
1

The Gamma Matrix to Summarize Dense and
Sparse Data Sets for Big Data Analytics

Carlos Ordonez, Yiqun Zhang, Wellington Cabrera
Department of Computer Science

University of Houston, USA

Abstract—Data summarization is an essential mechanism to accelerate analytic algorithms on large data sets. On the other hand,
array DBMSs enable scalable computation with large matrices. With that motivation in mind, we propose a parallel array operator,
based on a specific form of matrix multiplication, that computes a comprehensive data summarization matrix. By deriving equivalent
equations based on the summarization matrix, statistical methods are adapted to work in two phases: (1) Parallel summarization of the
data set in one pass; (2) Iteration exploiting the summarization matrix in many intermediate computations. We prove our summarization
matrix captures essential statistical properties of the data set and it allows iterative algorithms to work faster in main memory, by
decreasing the number of times the data set is scanned, and by reducing the number of CPU operations. Specifically, we show our
summarization matrix benefits statistical models, including PCA, linear regression and variable selection. From a systems perspective,
we carefully study the efficient computation of the summarization matrix on the SciDB parallel array DBMS and how to exploit it in the R
language statistical system. To achieve best performance, we introduce two specialized array operators for dense and sparse data
sets, respectively. We present an experimental evaluation comparing SciDB, R, a columnar DBMS (a fast SQL engine) and Spark (a
popular Hadoop system). Our experiments show R working together with SciDB eliminates main memory and performance limitations
from R. More importantly, our R+SciDB prototype is significantly faster and more scalable than Spark and the columnar DBMS.

F

1 INTRODUCTION

Big data analytics is a new data mining trend with higher
data volume, varied data types and parallel processing.
Row DBMSs remain the best technology for transaction
processing and column DBMSs are becoming a competitor
in query processing [23] in large databases [22]. However,
both kinds of DBMS are slow and difficult to use for
mathematical computations on large data sets due to the
abundance of matrices. Currently, Hadoop and MapReduce
systems [12], [22] (e.g. Spark [27], HadoopDB, Cassandra,
Hive, MongoDB, Mahout project, and so on) are the most
popular for big data analytics. From a statistical perspective
R is the most popular platform, but despite many efforts it
remains slow and not scalable for big data analytics. Array
DBMSs (SciDB [24]) represent alternative analytic systems,
closer to relational DBMSs, that enable computation with
large matrices in R, which share many features with old
DBMSs like efficient I/O, indexing, concurrency control and
parallel processing, but which have significantly different
storage and query processing mechanisms.

In this work, we focus on the optimization of algo-
rithms to compute three fundamental and complementary
models. Specifically, we study the computation of principal
component analysis (PCA) [11], linear regression (LR) [11]
and variable selection (VS) on large data sets. However,
these three models require different numerical and statistical
methods for the their solutions: PCA is generally computed

Copyright 2016 IEEE. This is an unofficial version. The official version is
published in IEEE Transactions on Knowledge and Data Engineering (TKDE
Journal). Personal use of this material is permitted. However, permission to
reprint/republish this material or for creating new collective works, or to reuse
any copyrighted component of this work in other works, must be obtained from
the IEEE. http://doi.ieeecomputersociety.org/10.1109/TKDE.2016.2545664

with a Singular Value Decomposition (SVD) on the cor-
relation [25], [11] (covariance) matrix of the data set; LR
is solved with least squares via a matrix factorization; VS
requires visiting an exponential search space of variable
combinations, whose most promising solution is currently
found by MCMC methods, used in Bayesian statistics [9].
We justify a costly matrix multiplication is at the heart of
the computation of these models. The root causes are a
matrix transposition and then a slow matching between
the ith row from the input matrix with the jth column
from its transpose. With that motivation in mind, we intro-
duce a summarization matrix, called Gamma, that captures
essential statistical properties of the data set, to compute
first and second moments (mean, variance) of multivariate
probability distributions. The most important characteristics
of the Gamma matrix is that it is much smaller than the data
set and it can be used to avoid recomputing costly matrix
multiplications. We show the Gamma summarization matrix
can be efficiently computed via a novel form of matrix multi-
plication, optimized for large data sets, in which Gamma can
be incrementally updated in main memory. To that end, we
introduce two parallel incremental algorithms for dense and
large input matrices (i.e. the data set), respectively, which
scan the data set once, in parallel. Exploiting Gamma, we in-
troduce a “meta” algorithm that divides model computation
of our models into two phases: (1) parallel incremental sum-
marization to get Gamma, (2) model computation in main
memory exploiting the Gamma matrix, including iterative
behavior. Experimental evaluation shows our summariza-
tion operator removes main memory limitations from R and
it is much faster than R (when the data set fits in RAM)
and orders of magnitude faster than a column DBMS (one
of the fastest DBMSs, evaluating summarization with SQL

2

queries). There are efficient functions in R, LAPACK [2], [6],
SciDB [24] and Spark [27] to compute matrix multiplication,
but we show they are inefficient to summarize the data set.
More importantly, we show R and LAPACK fail when there
is insufficient RAM for large input matrices. From a parallel
perspective, the array DBMS is orders of magnitude faster
and has better speedup than Spark, when running in a large
cluster in the cloud. This article is a significant extension
and deeper study of [21], where we initially proposed the
Gamma summarization matrix.

This is an outline of the rest of this article. Section
2 is a reference section that introduces definitions used
throughout the paper. Section 3 presents our theoretical
research contributions, divided into two main aspects: (1)
a comprehensive summarization matrix that benefits sev-
eral linear models that allow statistical methods to work
in two phases: summarization and iteration. (2) Deriving
equivalent matrix equations based on summarization that
decrease iterations or the number of times the data set
must be read. Section 4 proposes two matrix summarization
operators optimized for an array DBMS that can work in
parallel in one pass on the data set. We introduce two
alternative summarization algorithms for dense and sparse
matrices. We also explain how the summarization matrix is
exploited in the R package, taking advantage of its powerful
mathematical capabilities. Section 5 presents an experimen-
tal evaluation comparing our solution to state of the art
analytic systems including the R package, a columnar DBMS
and Spark. We also specifically compare matrix multiplica-
tion with LAPACK (Intel Math Kernel Library: MKL), the
standard in HPC. We discuss closely related work in Section
6. Conclusions and directions for future work are discussed
in Section 7.

2 DEFINITIONS

We start by defining the input matrix, stressing it is a set
of n column vectors. All models take a d × n matrix X as
input. Let X = {x1, ..., xn} be the input data set with n
points, where each point xi is a vector in Rd. Intuitively,
X is a wide rectangular matrix. In the case of LR and VS,
X is augmented with a (d + 1)th dimension containing an
output variable Y , making X a (d + 1) × n matrix. We
use i = 1 . . . n and j = 1 . . . d as matrix subscripts. We
emphasize that for convenience in mathematical notation
we use column vectors and column-oriented matrices.

We use Θ, a set of matrices and associated statistics,
to refer to a statistical model in a generic manner. Thus
Θ represents the PCA, LR and VS models defined below.
Moreover, Θ could represent a clustering or classification
model. PCA represents an unsupervised (descriptive) model
to reduce dimensionality. Linear regression is a fundamen-
tal supervised model, whose solution helps understanding
and building other linear models. Variable selection (VS),
a supervised model, is among the computationally most
difficult problems in statistics and machine learning, in
which Markov Chain Monte Carlo (MCMC) methods [11],
[9] are a promising solution.

3 DEFINING AND EXPLOITING A MULTIDIMEN-
SIONAL SUMMARIZATION MATRIX

We start by introducing basic vectors and matrices con-
taining sufficient statistics [11], which are generalized and
integrated into a single summarization matrix Γ that is
exploited in intermediate demanding computations for the
models introduced in Section 2. Section 3.1 introduces Γ
and it explains its mathematical properties, which enable
scalable parallel algorithms. Section 3.2 introduces a general
algorithm to efficiently compute models in two phases.
Section 3.3 explains in technical detail how Γ is exploited
in intermediate computations. All “systems” aspects and
parallel algorithms are presented in Section 4.

3.1 Gamma Summarization Matrix

In this section we introduce the Γ summarization matrix.
We first explain this matrix contains several vectors and
submatrices that represent important sums derived from the
data set. In Section 3.3, we show such sums help deriving
fundamental statistical properties of the data set, for each
dimension (variable) and for each variable pair.

We first review sufficient statistics matrices [11], [20],
which are integrated and generalized into a single matrix:

n = |X | (1)

L =

n∑

i=1

xi (2)

Q = XXT =

n∑

i=1

xi · xT
i (3)

Intuitively, n counts points, L is a linear sum of xi and
Q is a quadratic sum of xi, where xi multiplied by itself
(i.e., squared) with a vector outer product. As explained in
Section 3.3.2 , the linear regression model uses an augmented
matrix, represented by X. We introduce a more general
augmented matrix Z, by appending an additional d + 1th
row to X, which contains the vector Y. Since X is d × n, Z

has (d + 2) rows and n columns, where row [0] are 1s and
row [d+ 1] is Y .

Matrix Γ contains a comprehensive, accurate and suffi-
cient summary of X to efficiently compute all models pre-
viously defined. Below we show Γ in two equivalent forms:
(1) as vector-matrix and matrix-matrix multiplications; (2) as
sums of vector outer products. Notice 1 is a column-vector
of n 1s, which allows expressing a sum as a matrix product.
Such equivalence has important performance implications
depending on how the matrix is processed.

