
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Ordonez, 2014). Our recent work (Cabrera et al, 2013; Ordonez et al, 2014a) also exploits
sufficient statistics, along with additional optimizations applied to a row DBMS: hashing,
variable pruning and integration with Intel Math Kernel Library. Interesting results are pre-
sented with a genomic data set. However this work has certain limitations: the data set needs
to be loaded in memory and sufficient statistics cannot take advantage of multi-core archi-
tecture because the computation of the summarization is performed as part of the sampling
step, in a Table Value Function.

The MADlib Analytics library (Hellerstein et al, 2012) is a comprehensive collection
of supervised and unsupervised learning routines for relational database systems. MADlib
also provides linear regression as a subroutine. However MADlib does not include methods
for the problem of variable selection. Furthermore MADlib does not solve the regression
problem on data sets with very high number of variables.

Our recent work (Ordonez et al, 2014b) presents a parallel, scalable algorithm for the
computation of sufficient statistics. Our initial work in high dimensional variable selection
is found in Cabrera et al (2013). These papers are among the first to solve linear regression
and variable selection in such a high dimensional data set, combining processing in R and a
DBMS.

2.3 SciDB-R Integration

SciDB (Stonebraker et al, 2013) also provides a set of analytic functions: Singular Value
Decomposition (SVD), quartiles, average, standard deviation but it lacks complex analytics
(classification, clustering). RIOT (Zhang et al, 2010) extends R, making I/O more efficient
and scalable for larger data sets, but does not interact well with large matrices. Recently, Taft
et al (2014) presented a benchmark comparing execution times in SciDB with R, a column
DBMS and a row DBMS, running complex analytics: regression, correlation, bi-clustering
and SVD. SciDB showed good performance in one node, but poor scalability when running
on several nodes. Several machine learning packages for the R language address the variable
selection problem. BayesVarSel and BMS are R packages focused in Bayesian methods for
variable selection. Regarding Monte Carlo methods in SciDB, in (Ge et al, 2011) the authors
use a Monte Carlo query processing algorithm to query uncertain data. However this work
is significantly different from ours, since we use Monte Carlo for machine learning.

3 Definitions and Preliminaries

3.1 Linear Regression

Linear regression is a machine learning model that explains the relationship between a scalar
dependent variable and a set of explanatory variables (or independent variables). Let X =
{x1, . . . ,xn} be a set of n data points with d explanatory variables and Y = {y1, . . . ,yn} be a
set of numbers such that each xi is associated with yi. If we represent the data set by matrices
Y ([1×n]) and X ([d×n]), the linear regression model can be expressed as:

Y = β
TXXX + ε (5)

where β = [β0, . . . ,βd ] is the vector of regression coefficients; ε represents the error and has
a Gaussian distribution and XXX is X augmented with a row of n 1s stored in an extra column,
X0. The vector β is usually estimated using the ordinary least squares method (Puntanen and
Styan, 1989). Table 1 summarizes the notation of the linear regression model.
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Table 1 The Linear Regression Model.

Matrix Dimensions Name
Y 1×n Dependent Variable
X d×n Independent Variable
XXX (d +1)×n Augmented Independent Variable
β (d +1)×1 Regression Coefficients
ε 1×n Gaussian Error

3.2 Variable Selection Problem Definition

Variable selection is the search for the best subsets of variables (submodels) that are good
predictors of Y (Mitchell and Beauchamp, 1988). The assumption of this search is that the
data contains variables that are redundant and can be safely excluded from the model, since
they provide little relevant information. There are many reasons to undertake this search:

– To express the relationship between the dependent variables and the explanatory vari-
ables in the simplest way possible (Mitchell and Beauchamp, 1988)

– To identify which variables are important and which are negligible predictors (Mitchell
and Beauchamp, 1988)

– To facilitate data visualization and model interpretation (Guyon and Elisseeff, 2003)

Finding which subsets are the most appropriate is not computationally trivial, since there are
2d potential combinations of variables.

In this article the set of selected variables is represented by a d-dimensional vector γ ∈
{0,1}d , such that γ j = 1 if the variable j is selected and γ j = 0 otherwise. We denote by
Mγ the model that selects k of the d variables, corresponding to the vector γ . Given γ we
can easily find how many variables were selected by performing the dot product k = γT · γ .
Throughout this paper we will use γ as an index on selected variables such as βγ and XXX γ to
denote that these quantities are projected using a particular set of selected variables.

