
XXXX

Skycube Materialization Using the Topmost Skyline or Functional
Dependencies

Sofian Maabout, University of Bordeaux
Carlos Ordonez, University of Houston
Patrick Kamnang Wanko, University of Bordeaux
Nicolas Hanusse, University of Bordeaux - CNRS

Given a table T (Id,D1, . . . , Dd), the skycube of T is the set of skylines w.r.t. to all non-empty subsets (sub-
spaces) of the set of all dimensions {D1, . . . , Dd}. In order to optimize the evaluation of any skyline query,
the solutions proposed so far in the literature either (i) pre-compute all the skylines or (ii) they use compres-
sion techniques so that the derivation of any skyline can be done with little effort. Even though solutions (i)
are appealing because skyline queries have optimal execution time, they suffer from time and space scala-
bility because the number of skylines to be materialized is exponential w.r.t d. On the other hand, solutions
(ii) are attractive in terms of memory consumption but, as we show, they also have a high time complexity.
In this paper we make contributions to both kinds of solutions. We first observe that skyline patterns are
monotonic. This property leads to a simple yet efficient solution for full and partial skycube materialization
when the skyline w.r.t all dimensions, the topmost skyline, is small. On the other hand, when the topmost
skyline is large relative to the size of the input table, it turns out that functional dependencies, a fundamen-
tal concept in databases, uncover a monotonic property between skylines. Equipped with this information,
we show that closed attributes sets are fundamental for partial and full skycube materialization. Extensive
experiments with real and synthetic data sets show that our solutions generally outperform state of the art
algorithms.

CCS Concepts: rInformation systems → Data management systems; Database query processing;
Query optimization;

General Terms: Skyline, Functional dependencies, Algorithms, Performance

Additional Key Words and Phrases: Materialization, Implementation

ACM Reference Format:
Sofian Maabout, Carlos Ordonez, Patrick Kamnang Wanko and Nicolas Hanusse, 2015. Skycube Material-
ization Using the Topmost Skyline or Functional Dependencies. ACM Trans. Datab. Syst. V, N, Article XXXX
(2015), 40 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Multidimensional database analysis has been a hot research topic during the last
decade. Pre-computation is a common solution to optimize multidimensional queries.
An early proposal of such approach is the so-called data cube [Gray et al. 1997] which,
intuitively, represents the set of aggregation queries with all potential subsets of

This work has been carried out with financial supports from the French State, in the frames of the “Invest-
ments for the future” Programme IdEx Bordeaux - CPU (ANR-10-IDEX-03-02) and SPEEDDATA research
project. It has also been partially supported by CNRS under the MASTODONS-PETASKY initiative. This
work was initiated while the second author was visiting the University of Bordeaux in 2013.
Authors’ addresses: S. Maabout, P. Kamnang Wanko and N. Hanusse, {maabout, pkamnang,
hanusse}@labri.fr, LaBRI - University of Bordeaux, France; C. Ordonez, ordonez@cs.uh.edu, Department
of cumputer science, University of Houston, Texas, USA.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 0362-5915/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:2 S. Maabout et al.

grouping attributes. After an initial series of works concentrating on efficient ways
to fully materialize a data cube, see e.g., [Agarwal et al. 1996; Zhao et al. 1997], it
was rapidly recognized that this solution was unfeasible in practice due to the large
amount of memory space as well as the processing time needed since the number of
queries is exponential w.r.t. the number of dimensions. Therefore, the question that is
raised is how to materialize just a subset of queries while satisfying some prescribed
user requirements. This problem has been largely studied in the literature and differ-
ent solutions have been proposed depending on the objectives and the constraints that
are considered. For example, [Harinarayan et al. 1996; Agrawal et al. 2000; Li et al.
2005] consider some budget, typically memory space, and try to find a part of the data
cube that fits in the available space and minimizes the overall queries response time,
whereas [Hanusse et al. 2009] considers the problem differently: given a prescribed
queries evaluation time, find the minimal part of the data cube which guarantees that
performance. More recently, skyline queries [Börzsönyi et al. 2001] were proposed to
express multidimensional data ranking. Classically, users are required to provide a
mapping function which assigns a numeric score to each tuple. Such score is then used
to rank the query result and return the best tuples, e.g., Top-K. In some situations,
it is not easy to define such mapping. Skyline queries prevent users from giving this
function. Instead, they are required to provide a pre-order among the values of every
attribute and specifying a preference among comparable values. The best tuples are
those that are not worse than any other tuple on every attribute.