Γ =




n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T




=




n
∑
xT

i

∑
yi∑

xi

∑
xix

T
i

∑
xiyi∑

yi

∑
yix

T
i

∑
y2

i




The fundamental property of Γ is that it can be computed
by a single matrix multiplication using Z. Therefore, we

3

study how to compute the matrix product below, related
to, but not the same as the Gram matrix ZT Z [5]:

Γ = ZZT (4)

Matrix Γ is fundamentally the result of “squaring” ma-
trix Z. Γ is comparatively much smaller than X for large n,
symmetric and computable via vector outer products. Such
facts are summarized in the following properties:

Property 1 (matrix product versus vector outer product): Γ can
be equivalently computed as follows:

Γ = ZZT =
n∑

i=1

zi · zT
i . (5)

Property 2 (small size): Given a large data setX where d� n,
matrix Γ size is O(d2)� O(dn) as n→∞.

Property 3 (symmetry): Γ = ΓT , which can be condensed
into a triangular matrix with d+ (d+ 2)2/2 ≈ d2/2 entries,
saving 1/2 of CPU operations.
Property 4 (first and second moment): Matrix Γ summarizes
X to compute the first and second moment of several
multivariate probabilistic distributions.

Property 1 is fundamental to derive a highly efficient
summarization operator. Property 1 gives two equivalent
expressions to obtain Γ: one as a matrix multiplication and
a second one as a sum of vector outer products. We make
the following fundamental observation. Even though it is
tempting to evaluate ZZ

T as a matrix multiplication it
is a bad idea: we need to compute and materialize ZT

first, a costly transposition, storing it and then perform
the actual matrix multiplication. Instead, we defend the
idea of evaluating the summation

∑n
i=1 zi · zT

i . We will
experimentally prove this hypothesis. Assuming zi fits in
main memory then it is reasonable to assume the vector
outer product also fits in main memory. Therefore, it makes
more sense to evaluate such sum in parallel. Given the
prominent importance of Γ we believe our operator should
be available on any big data analytic system. We call our
operator Γ(X) (called Gamma(X) in a C++ function).

Property 2 means that if Γ can fit in main memory it is
feasible to maintain a summary ofX in main memory. How-
ever, we emphasize we cannot assume X can fit in main
memory. Therefore, the challenge is to efficiently compute
Γ, minimizing the number of times X must be read from
secondary storage.

Property 3 states it is possible to save one half of CPU
work. Notice storage space in triangular form is still O(d2),
but it requires a nested indexing mechanism. In order to
allocate a square array, which enables faster address compu-
tation and block-based access we prefer not to use compact
storage. Notice Property 2 implies ZZT = (ZZT)T =
(ZT)T ZT = Γ, highlighting the matrix product is non-
commutative. In other words, Γ 6= ZT Z. Table 1 provides
a summary of all matrices, including the input data set, the
output variable, model Θ and Γ.

We explain Property 4 in more technical detail. Γ is
a fundamental summarization matrix because it can help
computing the first and second expected moments of many

TABLE 1
Summary of matrices: summarization and models.

Matrix Size Description
X d × n Data set: dimensions/variables
X (d + 1) × n Augmented matrix with 1s
Z (d + 2) × n Augmented X matrix with 1s and Y
Γ (d + 2) × (d + 2) Summarization matrix
U d × d Principal components
V d × d Squared eigenvalues; diagonal
Y 1 × n Dependent variable
β (d + 1) × 1 Regression coefficients, Y intercept
γ d × 1 Selected variables; binary vector

probabilistic distributions: the first moment E[x] = µ, to
get the global mean (average) and the second moment
E[(x − µ)(x − µ)T] = V for the covariance matrix, which
measures mean squared error (MSE) per dimension and
helps understanding each variable pair behavior. Mean
squared error is the most commonly used error measure in
statistics and machine learning due to being mathematically
easier to optimize [11]. Γ can be used to directly derive the
global mean and the covariance matrix: That is, Γ helps
understanding each individual variable and each pair of
variables. The following models represent a generalization
of these basic statistical matrices. Higher order variable
interactions can be analyzed adding dimensions to X for
each variable pair.

3.2 Two Phase Analytic Algorithm

Recall from Section 2 Θ represents a statistical model. There-
fore, based on Γ a fast algorithm to compute Θ in two phases
is the following:

1) Compute Γ.
2) Iterate exploiting Γ in intermediate matrix compu-

tations.

This paper focuses on optimizing Phase 1, which is
a well-defined problem for any input data set X . Phase
2 requires incorporating Γ in the steps of numerical and
statistical methods. By exploiting Γ it becomes possible to
reduce the number of times X is read, and to reduce CPU
computations in iterative methods. Identifying in which
models intermediate matrix computations accept Γ is a
deep research topic. We point out that this works builds
on top of previous research and we make clear for which
kind of models our optimizations apply. That is, our choice
of methods to solve PCA, LR and VS has been carefully
done based on the fact that they can exploit Γ in the most
demanding matrix equations.

3.3 Models Exploiting the Gamma Matrix

Our summarization matrix benefits a big family of statistical
models. In this paper we focus on PCA, LR, and VS, where
one summarization matrix is sufficient despite the fact that
their iterative methods are different. Our summarization
matrix can be generalized to compute the Naive Bayes
classifier, K-means/EM clustering, logistic regression and
Linear Discriminant Analysis, among others. But these latter
models require more than one summarization matrix (e.g. k

4

summarization matrices for K-means or EM), which intro-
duces different assumptions and other iterative methods.
Therefore, such models are a research issue for future work.

For the statistical models we consider, we use a single
summarization matrix Γ that is non-diagonal. That is, we do
not assume dimensions are independent. Therefore, Γ is a
full matrix withO(d2) non-zero entries. From an algorithmic
perspective, we have managed to use Γ as a proxy of X
in every step. Therefore, the model Θ is computed in one
(parallel) pass over X , as explained in the next subsections.

There are two basic directions to generalize Γ: (1) com-
puting multiple Γ matrices, where each one corresponds
to some subset of X , obtained by partitioning X based
on the values of some attribute G (e.g. class, cluster id).
(2) Assuming dimensions are independent, resulting in a
diagonal Γ matrix with O(d) non-zero entries. Both gener-
alizations can be combined resulting in multiple data sum-
maries assuming independence or dependence, covering a
wide spectrum of models. Generalization (1) can potentially
benefit classification models like Naive Bayes and Linear
Discriminant Analysis Generalization (2) is the gateway to
compute simple descriptive statistics like the mean and stan-
dard deviation on multiple data subsets and also clustering
models. In general, both generalizations require iterative
methods, reading the data set at every iteration. Therefore,
their solution is different from the one-pass solution pre-
sented in this work and it is an issue for future work.

We now present customized algorithms to compute each
model Θ under our unifying 2-phase method.

3.3.1 Principal Component Analysis (PCA)
The objective of PCA is to reduce the noise and redundancy
of dimensions by re-expressing the data set X on a new or-
thogonal basis, which is a linear combination of the original
dimensions basis. In this case X has d potentially correlated
dimensions but no Y . In general, PCA is computed on the
covariance or the correlation matrix of the data set [11].

We focus on computing PCA on the covariance matrix
V or the correlation matrix ρ [11] of X , both symmetrical
matrices. The PCA model Θ consists of U , a set of d orthog-
onal vectors, called the principal components of the data
set, ordered in decreasing order by their length (variance)
and a diagonal matrix D2, with the squared eigenvalues
(lengths). PCA is computed with an eigen decomposition of
V or ρ, whose solution is the factorization ρ = UD2UT =
(UD2UT)T . We stress we are not computing the SVD factor-
ization X = UDV T , where U 6= V as that is a more general
numerical analysis problem [5], [11]. The correlation matrix
ρ is generally preferred because it normalizes dimensions.
Notice that when X has been normalized (i.e. with a z-
score, centering at the origin subtracting µ and rescaling
variables by standard deviation σj) ρ = XXT/n. Therefore,
given ρ, its eigen decomposition [11] is a symmetric matrix
factorization expressed as ρ = (XXT)/n = UD2UT . In
general, only k principal components (k < d) carry to most
important information about variance of the data set and
the remaining d − k components can be safely discarded
to reduce d. The actual reduction of d to some lower di-
mensionality k (i.e., the k principal components) requires an
additional matrix multiplication, which is simpler and faster
than computing Θ.

As mentioned earlier, PCA can be computed solving
SVD on the correlation matrix. To compute PCA we rewrite
the correlation matrix equation based on the sufficient statis-
tics in Γ: ρab = (nQab−LaLb)/(

√
nQaa − L2

a

√
nQbb − L2

b).
The PCA algorithm two phases are:

1) Compute Γ.
2) Compute ρ (or covariance matrix V), solve SVD of ρ

(or V). Optional: select the k principal components
(generally whose eigen-value is at least 1).

We omit discussion of the actual dimensionality reduc-
tion of X to a k-dimensional data set. This computation
is straightforward requiring only a matrix multiplication
between a d× k matrix Γ derived from SVD and X .