3.3 Gibbs sampler

As mentioned before, an exhaustive search on the 2d subsets of variables is impractical for
even a moderately large d. While many techniques have been developed (Hocking, 1976)
to deal with such a problem, a Bayesian approach provides information about the prior
probabilities as an added bonus. Since it is very difficult to produce a solution to such a
problem, several authors (George and McCulloch, 1993; Mitchell and Beauchamp, 1988),
exploit Markov Chain Monte Carlo (MCMC) techniques, such as the Metropolis-Hastings
Method and the Gibbs sampler, to obtain reasonably accurate models by sampling from the
posterior distributions.

The Gibbs sampler, the approach taken in this work, uses the posterior probability
π (γ|X ,Y ) as a criterion for the selection of promising sets of variables. The Gibbs sampler
is a MCMC method to obtain a sequence of observations approximated from the posterior
probability. This sequence of observations is characterized by a vector γ [i], that describes
the variables selected at iteration i of the sequence. γ [i] is obtained from the previous vector,
γ [i−1], as follows:

For every variable x j the normalized probabilities of p(γ [i]j = 0) and p(γ [i]j = 1) are cal-

culated. Based on these probabilities either γ
[i]
j = 0 or γ

[i]
j = 1 is chosen by sampling, and the
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j position of vector γ [i] is updated. After N iterations we obtain the Markov chain sequence
γ [0], . . . ,γ [N]. To avoid introducing a bias into the prior computation due to initial instabili-
ties, the first B iterations of the Markov chain (burn-in period) are usually discarded. After
the burn-in, it is assumed that we have reached a stable distribution (the process becomes
ergodic) and we can safely sample the priors. Finding the number of iterations that need to
be discarded is not a trivial problem (Jones and Hobert, 2004). In the present work B was
fixed empirically to a large number, determined experimentally.

We base the computation of π (γ|X ,Y ) on the Zellner G-prior (Zellner, 1986)), which
simplifies the Gibbs priors specification and sampling from the posteriors. Zellner’s G-prior
relies on a conditional Gaussian prior for β and an improper (Jeffreys) prior for σ2 (Marin
and Robert, 2007), with parameters c and β̃ .

β |σ2,X ∼Nk+1

(
β̃ ,cσ

2 (XXT )−1
)

(6)

σ
2 ∼ π

(
σ

2|X
)

∝ σ
−2 (7)

Our approach uses a uniform prior probability for γ: π (γ|X) = 2−d (George and Mc-
Culloch, 1993; Marin and Robert, 2007).

Under Zellner’s prior the parameter c also influences the number of variables selected by
the model: large c values lead to small models, whereas small values of c promote saturated
models (Liang, 2008). Since we aim to solve problems with very large dimensionality (d�
n) we will use a high c value, in order to select smaller sets of variables. We calculate
the posterior probability π (γ|X ,Y ) using the marginalized posterior distribution (Marin and
Robert, 2007):

π(γ|X ,Y ) ∝
1

(c+1)
k+1

2

(
YY T −

cYXXX γ(XXX γXXXT
γ )
−1XXXT

γ Y T + β̃ T
γ XXX γXXXT

γ β̃γ

c+1

)−n/2

(8)

3.4 Extended Sufficient Statistics for Linear Regression

Throughout this work we will make use of the concept of sufficient statistics. Sufficient
statistics are multidimensional functions that summarize the properties of the data set or of a
portion of the data set. These functions are of importance since they can be calculated using
simple aggregations and they reduce considerably the number of times the data set must be
read. Since we are operating on the assumption that the data set does not fit in memory,
reading the data set from secondary storage as few times as possible is a key ingredient to
any time optimization. The statistics used in this work are:

n, the number of input d-vectors,
L = ∑

i
yi, stores the sum of the data points, and

Q = ∑
i

yi.yT
i , stores the sum of the squares of the elements of the data set.