In the literature the skycube structure has been independently proposed in [Pei et al.
2005] and [Yuan et al. 2005]. This structure aims at helping users to navigate through
the multidimensional space by asking skyline queries over chosen sets of attributes.
In order to optimize the response times, several algorithms aiming at fully material-
izing the skycube, i.e., pre-compute all possible skylines, have been proposed. See e.g.,
[Pei et al. 2006] and [Lee and won Hwang 2014]. By contrast to data cubes, very few
solutions have been proposed for partially materializing skycubes. To the best of our
knowledge there are two such proposals: [Raı̈ssi et al. 2010] introduced the concept
closed skycube. The authors propose an algorithm for identifying equivalent skylines
in order to save memory space by storing just one copy of the same query result. A
second solution is the so called compressed skycube (CSC) structure proposed in [Xia
et al. 2012]. Instead of reasoning at a whole skyline level as closed skycubes do, this
technique operates at a tuple level, i.e., a tuple belonging to several skylines may not
need to be stored together with every such skyline. We give more details about these
two solutions in Section 6 devoted to the related work.

Outline of Contributions: In a nutshell, we propose novel algorithms to material-
ize skycubes (partially or fully), to efficiently process skyline queries on any subset
of dimensions of a table T . When the skyline on all dimensions (topmost skyline) is
small (much smaller than the input table), we show that by exploiting a monotonic
property of skyline inclusion, this single skyline can be used to efficiently compute all
other skylines. On the other hand, when the topmost skyline is large (relative to the
size of the input table), we exploit a fundamental concept in database systems, namely
functional dependencies (FDs), to accelerate skycube materialization. Specifically, we
establish a connection between FDs discovered on the input table and the monotony
of skylines. In other words, FDs help identifying important skylines inclusions. Using
this knowledge, we introduce novel, but simple, algorithms to materialize the skycube,
either fully or partially. Thereafter, this set of materialized skylines can be used to an-
swer all remaining skyline queries without resorting to the underlying input table T .
Along our study, we also identify a close connection between the number of FDs holding
in a table and the size of skylines. More precisely, the less distinct values there exist

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:3

Table I. Hotels
Id (P)rice (D)istance (S)urface
r1 10 10 12
r2 20 5 12
r3 10 11 10

per attribute, the less FDs (thus less detected inclusions), and the less the number of
distinct tuples that may appear in every skyline (i.e., smaller projections). In particu-
lar, if there exist few FDs satisfied by the input table, then there is a high probability
that the topmost skyline is small and its projections w.r.t subspaces are even smaller.
Therefore, materializing the topmost skyline is sufficient for multidimensional skyline
query optimization. Our solutions are implemented and experimentally compared to
state of the art algorithms. For the skycube full materialization, we show that our algo-
rithms outperform previous algorithms by orders of magnitude. On the other hand, for
partial skycube materialization, we show that our solution (i) generally requires less
storage space, (ii) it is faster to obtain and (iii) it significantly reduces query processing
times. Moreover, our algorithms get asymptotically better than competing algorithms
when the number of dimensions or the data size grow. Therefore, our solution is a good
trade-off between fast and space-efficient skycube materialization and efficient query
evaluation.

Paper organization. The following section gives the main definitions and notations
used throughout the paper. Next we give a first solution of partial materialization
of skycubes based on the topmost skyline. This solution uses a monotonic property
of skyline patterns and is efficient only when the topmost skyline is small. Then, we
provide a complementary solution based on functional dependencies. To do so, we show
that the existence of functional dependencies implies an inclusion between skylines
and we analyze the query evaluation from the materialized part of the skycube. We
summarize our contributions by providing two algorithms: one for the materialization,
full or partial, and the other for query evaluation. We compare our proposal to some
related works and terminate by a series of experiments aiming to show the efficiency
of our solutions. We conclude by giving some directions for future work.