3.3.2 Linear Regression (LR)
Let X = {x1, . . . , xn} be a set of n data points with d
explanatory variables and Y = {y1, . . . , yn} be a set of
values such that each xi is associated to yi. The linear
regression model characterizes a linear relationship between
the dependent variable and the d explanatory variables.

Using matrix notation, the data set is represented by
matrices Y (1×n) and X (d×n), and the standard definition
of a linear regression model is:

Y = βT X + ε (6)

where β = [β0, . . . , βd] is the column-vector of regression
coefficients, ε represents Gaussian error and for mathemat-
ical convenience X represents X augmented with an extra
row of n 1s stored on dimension X0. The vector β is usually
estimated using the ordinary least squares method [16],
whose solution is:

β̂ = (XX
T)−1XY T (7)

As introduced above, Γ contains those 2 partial matrix
products and so β̂ = Q−1(XY T). Therefore, the LR algo-
rithm becomes:

1) Compute Γ.
2) Solve β̂ exploiting Γ.

3.3.3 Variable Selection (VS)
We now focus on one of the hardest problems: variable
selection in statistics, feature selection in machine learning.
Since we have previously introduced linear regression, we
will study variable selection in this model. However, our
algorithms have the potential to be used in other models
such as probit models [11], Bayesian classification [11] and
logistic regression [11], all of which have similar intermedi-
ate matrix computations.

The input is X , like LR, but it is necessary to add
model parameters. In general, a linear regression model
is difficult to interpret when d is large, say more than 20
variables. The search for the best subsets of explanatory
variables that are good predictors of Y is called variable
selection. The assumption of this search is that the data set
contains variables that are redundant, or that they have low
predictive accuracy and thus they can be safely excluded
from the model. When d is high, an exhaustive search on
the 2d subsets of variables is computationally intractable for

5

even a moderately large d. Traditional greedy methods, for
instance, stepwise selection [11] can only find one subset
of variables, likely far from the optimal, but the probabilis-
tic Bayesian approach aims to identify several promising
subsets of variables, which in theory can be closer to the
optimal. In this work, the set of selected variables will be
represented by a d-dimensional vector γ ∈ {0, 1}d, such that
γj = 1 if the variable j is selected and γj = 0 otherwise. We
denote by Θγ the model that selects k out of the d variables,
corresponding to the vector γ. The dot product k = γT · γ
indicates how many variables were selected. Throughout
this paper we will use γ as an index to project matrices on
selected variables such as βγ and Xγ .

MCMC Methods: the Gibbs Sampler for VS

We use the Bayesian formulation and Gibbs sampler intro-
duced in [16] based on a Zellner G-prior, which has the
outstanding feature of sharing several intermediate matrix
computations with the other models defined above. Given
a model Θ with K parameters, one of the parameters is
sampled from its prior distribution, while the others K − 1
parameters remain fixed. The set of variables selected at
iteration i of the sequence of observations is denoted by
a vector γ[i]. The Gibbs sampler for variable selection gener-
ates the Markov chain: γ[0], . . . , γ[N], in which it is expected
the best variable subsets will appear more frequently. At
each iteration I , the Gibbs sampler generates γ [I] based on
the previous state of the Markov chain, γ [I−1]. Since each
coordinate γ

[I−1]
j is a parameter of model Θγ , the Gibbs

sampler visits all d entries of γ [I]. In more detail, for every
variable γ[i]

j the normalized probabilities p(γ [i]
j = 0) and

p(γ
[i]
j = 1) are calculated. Based on these probabilities either

γ
[i]
j = 0 or γ[i]

j = 1 is chosen by sampling and the jth
position of vector γ[i]

j is updated accordingly. The Markov
chain becomes stable after an initial number of iterations,
known as the burn-in period B. Then the MCMC method
iterates for a large number of iterations until the posterior
probabilities of γ have been sufficiently explored (essentially
a CPU bound computation, which requires many trial and
error runs).

Recall we perform variable selection with an MCMC
method, potentially requiring thousands of iterations. We
base the computation of π (γ|X,Y) on the Zellner G-prior
due to [16]. Zellner’s G-prior relies on a conditional Gaus-
sian prior for β and an improper (Jeffrey’s) prior for σ2

[16], with parameters c and β̃. The most common prior
probability for γ is the uniform prior π (γ|X) = 2−d [16].
Under Zellner’s G-prior, the parameter c influences the
number of variables selected by the model: large c values
lead to parsimonious models (few variables), whereas small
values of c promote saturated models (many variables). On
the other hand, β̃ is a hyper-parameter [16] (i.e. a new
parameter not belonging to the original linear regression
model) to impose a Gaussian on β.

β|σ2, X ∼ Nk+1

(
β̃, cσ2

(
XXT

)
−1

)
(8)

σ2 ∼ π
(
σ2|X

)
∝ σ−2 (9)

For notational convenience Xγ , β̃γ ,Qγ mean projecting
X, β̃,Q on selected variables. Recall X = [1, X]. The full
equation to get the posteriors of γ involves:

π(γ|X,Y) ∝ (c+ 1)−
k+1

2

(
Y Y T

− c
c+1(YXγ

T)(Qγ)−1(XγY
T)

−(c+ 1)−1β̃T
γ Qγ β̃γ

)
−n/2

The Zellner G-prior is computationally convenient for
big data, because equations can be expressed in terms of Γ.
We will use the sufficient statistics by equations 1, 2 and 3 in
order to avoid recomputing those matrix products at each
iteration. Therefore, our optimized algorithm becomes

1) Compute Γ, which contains Qγ , XγY
T and Y Y T .

2) Iterate the Gibbs sampler a sufficiently large number
of iterations to explore π(γ|X,Y).

4 PARALLEL SUMMARIZATION OPERATORS

Our following discussion is valid for any parallel DBMS
with N processing units in a shared-nothing architecture
(i.e. N nodes, each with its own memory and disk space).
A parallel array DBMS enables the manipulation of multi-
dimensional arrays, removing RAM limitations in a large
matrix computation. The fundamental difference between
SciDB and a row or column DBMS is storage by chunk
instead of block. Such chunk storage requires different pro-
gramming and optimization, compared to SQL queries or
UDFs. Moreover, it is feasible to develop an operator that
receives a matrix as input and produces a matrix as output,
something not easy to do in SQL.

SciDB organizes array storage by chunks [24], where
each chunk is a large multidimensional block on secondary
storage that stores a preferably large fraction of cells (values)
for one numeric attribute (i.e. a subarray). Array storage
in SciDB can be visualized as a grid of rectangular chunks
(tiles in 2D), where each chunk comprises a rectangular area
of contiguous cells. Storage for dense and sparse arrays is
different, but SciDB allows an efficient migration to a dense
representation as a matrix gets denser.

4.1 Programming Mechanisms in Array DBMS

The major question is how to program the computation of Γ
in SciDB. Choices are: (1) exporting (with a bulk mechanism)
the X matrix to a linear algebra package (LAPACK); (2)
using relational style queries on arrays in the AQL (Ar-
ray Query Language) language provided by the DBMS;
(3) composing existing array operators in the AFL (array
functional language) language; (4) developing a new array
operator, tailored to Γ. Exporting the input matrix is a bad
idea, as it defeats the purpose of the DBMS, no matter
how fast the computation can happen outside. The query
language is a natural second option, but it is inefficient as
it requires a similar evaluation query plan as an SQL query
with a costly relational join operation. In fact, we will show
such join is slow even on a fast column DBMS. Existing
matrix operators are inefficient and limited by RAM as Γ
is a matrix product that is difficult to optimize because

6

the input is a large rectangular matrix. These alternatives
were experimentally compared in [21] and our new matrix
summarization operator was the winner.

4.2 The Gamma Array Operator to Summarize a Matrix

As pointed out by previous research [20], it is easy to
compute only n,L, without Q, because they only require
sums of a value (counting) and incrementally summing a d-
vector. That is, Q makes the computation more demanding.
Recalling that Γ contains n,L,Q as submatrices, the main
challenge is to compute this matrix product:

Γ = ZZT =

n∑

i=1

zi · zT
i ,

which requires cross-products between all dimension
pairs, an O(d2n) computation. That is, we study the sum-
marization operator purely as a matrix multiplication that
subsumes all previous approaches. A fundamental aspect
is to optimize computation when X (and therefore Z) is
sparse: any multiplication by zero returns zero. Therefore,
when computing ZZT a multiplication should be evaluated
only when both vector zi entries are different from zero.
Since dense and sparse matrices have different storage and
different processing in main memory this leads specialized
summarization operators for each of them.

4.2.1 Dense Matrix Operator
The dense operator requires that all data of zi (xi in con-
sequence) fits in one chunk. In other words, zi cannot be
partitioned into several chunks in spanned storage. This
requirement is important to accelerate I/O: larger chunks
improve I/O because our Γ computation requires a full scan
on the data set, but no join algorithms. Otherwise, if dwas so
large that it is necessary to store xi spanning several chunks,
then it would be necessary to call a join algorithm, joining
X with itself.