For computing linear models we consider an extension of sufficient statistics. Let XXX =
[1,X ] be the augmented X matrix; since X is a d×n matrix, XXX is a (d +1)×n matrix such
that:

XXX i, j =

{
1 if i = 0
Xi, j if i > 0

(9)
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Table 2 Summarization matrices

Name Size
L d×1
Q d×d
Γ (d +2)× (d +2)

and let ZZZ = [XXX ,Y ] be the (d +2)×n matrix where we store the augmented X matrix and Y :

ZZZi, j =

{
XXX i, j if i < d +1
Yj if i = d +1

(10)

Γ = ZZZZZZT contains a summary of the whole data set, sufficient to compute the linear model.

Γ =

 n ∑xT
i ∑yi

∑xi ∑xixT
i ∑xiyi

∑yi ∑yixT
i ∑y2

i


=

 n LT
∑yi

L Q XY T

∑yi Y XT YY T


=

[
QQQ XXXY T

YXXXT YY T

]
(11)

Notice that XXXY T ,YXXXT and YY T can be calculated once, in one pass, at the beginning of the
algorithm. Furthermore from equation 11 we can see that Γ is symmetric: Γ =Γ T . This has
important implications both on the issue of storage as well as the simplification of some of
our computations. The dimensionality of the summarization matrices is presented in Table 2.

We can derive the posterior of π (γ|X ,Y ) as an expression dependent on n, L, QQQ and
YXXXT :

π(γ|X ,Y ) ∝
1

(c+1)
k+1

2

(
YY T − c

c+1
(YXXXT

γ )(QQQγ)
−1(XXX γY T )− 1

c+1
β̃

T
γ QQQγ β̃γ

)−n/2

(12)

3.5 The SciDB Array Database System

SciDB is an array DBMS that manipulates multidimensional arrays of unlimited size. Array
operations are performed natively, removing RAM limitations. SciDB differs from a tradi-
tional DBMS in that data is partitioned and stored in chunks. A chunk is a large multidimen-
sional block on secondary storage. We can visualize a 2-dimensional array stored on disk as
a grid of rectangular chunks, where each chunk represents a sub-array of contiguous cells.
Like most parallel DBMSs, SciDB is based on a SHARED-NOTHING architecture (Stone-
braker et al, 2011) and (Stonebraker et al, 2013). In the SciDB shared-nothing architecture
each node (processing computer) hosts one or more SciDB instances (threads), where each
instance is responsible for local storage and processing of a partition of the input array.

SciDB offers several models of matrix computation. The most naive approach is to ex-
port an array to a linear algebra package such as LAPACK (Anderson et al, 1990), but in
doing this we lose the advantage of storing data in a DBMS. Moreover the exporting time
of large amounts of data could be prohibitive. A second way of operating in SciDB is to use
the query languages provided by the DBMS: The array query language (AQL), a high level
declarative language similar to SQL and the array functional language (AFL), a functional
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Algorithm 1 The Variable Selection Algorithm
Require: X , Y
Ensure: γ = γ [1],γ [2], . . . ,γ [N] the Markov Chain

/* Parameters (defined in the text) */
B, N, c
/* Pre-selection */
Call SciDB function: correlation()
Call SciDB function: preselect()
/* Summarization */
Call SciDB function: Gamma()
/* Gibbs Sampler */
for I = 1 to N do

for j = 1 to d do
Choose a variable x j at random without replacement

Change the state of γ
[I]
j

Prob. current model← Calculate Prob
(

γ [I]
)

γ
[I]
j ← Sample from {0,1}, based on Probabilities of last and current models

if I > B then
/* After the burn in period */
Append γ [I] to the Markov chain

end if
end for

end for

language for working with SciDB arrays where AFL operators are used to compose queries
or statements. Lastly, we can define a new operator programmed in C++. This operator can
be called directly or using SciDB’s R extension, SciDB-R (Stonebraker et al, 2013).

We make use of these properties to write R programs that will be recognizable to any
machine learning specialist, but that leverage the power granted by the SciDB database
system (Section 5.2).

4 An Efficient Gibbs Sampler Algorithm

In this section we present a general treatment of our algorithm for variable selection and
linear regression in high dimensional data.

4.1 Global Algorithm

Our algorithm consists of three parts: Variable Pre-selection (Section 4.2), Sufficient Statis-
tics Calculation (Section 4.3) and Iterative Computation.