Smaller chunks would trigger seeks, resulting in worse
performance. Fitting many points xi in one chunk is not an
unreasonable assumption because SciDB favors fairly large
chunk sizes, typically ranging above 8MB. Another major re-
quirement and advantage is that the operator must work in
parallel. It is a requirement that complicates programming
because it is essential to design and develop the operator
in such a way that X can be evenly partitioned across N
processing nodes, with minimal or no need of synchroniza-
tion overhead. The advantage is, of course, the ability to
scale processing to larger N as n grows. Our Γ operator
works fully in parallel with a partition of X into N subsets
X [1] ∪ X [2] ∪ · · · ∪ X [N] = X , where we independently
compute Γ[I] on X [I] for each node I (we use this notation
to avoid confusion with matrix powers and matrix entries).
In SciDB terms, each worker I will compute Γ[I]. When
all workers are done the coordinator node will gather all
results and compute a global Γ = Γ[1] + · · · + Γ[N] with
O(d2) communication overhead per node (much smaller
than O(dn). This is essentially a natural parallel computa-
tion [22], coming from the fact that we can push the actual
multiplication of zi · zT

i into the array operator. Given the
additive properties of Γ the same algorithm is applied on

each node I = 1 . . .N to get Γ[I], combining all partial
results Γ =

∑
I Γ[I] in the coordinator node. Our parallel

algorithm to compute Γ is below.

/* X on secondary storage, Γ in main memory */
Data: X = {x1, x2, . . . , xn} = X [1] ∪ · · · ∪X [N]

Output: Γ

/* Parallel for:
N nodes working in parallel on partition X [I] */

for I = 1 . . .N do
Γ[I] ← 0

for xi ∈ X [I] do
zi = [1, xi, yi]
for a = 0 . . . d+ 1 do

for b = 0 . . . a do
Γ

[I]
ab ← Γ

[I]
ab + zia ∗ zib

end
end

end
end
/* send local summaries to coordinator node */
Γ =

∑N
I=1 Γ[I]

Algorithm 1: Parallel dense algorithm to compute lower
triangular Γ on a dense matrix.

4.2.2 Sparse Matrix Operator

A sparse matrix uses less space on secondary storage, result-
ing in faster I/O and a smaller footprint in RAM per point.
A second advantage is that since more cells fit in one chunk
d can be higher compared to the dense operator. There-
fore, assuming a density threshold ψ, xi can have higher
dimensionality being able to fit in one chunk. If p is the
maximum dimensionality for a dense matrix representation
then d = dp/ψe can be the maximum dimensionality for a
sparse matrix. For instance, if ψ = 0.01 then d = 100× p.

In a similar manner to a dense matrix, we assume xi

fits in one chunk. Moreover, since xi is a sparse vector
its coordinates reside on the same chunk improving I/O
locality. Under this assumption, the algorithm for a sparse
matrix has the same outer loop on i to scan partition
X [I], compared to the algorithm for a dense matrix. The
first major difference is that we dynamically build a main
memory sparse vector representation for zi, following a
similar scheme to LAPACK [6], whose number of non-
zero entries is k = |zi|. The loop to build zi is O(d)
(and not O(k)) because SciDB does not store matrix entries
as (subscript,value) pairs. Instead, SciDB uses Run-Length
Encoding for a sequence of zeroes, which consumes more
disk space, but allows an easy gradual change from sparse
to dense representation. Then the second major difference
is the two inner loops, which go a = 1 . . . k, b = 1 . . . k
which result in O(k2) flops. Such optimization results in a
much better time complexity O(k2n) < O(d2n). Assume
that X is hyper-sparse [4] so that k2 ≤ d (i.e. k = O(

√
d);

the ratio of number of non-zero entries to d asymptotically
approaches zero). Then time complexity becomes O(dn),
which is significantly lower than O(d2n). In a similar man-
ner to the dense operator, there is O(d2) communication

7

overhead per node (much smaller than O(dn) if the data
set had to be transferred) to get the global summary matrix
Γ in time O(d2N) using a locking mechanism to update the
matrix. Finally, nnz ≤

√
dn can be used as a threshold to use

the sparse algorithm, where nnz is the number of non-zero
entries in X .

/* X on secondary storage, Γ in main memory */
Data: X = {x1, x2, . . . , xn} = X [1] ∪ · · · ∪X [N]

Output: Γ

/* Parallel for:
N nodes working in parallel on partition X [I] */

for I = 1 . . .N do
Γ[I] ← 0

for i = 1 . . . |X [I]| do
k ← 1 /* zi0 = 1 */
zi ← [1, xi, yi]
for j = 0 . . . d+ 1 do

if zij 6= 0 then
vk ← zij

ik ← j
k ← k + 1

end
end
/* k = |zi| */
for a = 1 . . . k do

for b = 1 . . . a do
Γ

[I]
iaib
← Γ

[I]
iaib

+ via
∗ vib

end
end

end
end
/* send local summaries to coordinator node */
Γ =

∑N
I=1 Γ[I]

Algorithm 2: Parallel sparse algorithm to compute lower
triangular Γ on a sparse matrix.

The sparse operator brings two computational aspects
into question. The first issue is being able to maintain Γ in
RAM for high d. The second one is developing yet a third
operator for a sparse Γ matrix. We emphasize again that
for most big data analytics problems d < n. For the first
issue it is reasonable to maintain Γ for fairly high d in RAM
given the rapid growth in RAM volume (we experimentally
show this is feasible for d ≈ 1000). For the second issue,
in general, a sparse representation for Γ does not make
sense because that would imply the data set contains zero-
constant dimensions to start with (i.e., useless). Moreover,
any constant dimension should be detected and eliminated,
alerting the user. For such cases it makes sense to discard
constant dimensions on a pre-processing pass computing
only n,L and the diagonal of Q. That is, computing only
row 0 (column 0) and the diagonal of Γ (no dimension cross-
products). Then the user can safely discard any dimension
j whose σj = 0. This a consequence of Γ containing an
extended set of sufficient statistics from which we can derive
µj , σj for dimension j.

4.3 Additional Considerations

Data quality: Constant dimensions and missing values

Our Γ summarization matrix can help detecting and fixing
data quality problems. Based on the fact that µa, σa can be
easily derived from Γ, the Γ matrix can be used to eliminate
constant and near-constant dimensions where σa ≈ 0.

Consider the trivial, but common, case that Γaa = 0
for a = 1 . . . d + 1 (remember that Γ00 = n). This means
that dimension a is completely full of zeroes: clearly such
dimension is useless and should eliminated from further
consideration. In a more general case, consider constant
dimensions with non-zero values. If dimension a is constant
then the variance of dimension a is zero, then all covariances
Σab or correlations ρab are undefined (null in SQL). The
reason is straightforward: a constant dimension provides
no statistical insight to the analyst (other than alerting the
analyst that something may be wrong in data collection).
Moreover, PCA and linear regression require eliminating
constant dimensions because their intermediate matrices
cannot be factorized or inverted. In short, we assume that
before computing model Θ all constant and near-constant
dimensions have been eliminated, and any missing values
have been replaced or their points eliminated.

Systems Aspects

Our operators were programmed in C++ in the API pro-
vided by SciDB. The operator was programmed as an array
aggregation, which has similarities with an aggregate UDF
in a relational DBMS [20]. The similarities are: the ability
to update variables in main memory, seamless integration
with a scan over the input array, parallel execution with just
one synchronization barrier at the end, being programmed
in an efficient language (the same as the DBMS: C++),
similar processing phases (initialization, increment, final
and return), and not being able to call other array operators
within the operator source code. However, as fundamental
differences we must mention: our array operator receives
array chunks as input (not rows) and it produces an array
as output, not a scalar value. Therefore, it is unnecessary to
do any data type conversion at the end as it happens in a
relational DBMS [20]. The ability to define a parallel array
operator that receives an array as input and produces an
array as output was fundamental for us.

We now discuss why the dense and sparse opera-
tors working together with R can compute models faster
than alternative approaches. Specifically, our array oper-
ator is much faster than an implementation on Hadoop-
MapReduce systems (e.g. Spark [27]) and it is much faster
than any SQL-based engine, including UDFs. This is a list
of main reasons. Our operator works in a single array scan
with large disk blocks (chunks) and these chunks are fairly
large (>8MB) [24] (and growing in the future as RAM
grows). The operators work with compiled C++ code: there
is no overhead or delay parsing a query, query optimization
at run-time or ODBC communication overhead. Moreover,
compiled C++ code is faster than Java byte code and
faster and more memory-efficient than Java compiled code
(widely used on Hadoop). Since we use an array operator
that takes an array as input and an array as output there

8

is no overhead converting matrices between different repre-
sentations. Our operator cannot be as efficient as compiled
FORTRAN code used by LAPACK for small matrices, where
small means a matrix that can fit in cache memory in the
CPU. However, our operator scales much better as matrices
get bigger and they surpass cache memory size. In fact,
we will show our operator surpasses LAPACK speed for
very large sparse matrices, which is the state of the art
for high performance computing. Such comparison settles
any speed concerns about our operator. On the parallel
processing side the input matrix storage layout is key to
enable a fully parallel computation without needing to send
data from one node (or processing thread) to another one.
Our main assumption is that xi can fit completely in one
chunk: we will show experiments where d = 800, a truly
high dimensionality. Moreover, we can solve even higher
d problems with sparse matrices, the norm in big data
analytics. While it is true that data shuffling in a distributed
memory system may be needed for high dimensional data
we will experimentally show we can solve fairly high d
problems. Considering pure C++ code reading a binary file
our operator will likely be faster simply because SciDB has
an efficient I/O subsystems, processing is multi-threaded
and access is block-based. In other words, a well-crafted
C++ program would need to mimic or redo the basic SciDB
array storage. Therefore, our system runs much faster and
is more scalable than any other C++, LAPACK, SQL or
Hadoop-based system. Our experiments will prove that is
the case.

4.4 Time Complexity and Parallel Speedup

Our analysis is based on the 2-phase algorithm introduced
in Section 3.2. We start with time complexity. Phase 1,
which corresponds to the summarization matrix operator,
is the most important. Computing Γ with the dense matrix
operator is O(d2n). On the other hand, computing Γ with
the sparse matrix operator is O(k2n) for the average case
assuming k entries from xi are non-zero. Assuming X is
hyper-sparse k2 = O(d) then the matrix operator is O(dn)
on average. Space required by Γ in main memory with a
dense representation is O(d2). In Phase 2 we take advantage
of Γ to accelerate computations involving X . Since we are
computing matrix factorizations derived from Γ time is
Ω(d3), which for a dense matrix it may approach O(d4),
when the number of iterations in the factorization numerical
method is proportional to d. In short, time complexity for
Phase 2 for the models we consider does not depend on n.
I/O cost is just reading X with the corresponding number
of chunk I/Os in time O(dn) for dense matrix storage and
O(kn) for sparse matrix storage.

We now analyze parallel speedup assuming N proces-
sors on a shared-nothing parallel architecture. Recall we
assume d < n and n → ∞. For Phase 1 each chunk of
X is hashed to N processors. Since we assume xi fits in
one chunk this results in xi being hashed as well. Then our
matrix operator can compute each outer product xi · xT

i in
parallel, resulting in O(d2n/N) work per processor for a
dense matrix and O(dn/N) work per processor for a sparse
matrix. Both dense and sparse matrix operators become
optimal as N increases or n → ∞. We now consider Phase

TABLE 2
Data sets.

Data set d n Description
KDDnet 38 5M Network intrusion detect (KDD Cup)
Gene 12506 248 Gene data to predict cancer survival

2, which involves numerical methods from linear algebra.
Since Γ significantly reduces problem complexity and the
numerical methods used to solve SVD, least squares and
matrix inversion are mathematically complex we assume
matrix factorizations are computed on one node (N = 1)
calling the efficient LAPACK library. In other words, it is not
worth reprogramming SVD, least squares or matrix inver-
sion to run in parallel across N nodes, but they can indeed
run in parallel on one node with a multicore CPU, taking
advantage of LAPACK. Notice the MCMC method used
by VS is difficult to parallelize across iterations since each
iteration depends on the previous one, but it makes sense
computing each iteration, requiring a matrix inversion, as
fast as possible. Therefore, for Phase 2 there are two choices
for computation: totally sequential or parallel with scale up
(increasing number of cores and threads). In short, for Phase
2 we rely on the parallel and numeric capabilities provided
by LAPACK, which is a gold standard for numeric accuracy
and which provides superb performance on one node with
multicore CPUs.

5 EXPERIMENTAL EVALUATION

We present experiments focusing on scalability and parallel
processing. Since our operator and the 2-phase algorithm
do not change the accuracy of matrices and final results it
is unnecessary to measure statistical or numeric accuracy.
We should emphasize that our summarization operator was
used to produce the Γ matrix to be consumed by the R
package. That is, the final model Θ computation happened
in R. Therefore, the model computed by R alone and the
model computed by SciDB in tandem with R are the same.

This is an overview of experiments with a focus on
scalability and parallel processing. We first review well-
known analytic systems and justify our choice of specific
systems for comparison. We start our evaluation presenting
time benchmarking experiments comparing our operator
with popular analytic systems, including the R package
and a fast columnar DBMS on a single computer with a
powerful multicore CPU. We should stress R and many
math packages internally use LAPACK for the most numer-
ically intensive computations. Therefore, in order to test our
matrix operators with large matrices, we also make a careful
comparison with the LAPACK [6], [5] library (the state of the
art in numerical linear algebra) using its Intel MKL variant
(the fastest variant for Intel multicore CPUs). Finally, we
analyze scalability and speedup on a large cluster in the
cloud with large data sets comparing our R+SciDB system
with Spark, currently the most popular analytic platform
from the Hadoop stack.

5.1 Experimental Setup
We used two data sets: the network intrusion data set and
a microarray genomics data set, summarized in Table 2,

9

TABLE 3
Hardware and Operating System.

Item Local Cloud (Amazon)
OS Linux Ubuntu Linux Ubuntu
CPU 4 cores: 2.15 GHz 2 cores (2VCPU): 2GHz/worker

4 cores (4VCPU): 2GHz/coord.
N nodes 1 1, 10, 100
threads SciDB: 2 instances SciDB: 2,20,200 instances

Spark: NA Spark: 2,20,200 executors
RAM 4 GB 7.5 GB/node (SciDB/Spark)

15 GB/coordinator (Spark)
Storage 3 TB 10 TB

obtained from the KDD Cup repository (KDD 99), and a
cancer data set repository, respectively. We sampled and
replicated the KDDnet to get varying n (data set size) and
d (dimensionality), without altering its statistical properties.
Its columns were replicated three times and rows were repli-
cated to get d = 100, n = 10M. Based on this “reference”
data set rows were sampled and replicated in log-10 scale
and columns were replicated in log-2 scale. On the other
hand, the Gene data set was left ”as is”.

Mathematical Models Functions and Parameters
For PCA and LR we used the R default parameter settings
to get accurate results. On the other hand, for VS we used
a small number of iterations for the MCMC Gibbs sampler
since this algorithm is CPU bound (after being optimized)
and we were interested in comparing performance, rather
than getting a very accurate Bayesian model, which would
require many trial/error experiments and tens of thousands
of iterations (i.e., exploring the posterior probability and
evaluating convergence of the Markov Chain). For Spark we
used the available functions it had for matrix multiplication,
LR and PCA and MLlib, the best library currently available.
We should mention Spark did not offer functions for vari-
able selection. For LR and PCA we used the recommended
number of iterations by Spark.

System Setup and Tuning
We tested our operator and competing systems on two
hardware configurations (summarized in Table 3): (1) one
node (N = 1) (4-core CPU) and (2) N nodes (2-core VCPU).
Our default system configurations were two instances for
SciDB and two executors per node for Spark (i.e. 2 threads
per node). For N = 1 data sets were copied to the Linux file
system and then loaded into the respective DBMS (array,
column). For the N nodes we used the Amazon cloud,
which already offered optimal configuration for HDFS, and
where Spark was pre-installed and tuned. The times to
transfer, copy and load the data sets into chunk format for
SciDB or the time to copy CSV files from Unix to HDFS for
Spark are not included in our time measurements, since it is
a one-time event. Processing times do include the I/O time
to read arrays in chunk format in SciDB and the time to read
the CSV files and transform them into RDD format [27], the
distributed memory format in Spark.

For the array DBMS and the column DBMS we cleared
the buffers (DBMS cache) before each run to make sure
measurements include the time to read from disk. We ran
each program three times on each system and we report

the average. When the R system crashed, mainly due to
RAM limitations, we report “fail”. For Spark we made sure
data set was cleared from distributed memory before each
run, but Spark could cache the data set it for iterative
algorithms (LR, PCA). That is, we attempted to make a
fair comparison, giving each system the best opportunity.
In general, when the computation could not finish in 30
minutes it was automatically stopped and we report “stop”.
We show execution times in seconds. In some isolated cases
we let systems run for 1 hour.

5.2 Comparing Analytic Systems (N = 1 node)

Comparing R+SciDB and R alone
We start by comparing our proposed hybrid solution com-
bining the array DBMS and the R package with the R
package alone, assuming a dense matrix as input. We do
not compare with a sparse matrix storage in R because most
statistical models in R are computed with an input matrix
with a dense layout. Moreover, a sparse data set requires
a significantly different storage structure in RAM, which
would require making at least two passes to convert the
data set from dense to sparse storage. For PCA we called
the princomp() function and for LR we called solve(), both
standard R function calls widely used by R analysts. For
VS in R we use the R script available from [16] to solve
Bayesian variable selection with the same method. The
original R script from [16] was so slow that it could not
run in under one hour even for n=1k (i.e. when the data
set fits completely in RAM). Therefore, we were forced to
incorporate our optimization based on Γ, but as a matrix
multiplication. Incorporating a faster optimization based
on vector outer products would require developing a C++
function working by block in R, converting the R matrix
representation to native C++ arrays, back and forth, which
we consider a topic for future research. The SciDB dense
matrix operator computes Γ, which is passed to an R script
further optimized by us. We would like to mention our
time measurements on SciDB and the column DBMS do not
include the time to load the data set and apply an array
redimensioning operator to convert it from table to matrix
because, in practice, they are a one-time event.

Table 4 compares total time to get Θ in R alone and the
combination DBMS+R. We can see R scales well, but even-
tually crashes due to reaching RAM capacity. For all models
our Γ operator on R+SciDB is faster than R working alone.
These times prove the superiority of our operator and our
2-phase algorithm. A combination of factors make R slower:
parsing the input text file, single-threaded processing, but
mainly not exploiting our summarization matrix.