4.2 Variable Pre-selection

In order to reduce the computational effort, we perform an initial screening of the variables.
We considered two approaches to reduce the dimensionality of the data set: The correlation
ranking method (Bondell and Reich, 2012; Guyon and Elisseeff, 2003; Fan and Lv, 2008)
works by calculating the marginal correlation ρi, of each of the independent variables with
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Table 3 Model parameters for the Gibbs Sampler

N Number of iterations
B Number of burn in iterations
c Parameter of Zellner’s prior
β̃ Prior belief of the regression coefficients

the dependent variable.

ρk =

n
∑

i=1

(
xi

k− x̄
)(

yi− ȳ
)

√
n
∑

i=1

(
xi

k− x̄
)2 n

∑
i=1

(yi− ȳ)2
=

n
∑

i=1
xi

kyi−nx̄ȳ

(n−1)σxk σy
(13)

Once all the correlations are calculated, they are ordered (ranked) in descending order
and the top d ranked variables are kept. The data set thus produced has its dimensionality
reduced to d, simplifying the subsequent calculations.

A second, popular approach is to calculate all the univariate linear models for each of
the independent variables with the dependent variable. The coefficients of regression βk are
then used for the ranking of the variables.

βk =

n
∑

i=1
xi

kyi

n
∑

i=1

(
xi

k

)2
(14)

However, it is evident that if the variables are normalized (x̄k = 0 and σxk = 1), the ranking
will be the same for both methods.

Since the data sets we used were not normalized we used correlation ranking as our
pre-selection method. Moreover, the correlation is directly interpretable, and the difference
between low correlation and high correlation variables is easy to understand.

4.3 Sufficient Statistics Computation

As mentioned in 3.4, we will use sufficient statistics to minimize the number of times the
data set is read. By computing the matrix Γ after pre-selection and before the beginning of
the iterations, we avoid reading the whole data set, since we only need to work with the
subset of variables pre-selected. Furthermore Γ does not need to be recalculated during the
iterative process, so the data set is never directly read again. This is an important requirement
to improve the efficiency of the algorithm. Reducing the number of times the data is read
from secondary storage reduces the time that is spent during I/O operations.

4.4 Iterative Computation

Once the pre-selection has been performed and the sufficient statistics computed, we can
start the Gibbs Sampler. This step requires that we fix a number of parameters (see table 3).
The numerical values of the parameters N and B are fixed experimentally.

The number of variables selected in each iteration, k, can be calculated by performing
the dot product k = γT · γ . If n is the number of data points in the data set when we run the
Gibbs sampler in a sub-model, at every iteration the algorithm requires that k < n, to avoid
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the possibility of the matrix XXT being singular. This can be explained by realizing that we
are dealing with an under-determined system of linear equations. In such a system, if the
number of variables is equal or larger than the number of equations, the linear regression
will give unrealistic results.

In each iteration of the Gibbs sampler, the inclusion of every γ j is calculated based on the
probabilities γ j = 0 andγ j = 1. The computation of such probabilities is the most intensive
computation of the process. The probability computation requires several projections of Γ

based on the current model. Note that the most expensive operation in the calculation of the
posterior probabilities is the matrix inversion

(
XXT

)−1.

4.5 Time complexity

In order to calculate the time complexity of the function, we will break it down to its compo-
nent subroutines. The pre-processing of the data set involves the variable pre-selection and
the one pass calculation of Γ . Let us define p as the number of dimensions of the data set
before pre-selection, as opposed to d, the dimensionality of the data set after pre-selection.
The pre-selection requires the calculation of the all the correlations and sorting them. There-
fore, the time complexity of pre-selection is O(np+ p log p), where p is the dimensionality
of the data set before pre-selection. The computation of the summarization step requires a
data set scanning as well as O(d2) operations for each data point; thus, the total time com-
plexity of the summarization step is O(nd2). Since the pre-processing steps (pre-selection
and summarization) are performed only once, the time spent in these two steps is negligible
compared to the time spent in the main steps of the process.