We now turn our attention to the Gene data set, with
very high d, analyzed on Table 5. The authors of [16] provide
an R program that computes a state-of-the-art Bayesian
model that was our reference Gibbs sampler algorithm. This
R program was so slow that we had to incorporate our Γ
summarization matrix computed in R as a matrix product.
Since d > n temporary matrices (on selected variables) were
ill-conditioned and the MCMC method did not converge
properly. That is, they could not be inverted or factorized.
Convergence with such high d required hundreds of thou-
sands of iterations, becoming prohibitive. Finally, variables

10

TABLE 4
Comparing computation of model Θ using R and DBMS+R; dense

matrix operator; data set KDDnet; local server; times in secs.

d n PCA LR VS
R R+SciDB R R+SciDB R R+SciDB

10 100k 0.5 0.6 0.5 0.6 3.4 3.6
10 1M 4.8 1.3 5.6 1.3 7.6 4.7
10 10M 45.2 7.0 50.1 7.1 58.8 9.6
10 100M fail 64.7 fail 69.8 fail 93.4

100 100k 5.7 2.5 6.3 2.6 34.4 14.8
100 1M 61.2 16.8 60.5 16.9 113.0 29.1
100 10M fail 194.9 fail 194.9 fail 207.2

TABLE 5
Bayesian variable selection (VS) in gene data set (d = 12506, n = 248):

Comparing R+SciDB with R at 1000 iterations; times in secs.

p R+SciDB R unoptimized R optimized
with Γ

100 17 1139 16
200 43 * 43
400 83 * 85
800 199 * 200

with marginal correlation to Y had little statistical signif-
icance. Therefore, we ran an initial variable pre-selection
step computing correlations between each variable and Y ,
to obtain a reduced dimensionality p, in which the MCMC
method converged properly. As can be seen in Table 5, Γ is
essential to accelerate computation and R (optimized) was
competitive with R+SciDB because the data set could fit
in RAM. We emphasize our optimization had a significant
impact on R alone, highlighting its generality.

Computing Γ on R, Array DBMS and Column DBMS
It is natural to wonder if Γ can be computed by the other
systems, beyond the array DBMS. With this question in
mind, we investigate how Γ can be computed on each
system, making a reasonable effort to develop an efficient
program within each system constraints.

For R the data set was read from disk and loaded in
RAM and then Γ was obtained with R standard matrix
multiplication (% ∗%) (i.e. the fastest mechanism available,
commonly used by R analysts). For the column DBMS we
stored X on a vertical layout with one entry Xij per row
(i, j, v), where i = 1 . . . n and j ∈ {1 . . . d}. The query to
get Γ was a self-join on i grouping the two dimension sub-
scripts. We defined the table sorted by i so that all dimension
values were clustered on disk; in this manner the query
optimizer could use a merge-join, the fastest join possible in
time O(n). Figure 1 compares the three systems: the upper
plot compares at low dimensionality d = 10 and the lower
plot compares at a high dimensionality d=100. For sparse
matrix experiments zeroes are deleted, resulting in a smaller
SQL table and smaller (compressed) array on disk. As can
be seen in the plots, the fastest computing mechanisms are
our sparse and dense operators, with the sparse operator
being at least twice as fast compared to the dense one,
with matrices having the same d, n sizes. In general, our
operator is about an order of magnitude faster than R and
about two orders of magnitude faster than the SQL query.
Table 6 complements Figure 1, providing a ”drill down”
view on the specific numbers, demonstrating our operator is

0

200

400

600

800

0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
(s

ec
s)

n in millions

Low d=10

Gamma dense operator
R dense matrix

SQL dense matrix
Gamma sparse operator

SQL sparse matrix

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e
(s

ec
s)

n in millions

High d=100

Gamma dense operator
R dense matrix

SQL dense matrix
Gamma sparse operator

SQL sparse matrix

Fig. 1. Comparing systems to compute Γ on local server: Array DBMS,
R, SQL.

TABLE 6
Comparing matrix summarization algorithms; data set KDDnet; dense

(dn entries) and sparse (zeroes deleted); Local 1/2; times in secs.

Dense matrix Sparse matrix
d n R SQL Γ dense op. SQL Γ sparse op.

density=12%
10 100k 0.6 3.8 0.1 0.6 0.1
10 1M 5.1 31.9 1.1 5.8 0.5
10 10M 50.2 917.2 9.2 13.4 1.6
10 100M fail stop 110.3 218.4 53.3

density=27%
100 100k 6.5 74.0 3.3 23.9 1.8
100 1M 44.1 612.5 31.0 231.6 10.6
100 10M fail stop 332.7 stop 105.2
100 100M fail stop 3423.7 stop 1015.3

both scalable and uniformly more efficient, showing when
R failed due to insufficient RAM and indicating when the
SQL DBMS had to be stopped due to waiting more than 30
minutes. These results make clear SQL is hopeless to solve
dense matrix problems, but it shows promise for sparse
matrices of low dimensionality.

Comparing Γ Algorithm with Fast Matrix Multiplication:
SciDB versus Intel MKL (LAPACK)
Here we study in more depth the computation of Γ. As
mentioned above, R and many other mathematical packages
use the LAPACK library [5], [6], which is both extremely
fast and highly accurate. Therefore, it is natural to ask

11

whether it is worth computing Γ with LAPACK (in RAM).
Moreover, it is important to understand how LAPACK be-
haves with truly large matrices, reaching RAM capacity and
much larger than L1/L2 cache memory. Parallel LAPACK
variants are well tested and used by most systems with
dense matrices. On the other hand, as of today develop-
ing parallel programs with distributed memory for sparse
matrices is an ongoing effort [4]. Here we compare our
operator with dense matrix functions available in MKL for
multi-core CPUs. Later, we compare with a sparse matrix
multiplication available in SciDB that works in distributed
memory in a parallel cluster (using ScaLAPACK [6]), which
requires partitioning the input matrix and using MPI (Mes-
sage Passing Interface).

Table 7 compares our Gamma operators with MKL, the
fastest LAPACK parallel version for multicore CPUs. We
emphasize MKL is working on RAM only, whereas our
operator includes both I/O and CPU time. Therefore, we
give MKL an advantage. As a major observation, MKL fails
due to insufficient RAM at n=1M, d=800 and at n=10M with
all d values; there is no quick fix to solve this issue other
than partitioning X on secondary storage and developing a
new algorithm. Evidently, MKL is very efficient with small
dense matrices and therefore, it is worthless optimizing our
operators C++ code for small matrices. The main reason
MKL is much faster is because it takes advantage of cache
memory (L1 and L2) in the CPU, reading matrix blocks from
RAM in the worst case. MKL incorporates sophisticated
matrix multiplication algorithms that are very efficient when
the matrix is small enough (relative to L1/L2 cache size).
Also, MKL incorporates efficient algorithm to move matrix
blocks between cache memory and RAM, back and forth,
a low-level optimization out of scope for us. Nevertheless,
MKL is marginally faster than our dense matrix operator
at d=400. These results prove our dense matrix operator
is slower, but scalable. For sparse matrices the gap gets
wider. At the lowest density extreme (density 0.1%) our
sparse operator is much faster than MKL and our dense
operator. In fact, for large matrices (n=1M), density 0.1% and
d=400 our sparse operator is three orders of magnitude faster
than MKL and the dense operator. For d=800 our sparse
operator is three orders of magnitude faster than the dense
operator. For n=10M MKL fails with all d values due to
insufficient RAM, the dense operator must be stopped at
d = 400, but our sparse algorithm can still efficiently work
at d=400. Considering that the sparse algorithm is just 50%
slower than the dense one with 100% density, it comes out
as the overall winner. In summary, our dense and sparse
matrix operators working together beat MKL in scalability
and speed.

5.3 Parallel Processing (N = 1, 10, 100 nodes)

All speedup figures are computed as sN = T1/TN [6], where
T1 is the time for a purely sequential version and TN is the
time on N nodes; ideal speedup means SN ≈ N .

Table 8 presents speedup experiments varying the num-
ber of threads on our local server. The goal is to determine
the optimal number of threads in the 4-core CPU (i.e. a scale
up analysis). As can be seen, as the # of threads grows time
decreases, but the time gain shrinks. The optimal number of

TABLE 8
Parallel speedup: Γ dense matrix summarization operator with

multi-threaded processing varying M=# SciDB instances (N=1 node,
4-core CPU); times in secs.

n=100k n=1M n=100M
M time speedup time speedup time speedup

1 1.4 1.0 13.0 1.0 146.6 1.0
2 0.7 2.0 6.8 1.9 82.8 1.8
4 0.8 1.8 6.2 2.1 60.8 2.4

threads is 2 since those times are closest to the theoretical
maximum speedup. Intuitively, 1 thread cannot interleave
the intensive CPU computation for Γ with I/O to scan
X and at the other extreme 4 threads incur in too much
overhead switching thread context and interleaving scan
access to different chunks with one disk. Evidently, it is
not worth going beyond the number of cores in the CPU,
4 in this case (results for 8 threads are much worse). In
conclusion, the only alternative to achieve better speedup
is to increase N in the parallel cluster (i.e. scale out).

We conclude our study of parallel processing analyzing
speedup and scalability in a large computer cluster in the
Amazon cloud. Since Γ is a summarization matrix whose
computation is highly parallel it is natural to wonder if it
works well on another parallel system, different from SciDB.
The current trend in big data analytics is Apache Spark [27],
which has proven to be easier to program, more scalable
and more general than MapReduce. With such motivation,
we studied how to compute the same machine learning
models on Spark. Spark has a rich library of linear algebra
and machine learning functions called MLlib, which offers
matrix multiplication, PCA and LR, but not VS. After trying
several alternatives to compute Γ we picked the Gramian()
function because it was the most efficient, which multiplies
a matrix by itself, using Z as input. We should stress that
according to Spark documentation Gramian() calls ScaLA-
PACK to evaluate the matrix multiplication in parallel in
the most efficient manner. On the other hand, the PCA and
LR models were directly available in MLlib passing the data
set as the main input. The main difference between them
is that PCA is solved by SVD like ours, but LR uses a
gradient descent method [10], [13], which today is the fastest
method to compute machine learning models. That is, we
compare two very different approaches to analyze big data:
our summarization matrix versus gradient descent.

Before discussing results we must explain installation,
configuration and tuning of both systems. We had to install
SciDB as a collection of SciDB instances, where we as-
signed 2 instances (threads) to each node. One of the nodes
served both as coordinator and worker. That is, this node
was ”overworked”. Such limitation was an architecture
constraint of SciDB since it is assumed that all nodes are
uniform and the coordinator incurs on minimum overhead.
On the other hand, Spark had the advantage of having a
separate coordinator node, which had more RAM as shown
in Table 3. Another important aspect was using sparse or
dense matrices. Since Spark offered algorithms only with a
dense (row) storage that is the one we used in SciDB; time
differences would be even larger processing the KDDnet
data set in sparse form. Finally, we used the parameter

12

TABLE 7
Comparing dense operator (working on disk+RAM), sparse operator (working on disk+RAM) and dense matrix multiplication in MKL BLAS

(parallel LAPACK, working only on RAM) to compute Γ; local server 4GB RAM; synthetic data sets; times in secs.

d = 100 d = 200 d = 400 d = 800
n density dense sparse MKL dense sparse MKL dense sparse MKL dense sparse MKL

1M 0.1% 27.5 0.2 3.0 94.4 0.2 8.2 374.2 0.4 379.4 1395.4 0.9 fail
1M 1.0% 27.5 0.5 3.0 96.8 1.1 8.2 374.2 3.8 364.7 1404.4 4.0 fail
1M 10.0% 29.4 4.0 3.0 100.7 7.0 8.2 374.2 16.3 367.5 1416.9 46.4 fail
1M 100.0% 30.7 44.0 3.0 106.4 148.8 8.3 374.2 542.3 389.1 1449.4 2159.6 fail

10M 0.1% 290.3 1.1 fail 1003.2 2.0 fail stop 3.2 fail stop stop fail
10M 1.0% 294.8 6.7 fail 1006.4 12.8 fail stop 26.6 fail stop stop fail
10M 10.0% 315.0 50.8 fail 1052.3 104.7 fail stop 195.3 fail stop stop fail
10M 100.0% 323.5 450.6 fail 1058.3 1582.5 fail stop stop fail stop stop fail

TABLE 9
Parallel processing: Comparing R+SciDB and Spark varing N (# of nodes); data set KDDnet d = 38; dense matrix; times in secs.

R+SciDB Spark
N nodes n Gamma/LR/PCA speedup Gramian speedup LR (20 iters) speedup PCA speedup

1 1M 7.0 1.0 78 1.0 314 1.0 98 1.0
10 1M 1.0 7.0 84 0.9 246 1.3 101 1.0

100 1M 0.3 25.0 80 1.0 364 0.9 106 0.9
1 10M 69.0 1.0 200 1.0 2524 1.0 352 1.0

10 10M 6.8 10.1 94 2.1 376 6.7 120 2.9
100 10M 0.7 98.6 98 2.0 414 6.1 120 2.9

1 100M 610.0 1.0 1342 1.0 stop NA 2932 1.0
10 100M 56.2 10.9 210 6.4 2594 NA 432 6.8

100 100M 5.7 107.8 224 6.0 920 NA 220 13.3

defaults in Spark for LR and PCA models (20 iterations for
LR, 5 components for PCA).

Table 9 compares SciDB and Spark running in the cloud
varying N (the number of nodes) and n (data set size).
The first major observation is that in R+SciDB the compu-
tation of Θ (the model) taking Γ as input, took less than
1 second for LR and PCA. Therefore, we report the three
times together in one column for SciDB. From a raw time
perspective, SciDB was two orders of magnitude faster than
Spark to compute Γ. To compute models the time difference
becomes even more significant, close to three orders of
magnitude, because the actual model computation took < 1
sec. In summary, R+SciDB exhibited optimal speedup and
significantly better performance. From a speedup perspec-
tive, to compute Γ Spark had good speedup at N = 10, but
it was bad at N = 100 (explained by a slow matrix trans-
position). To compute LR there was indeed better speedup
up to N = 100, but far from ideal. Finally, for PCA results
were the best, with decent speedup up to N = 100. On
the other hand, SciDB exhibited ideal speedup to compute
Γ both at N = 10 and N = 100. Notice that due to SciDB
architecture, when N = 1 a single node is overworked (co-
ordinator+worker), which explains why speedup is better
than linear when N grows. Since the time to compute the
LR and PCA models was negligible given the fast multicore
CPU the speedup was the same for Γ, LR and PCA.

6 RELATED WORK

6.1 Faster Analytic Algorithms
Research has developed fast algorithms based mostly on
sampling, data summarization, and gradient descent [10],
[13], but generally working in a sequential manner (data
mining) or outside a parallel data analysis system (Hadoop

or DBMS). Sample-based algorithms [7] require mechanisms
to control approximation error and they are hard to pro-
gram in parallel for data sets with skewed distributions. In
our case, no sampling is required, although it can further
accelerate our summarization algorithms. Stochastic (incre-
mental) gradient descent (SGD) [12] is another popular ap-
proach, useful when there is a convex function to optimize
(like least squares in LR). As drawbacks, SGD is naturally
sequential (difficult to process in parallel), it obtains an
approximate solution and it is difficult to adapt to non-
convex functions (e.g. clustering). On the other hand, we
believe we are the first to study parallel data summarization
as matrix multiplication. Given their relevance to our work,
data summarization and matrix multiplication are discussed
in more detail below.

Despite the prominence of statistical and machine learn-
ing models, there is not much work studying how to
accelerate their computation inside a DBMS. Accelerating
SVD has received attention [17], but producing approxi-
mate solutions and without considering parallelism. Linear
classification with Support Vector Machines (SVMs) is not a
problem we considered, but it is straightforward to define a
summarization operator for a diagonal matrix Γ to get a rea-
sonably accurate Naive Bayes classifier. The importance of
aggregate UDFs to accelerate the computation of statistical
models in relational DBMSs is identified in [20], making a
big step forward compared to a pure query-based approach
[18]. Following the same ideas, [12] introduces the MADlib
library to compute statistical models with SQL mechanisms,
combining queries and UDFs. Nevertheless, neither [20] nor
[12] had envisioned matrix multiplication as a vector-based
outer product computation which can be pushed into an
aggregation operator with arrays both as input and output.
Moreover, the integration with R was not considered.

13

6.2 Data Summarization

A similar, but less general, data summarization to ours
was pioneered in [28] to accelerate the computation of
distance-based clustering: the sums of values and the sums
of squares. Later [3] exploited such summaries as multi-
dimensional sufficient statistics for the K-means and EM
clustering algorithms. The main differences with [28] and [3]
are: data summaries were useful only for one model (clus-
tering). Compared to our proposed matrix, their summaries
represent a (constrained) diagonal version of Γ because
dimension independence is assumed (i.e. cross-products, co-
variances, correlations, are ignored) and there is a separate
vector to capture L. From a computational perspective, our
summarization algorithm boils down to one matrix multi-
plication, whereas those algorithms work are aggregations.
Another major difference is that in our models one summa-
rization matrix is sufficient, whereas those clustering models
need more than one matrix. In short, our summarization
is more general and it can help computing more complex
models like PCA, LR and VS that could not be solved with
older summaries. From a statistical perspective, we have
identified the product of the extended matrixZ with itself as
a fundamental summarization for a data set covering zeroth,
first and second moments of its probabilistic distribution. A
more general data summarization capturing up to the fourth
moment was proposed in [8], but it relies on binning (i.e.
building histograms) which are incompatible with most sta-
tistical methods. Parallel processing for data summarization
has received moderate attention. Reference [15] highlights
the following techniques: sampling, incremental aggrega-
tion, matrix factorization and similarity joins. Our proposal
is a combination of incremental aggregation and scalable
matrix multiplication that enables fast matrix factorization
in main memory. A closely related work that identified the
linear sum of points L and the quadratic sum of points
Q with cross-products is [20], but it did not recognize the
importance of expressing the computation as a single matrix
product, did not study parallel processing, did not consider
sparse matrices and did not synthesize the 2-step algorithm,
which has potential for new models. From a “systems”
angle, array DBMSs supporting UDFs did not exist and it
was not envisioned the summarization step could be solved
entirely by the DBMS and the iterative and mathematical
computations being evaluated in R.