For every variable we need the probabilities γ j = 0 and γ j = 1. The computation of
such probabilities is the most intensive computation of the process. The probability com-
putation requires several projections of Γ based on the current γ: YXXXT

γ , QQQγ , XXX γY T . After-
wards, the probabilities are computed performing the inversion of QQQγ and several matrix
multiplications. The matrix inversion, the bottleneck of the computation, is performed in
O((k + 2)3) time. Since this computation must be performed for every variable, the time
complexity per iteration is O(d(k+2)3), and the total time complexity of the Gibbs sampler
is O(Nd(k+2)3).

5 Implementation of the Algorithm in SciDB/R

Recalling section 4, our algorithm consists of three main parts: Variable Pre-selection, Suf-
ficient Statistics calculation, and Iterative computation. The first two steps are performed
entirely in the database, using a mix of custom operators that can be called using AFL or
R. The summarization matrix calculated is stored in the database. Once the summarization
step is completed, an R program performs the variable selection, calling the matrix stored
in SciDB to compute the probabilities. We programmed the Gibbs sampler as an R function
that receives the summarization matrix as a parameter. After each iteration ends, the model
vector γi is stored in the database for later analysis (See Algorithm 1).
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5.1 Sufficient Statistics in SciDB

In equation 12 we showed that the posterior probabilities can be expressed in terms of n, L
and Q, so calculating these quantities once will result in a significant improvement in the
efficiency of the algorithm.

While n and L can be efficiently calculated in SciDB using simple AQL queries, the
computation of Q with built in operators does not fare as well (Ordonez et al, 2014b). In (Or-
donez et al, 2014b) we propose an algorithm to compute Γ , a matrix that contains all the
sufficient statistics we require to characterize the data set. We propose a powerful matrix
summarization operator which performs the calculation of Γ using

Γ = ZZZ ·ZZZT =
n

∑
i=1

zi · zT
i (15)

taking advantage of SciDB’s parallel architecture. The matrix thus calculated is then stored
in the database, ready to be queried during the iterative part of the algorithm.

Internally R calls LAPACK for the computation of the inverse, but it is still the bottle-
neck in the algorithm.

5.2 Integrating Algorithm with R

The first two parts of the algorithm are performed directly in SciDB using operators de-
veloped to this end. The pre-selection step reads the whole data set from a SciDB array,
and generates an alternate data set by discarding the lowest ranked variables (Section 3.2).
This new dataset is stored as a SciDB array. The correlation() operator calculates the
univariate correlations and ranks the variables. After the correlations are calculated, the
preselect() operator generates a new SciDB array by discarding all variables that have a
low correlation ranking. Finally the operator Gamma uses the preselected data set to generate
the sufficient statistics matrix described in 3.4 and stores it back in SciDB. The Gamma
operator may be called from R or from SciDB. SciDB queries are executed by the iquery
R-function:

iquery(store(GammaOperator(mydata), SummarizationMatrix))

Then, the data is retrieved as a regular R matrix, as explained above

The Gibbs sampler is entirely programmed in R. First we use SciDB-R to retrieve the
Γ matrix stored in the database as a regular array. The Γ matrix is small enough that can
be copied in its entirety into RAM. Since all the information required by the algorithm is
present in the Γ matrix, we don’t need to interact again with the data set. The Gamma matrix
also accelerates the processing time, because most of the terms in the probability formula
(Equation 8) are already calculated in Gamma. The output array, an array with N−B rows
and d columns (rows from the burn-in are discarded) is stored in RAM. This output array,
{γB+1,γB+2, · · · ,γN}, is analyzed in R to determine the output models. We calculate variable
posterior probabilities, models accuracy and model size for each row of the output array.
After all the iterations have finished, the output array is also stored in SciDB for further
analysis, which can be done either on SciDB or in R.
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6 Experimental Validation

In previous sections we described the basic Gibbs sampler, as well as the improvements we
devised in order to efficiently implement this algorithm. Here we present the results of our
experiments as well as the evaluation of their accuracy and time complexity. We used our
algorithm to search for parsimonious models of the survival time for patients suffering from
Glioblastoma Multiforme (GBM). The data sets are presented in Table 4. The variable of
interest Y is the patient’s survival time. The data sets X1 and X2 contain the gene expression
and the microRNA expression of the same set of 248 subjects. No right-censored data points
are being considered (patients still alive were not considered in the experiment). We apply
our algorithm to data set X1 (gene expression), X2 (microRNA expression) and X1∪X2
(joint analysis of gene and microRNA expression). Gene/mRNA and microRNA expression
provide differently molecular information about the progression of the disease and the main
scientific questions are not only to model the effects each platform independently but joint
effects as well, on patients’ prognosis.