6.3 Scalable Matrix Multiplication
Matrix multiplication has been extensively studied with
dense and sparse matrices, as well as one processor (se-
quentially) or N processors (in parallel) [2], [5]: parallel
sparse matrix multiplication is the hardest combination.
The specific assumptions about matrix shape, density and
parallel computation model vary widely. Most research
has proposed algorithms partitioning and storing the input
matrices by block in distributed memory [5], [6]. Dense
matrix multiplication in main memory in one computer is
considered a solved problem for the most part [5]. Even
though multiplication of large matrices exceeding RAM
limits (out-of core) has been studied before [5], nobody
has looked at the case that the input matrix (data set) is
large, but the result matrix is much smaller and dense. In

other words, most research has focused on dense-dense
multiplication producing a dense matrix or sparse-sparse
multiplication producing a sparse matrix. From a parallel
perspective, most algorithms work in a multi-core CPU or
GPU. In consequence, parallel matrix multiplication algo-
rithms for matrices residing on secondary storage have not
made their way into ScaLAPACK because of the complexity
of combining parallel computation with MPI and efficient
I/O on disk. MPI is not an efficient interface for DBMS
technology because it has an underlying shared-memory
model that requires transmitting data across nodes.

Sparse and parallel matrix multiplication are harder
problems [1], [4], [14], [26], where the parallel computation
model is shared memory via MPI. That is, such approaches
are generally incompatible with shared-nothing architec-
tures like Hadoop and parallel DBMSs. However, there
is some work from the database systems angle to multi-
ply sparse matrices for graph analytics [19]. As additional
differences, most algorithms assume matrices of arbitrary
shape and size, as long as they are compatible for matrix
multiplication and they reduce the problem to a matrix-
vector multiplication. In contrast, our matrix summarization
operator is significantly different (but useful in big data ana-
lytics), because it is optimized for a single rectangular matrix
as input (in general the shape of a large data set), the input
matrix is block-partitioned only along the largest dimension
(n), parallelization is based on vector-vector outer products
and there is no communication overhead during parallel
processing. Last but not least, an array DBMS provides not
only fast mechanisms to manipulate large matrices, but also
an elegant and well-defined programming mechanism to
create new matrix operators, something that was not feasible
with SQL-based DBMSs.

7 CONCLUSIONS

We introduced Gamma, a comprehensive, but small, sum-
marization matrix, which accelerates the computation of
many machine learning models. We developed parallel
summarization algorithms based on a special form of matrix
multiplication to efficiently compute Gamma. A key opti-
mization was evaluating matrix multiplication via a sum
of vector outer products, instead of computing a product
between the input matrix and its transpose. Based on the
summarization matrix, algorithms to compute linear models
are transformed to work in two phases: Summarization and
iteration. Considering that dense and sparse matrices have
different storage and require different processing in RAM,
we introduced specialized summarization algorithms for
dense and sparse matrices, respectively. We explained how
to implement our algorithms in the SciDB array DBMS, to
remove main memory limitations from R and enable parallel
processing. We presented an extensive experimental section.
R is significantly accelerated by Gamma and our algorithms
working on SciDB eliminate R main memory limitations.
Moreover, the array DBMS is an order of magnitude faster
than a fast column-based DBMS, which evaluates matrix
multiplication with SQL queries. We also compared with the
fast matrix multiplication functions from LAPACK (MKL),
the math library internally called by R. LAPACK (and
MKL) fails when the input matrix does not fit in RAM,

14

whereas our algorithms scale beyond main memory limits.
Our algorithms are slower than LAPACK with small dense
input matrices, but become significantly faster with large
sparse matrices. Further benchmarking comparing the array
DBMS with Spark on a large parallel cluster in the cloud
shows our algorithms running on the array DBMS are two
orders of magnitude faster than Spark calling functions from
MLlib. From a parallel perspective, Spark did not have
good speedup to compute the summarization matrix (with
a Gramian product via LAPACK), but had good (almost
linear) speedup to compute PCA and LR. On the other hand,
our algorithms running on the array DBMS showed linear
speedup for both summarization and model computation.

Our experiments provide evidence that data summariza-
tion with fast matrix multiplication is a promising research
direction. We need to study how other machine learning
models, which require matrix multiplications, can exploit or
generalize our Gamma summarization matrix. Large, high
dimensional, data sets, are generally sparse matrices. There-
fore, they deserve more attention than lower dimensional,
dense, data sets. Based on current hardware trends, another
reasonable assumption we made is that the partial and
result matrices fit in main memory at each processing node.
Nevertheless, an ideal summarization operator should work
with input and output matrices of unlimited size. Clearly,
our summarization matrix has promise to analyze big data,
where we showed our array-based algorithms vastly out-
perform Spark, the dominating big data system. This big
gap motivates integrating our summarization algorithms
with Spark. We envision two alternatives: via a low-level
transfer interface between the array DBMS and Spark, or
programming them in Scala or Java.

Acknowledgments
We thank the comments and suggestions from Michael
Stonebraker to understand SciDB storage and processing
mechanisms for large arrays. This work was partially con-
ducted while the first author was visiting MIT.

REFERENCES

[1] K. Akbudak and C. Aykanat. Simultaneous input and output ma-
trix partitioning for outer-product-parallel sparse matrix-matrix
multiplication. SIAM J. Scientific Computing, 36(5), 2014.

[2] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKen-
ney, J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, and
D. Sorensen. Lapack: A portable linear algebra library for high-
performance computers. In Proc. of ACM/IEEE Supercomputing
Conference, pages 2–11, 1990.

[3] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms
to large databases. In Proc. ACM KDD Conference, pages 9–15, 1998.

[4] A. Buluç and J.R. Gilbert. Parallel sparse matrix-matrix multipli-
cation and indexing: Implementation and experiments. SIAM J.
Scientific Computing, 34(4), 2012.

[5] J.W. Demmel. Applied Numerical Linear Algebra. SIAM, 1st edition,
1997.

[6] J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vost.
Numerical Linear Algebra for High-Performance Computers. SIAM,
1998.

[7] P. Drineas, M. Mahoney, and S. Muthukrishnan. Sampling algo-
rithms for l2 regression and applications. In Proc. SODA, pages
1127–1136, 2006.

[8] W. DuMouchel, C. Volinski, T. Johnson, and D. Pregybon. Squash-
ing flat files flatter. In Proc. ACM KDD Conference, 1999.

[9] A. Gelman, J.B. Carlin, H.S. Stern, and D.B. Rubin. Bayesian Data
Analysis. Chapman and Hall/CRC, 2003.

[10] R. Gemulla, E. Nijkamp, P.J. Haas, and Y. Sismanis. Large-scale
matrix factorization with distributed stochastic gradient descent.
In Proc. KDD, pages 69–77, 2011.

[11] T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of
Statistical Learning. Springer, New York, 1st edition, 2001.

[12] J. Hellerstein, C. Re, F. Schoppmann, D.Z. Wang, and et. al. The
MADlib analytics library or MAD skills, the SQL. Proc. of VLDB,
5(12):1700–1711, 2012.

[13] S.C.H. Hoi, J. Wang, P. Zhao, R. Jin, and P. Wu. Fast bounded on-
line gradient descent algorithms for scalable kernel-based online
learning. In Proc. ICML, 2012.

[14] V. Karakasis, T. Gkountouvas, K. Kourtis, G.I. Goumas, and
N. Koziris. An extended compression format for the optimization
of sparse matrix-vector multiplication. IEEE Trans. Parallel Distrib.
Syst., 24(10):1930–1940, 2013.

[15] F. Li and S. Nath. Scalable data summarization on big data.
Distributed and Parallel Databases, 32(3):313–314, 2014.

[16] J.M. Marin and C.P. Robert. Bayesian Core: A Practical Approach to
Computational Bayesian Statistics. Springer, 2007.

[17] A.K. Menon and C. Elkan. Fast algorithms for approximating the
singular value decomposition. ACM TKDD, 5(2):13, 2011.

[18] C. Ordonez. Integrating K-means clustering with a relational
DBMS using SQL. IEEE Transactions on Knowledge and Data En-
gineering (TKDE), 18(2):188–201, 2006.

[19] C. Ordonez. Optimization of linear recursive queries in SQL. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 22(2):264–
277, 2010.

[20] C. Ordonez. Statistical model computation with UDFs. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE), 22(12):1752–
1765, 2010.

[21] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma operator for
big data summarization on an array DBMS. Journal of Machine
Learning Research (JMLR): Workshop and Conference Proceedings (Big-
Mine 2014), (36):61–96, 2014.

[22] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and parallel DBMSs: friends
or foes? Commun. ACM, 53(1):64–71, 2010.

[23] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E.J. O’Neil, P.E. O’Neil,
A. Rasin, N. Tran, and S.B. Zdonik. C-Store: A column-oriented
DBMS. In Proc. VLDB Conference, pages 553–564, 2005.

[24] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A
Database Management System for Applications with Complex
Analytics. Computing in Science and Engineering, 15(3):54–62, 2013.

[25] H. Xiong, S. Shekhar, P.N. Tan, and V. Kumar. TAPER: A
two-step approach for all-strong-pairs correlation query in large
databases. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 18(4):493–508, 2006.

[26] A.J.N. Yzelman and D. Roose. High-level strategies for parallel
shared-memory sparse matrix-vector multiplication. IEEE Trans.
Parallel Distrib. Syst., 25(1):116–125, 2014.

[27] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica.
Spark: Cluster computing with working sets. In HotCloud USENIX
Workshop, 2010.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient
data clustering method for very large databases. In Proc. ACM
SIGMOD Conference, pages 103–114, 1996.