Table 4 Data sets used in this work. For all data sets n = 248

Data set d Description
X1 11972 Gene Expression
X2 534 microRNA Expression
X1∪X2 12506 Combined Gene/microRNA Expression

Table 5 DBMS and server characteristics.

DBMS SciDB 14.3
Operating System Linux Ubuntu 14.04
Processor Intel Xeon X3210, Quad-core CPU, 2.153 GHz
RAM 4 GB
Hard Disk 650 Gb; 7200 RPM

We run several experiments for this high dimensional data set (p ≈ 12000). In Table 5
we show the system used for these experiments. We pre-select up to 2000 variables for co-
variate sets X1 and X1∪X2. We analyze the accuracy of the results by running experiments
with different parameters and measuring the average and maximum values of the regression
coefficient in each experiment.

6.1 Experimental set-up and parameters used

Since d� n, the problem is under-determined and shows a proclivity to over-fitting. There-
fore, if the parameter c is not large enough, the Gibbs sampler has a tendency to choose
as many variables as there are data points. We studied the effect of this parameter on the
number of variables chosen as can be seen in Figure 1.

The results are presented in the form of frequencies of the most often chosen variables
by the algorithm. It is important to note that while the frequency of the variables is very
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Table 6 Most selected variables for c = 1×106, d = 2000, N = 30000, B = 5000. Data Set X1∪X2

Variable Frequency Name

500 3575 2581-at
503 3022 25833-at
586 3385 2591-at

1036 3445 54952-at
1046 3962 5030-at
1134 4837 55711-at
1197 2708 56978-at
1255 3949 5891-at
1303 7255 6251-at
1327 2759 63894-at
1372 3730 64901-at
1405 7685 6716-at
1571 3961 79647-at
1775 3469 8811-at
1856 4020 9337-at
1869 2715 9425-at
1924 5645 9812-at
1983 4461 hsa-miR-222
1995 3518 hsa-miR-520a

Table 7 Most selected variables for c = 2×106, d = 2000, N = 30000, B = 5000. Only mRNA was consid-
ered in this experiment (Data Set X1)

Variable Frequency Name

500 2935 2581-at
586 4001 2591-at

1046 3893 5030-at
1134 4335 55711-at
1162 3178 −−−
1197 2571 56978-at
1255 2955 5891-at
1303 6664 6251-at
1372 4136 64901-at
1405 6920 6716-at
1571 3279 79647-at
1856 3492 9337-at
1924 4915 9812-at

stable from experiment to experiment, k, the final size of the output depends on the input
parameters (See Figures 2, 3, 4, and 5).

6.2 Interpretation of the results

We ranked the genes based on their marginal posterior probabilities. The most selected genes
and miRNA signatures for X1∪X2 are presented in Table 6. Table 7 shows the most selected
genes for X1 using a different value of c. Among these markers hsa-mir-222 has been iden-
tified before by (Roth et al, 2011) and (Srinivasan et al, 2011) as part of the GBM prediction
signature. This would indicate that our method is in agreement with previously reported
experimental results. While our experiments find some top markers that have been previ-
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Fig. 1 Most frequent model size as a function of the c parameter. For c < 5× 105 the algorithm saturates
(model size is equal to n). d = 2000, N = 30000, B = 5000, data set X1∪X2

Fig. 2 Model probability and maximum R2 as a function of the model size, k. d = 2000, c = 0.6× 106,
N = 30000, B = 5000, data set X1∪X2
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Fig. 3 Model probability and maximum R2 as a function of the model size, k. d = 2000, c = 0.8× 106,
N = 30000, B = 5000, data set X1∪X2

Fig. 4 Model probability and maximum R2 as a function of the model size, k. d = 2000, c = 1× 106, N =
30000, B = 5000, data set X1∪X2
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Fig. 5 Model probability and maximum R2 as a function of the model size, k. d = 2000, c = 2× 106, N =
30000, B = 5000, data set X1∪X2

ously implicated in the literature we also find a list of new markers that could merit further
functional validation for development of future therapeutic strategies.

Figures 2, 3, 4, and 5 show the model size frequency and the corresponding maximum R2

for different values of the parameter c. We notice that while R2 increases for larger models
(as can be expected) the frequency of selected models is maximized around smaller model
sizes. The maximum of the model size frequency grows with c. We must clarify that model
size frequency is not the same as model frequency. Ideally, a Markov chain nominates the
model that is repeated most times as the best model. However, since the number of variables
is so large compared to the final model size, the likelihood of any model repeating is very
low. In other words, we do not find that identical models are selected a significant number
of times. Nevertheless, models that are almost identical, models that differ in one or two
variables, are found frequently. These variable combinations were used to calculate the most
selected variables shown in Tables 6 and 7.

6.3 Performance Analysis

In Table 8 we show the time that our system takes to complete 30000 iterations for different
number of variables. As expected from Section 4.5, the behavior is linear with the number
of dimensions. We changed the parameter c in order to maintain k roughly constant.

Table 9 presents a comparison between a variable selection package in R and our algo-
rithm, showing the execution time for 1000 iterations. Depending on the number of variables
in the experiment we can see a 30 to 100 fold improvement using our algorithm. For instance
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Table 8 Execution time in seconds on SciDB varying d. N = 30000, B = 5000, data set X1∪X2

d c Time

500 10K 4310
1000 100K 7126
2000 1000K 13200

Table 9 Time in seconds per 1000 iterations, comparing existing R package with our optimized algorithm
combining R and SciDB. Data set X1∪X2

d R Package Optimized
Algorithm

400 5468 194
534 8378 196

1000 22898 272
2000 * 250

* Stopped after 2 hours

in the case of d = 534 (data set X2), R performs 1000 iterations in 8378 seconds, while it
takes just 196 seconds using our system. We attribute the substantial speed increase to the
use a pre-computed GAMMA matrix that resides in memory

7 Conclusions and future work

We present the first Markov Chain Monte Carlo algorithm integrating matrix computations
in R and in the SciDB database. Since we use the database both for a data repository and
as the engine for pre-selection and summarization, we are able to handle massively large
amounts of data, removing R’s RAM and speed limitations, as we only need to deal with
a reduced dataset and most important quantities are pre-calculated. Therefore we are able
to work with data sets that are vastly larger than the system’s main memory. Our method
is able to reuse existing R code, with minimal additions to communicate with SciDB. As a
consecuence, the presented algorithm is easier to adapt to fit other kinds of data and possibly
change priors, as long as they can be expressed in terms of the sufficient statistics summa-
rization matrix. We pre-process the data set to work with a lower number of variables without
discarding important models, since the variables discarded have very low correlation with
the dependent variable. This new method removes the need for several complicated opti-
mizations that were necessary in our previous work, making the code cleaner, more elegant
and easier to understand, modify and parallelize. The most frequent genetic markers found
using our algorithm are in good agreement with the medical literature, and we find others
that might merit some further attention. Our method has a linear time complexity with the
number of dimensions and the algorithm is 30 to 100 times faster than using only R. Fur-
thermore, since the results and output arrays are stored in the database, further analysis can
be performed easily using R or SciDB tools.

Future avenues for research includes the analysis of the models selected to find clus-
ters of genes that are most commonly selected together. We will explore different kernels
and priors to see if we find results in less iterations. We will work on data sets with more
than 50000 variables, maintaining the data set in RAM but computing the summarization
matrix on demand. We also will include second order effects, considering a data base with
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second order interactions between the variables. We want to study the trade offs between
using a correlation threshold and discarding possibly valuable variable combinations. This
will allow us to determine if there are any variables that, even if they might be poorly cor-
related with the dependent variable individually, they might merge to produce a strongly
correlated combination. Regarding the R part of our algorithm we are working on incremen-
tally computing the inverse, to reduce the need of costly LAPACK calls. Finally we plan to
pre-compute the probabilities in parallel using a look-ahead optimization.
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