2. PRELIMINARIES
2.1. Motivating Example
Let us first motivate skyline queries via a practical example. Consider the following
Table I describing some characteristics of hotels rooms. These are described by their
respective price, distance from the beach and size. A user may ask for the best rooms,
i.e., those minimizing the price and the distance and maximizing the surface. Clearly,
room r3 does not belong to the set of best rooms because r1 is better than it (we say r1
dominates r3) because it is closer to the beach, wider and not worse in terms of price. r1
and r2 are however incomparable: r1 is better w.r.t. the price while r2 is better in terms
of distance. The skyline of T w.r.t. the three attributes P , D and S is the set {r1, r2}.
Now, consider a rich tourist who does not care about the price. This user wants the
best rooms by considering just the distance and the size of the rooms. In this case, r2
is better than both r1 and r3 and thus, the skyline w.r.t. D and S is {r2}. Note that
the best rooms w.r.t. just the price is {r1, r3}. This example shows that depending on
the attributes we consider (users preferences), we obtain different sets of best rooms.
Moreover, we observe that there may be no inclusion relationships between these sets:
neither the skyline w.r.t. P is included in that w.r.t. P , D and S nor the converse even
if we have an inclusion of attributes sets, i.e., {P} ⊆ {P,D, S}. This non monotony of

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:4 S. Maabout et al.

Table II. Notations
Notation Definition

T Relational table
D Attributes/dimensions used for skylines
d |D| number of dimensions

Di, Ai ith dimension
n,m number of tuples, size

X,Y . . . subset of dimensions/subspace
XY X ∪ Y
t[X] projection of tuple t on X

t1 ≺X t2
t1[X] dominates t2[X] or
t1 X-dominates t2

Sky(T,X) or the skyline of T w.r.t Xsimply Sky(X)
πX(T) projection of T on X with set semantics
|X| the cardinality of πX(T)
||X|| number of attributes of X
S(T) or skycube of Tsimply S
|Sky(X)| the size of Sky(X)

S a subskycube of S
k number of distinct values per dimension

skylines queries,also pointed in previous work [Pei et al. 2006; Xia et al. 2012; Pei et al.
2005; Yuan et al. 2005], makes their optimization harder than aggregation queries in
the context of data cubes. More precisely, we cannot compute the skyline w.r.t. P from
the pre-computed one w.r.t. P,D and S or vice versa without accessing the input table.

2.2. Definitions
We now introduce basic definitions used throughout the paper. Let T be a table whose
set of attributes Att(T) is divided into two subsets D and Att(T) \ D. D is the sub-
set of attributes (dimensions) that can be used for ranking the tuples. In the skyline
literature D is called a (multidimensional) space. If X ⊆ D, then X is a subspace.
t[X] denotes the projection of tuple t on subspace X. We denote by d the number of
dimensions. Without loss of generality, for each Di ∈ D we assume a total order <
between the values of the domain of Di. We say that t′ dominates t w.r.t. X, or t′ X-
dominates t, noted t′ ≺X t, iff for every Xi ∈ X we have t′[Xi] ≤ t[Xi] and there
exists Xj ∈ X such that t′[Xj] < t[Xj]. The skyline of T w.r.t. X ⊆ D is defined as
Sky(T,X) = {t ∈ T | @t′ ∈ T such that t′ ≺X t}. To simplify notation and when T is
understood from the context, sometimes we omit T and we use Sky(X) instead. The
skycube of T , denoted by S(T) or simply S is the set of all Sky(T,X) where X ⊆ D and
X 6= ∅. Formally, S(T) = {Sky(T,X) | X ⊆ D and X 6= ∅}. Each Sky(T,X) is called
a skycuboid. d represents the dimensionality of S(T). There are 2d − 1 skycuboids in
S(T). S is a subskycube of the skycube S if it is a subset of S. Table II summarizes the
different notations used throughout the paper.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:5

Table III. The set of all skylines.

Subspace Skyline Subspace Skyline

ABCD {t2, t3, t4} ABC {t2, t4}
ABD {t1, t2, t3, t4} ACD {t2, t3, t4}
BCD {t2, t4} AB {t1, t2}
AC {t2, t4} AD {t1, t2, t3, t4}
BC {t2, t4} BD {t1, t2, t4}
CD {t4} A {t1, t2}
B {t1, t2} C {t4}
D {t4}

Example 2.1. We borrow the toy table T from [Raı̈ssi et al. 2010] and use it as our
running example.

Id A B C D

t1 1 3 6 8
t2 1 3 5 8
t3 2 4 5 7
t4 4 4 4 6
t5 3 9 9 7
t6 5 8 7 7

Att(T) = {Id,A,B,C,D}. Let D = ABCD and let X = ABCD, then t2 ≺X t1. Indeed,
t2[Xi] ≤ t1[Xi] for every Xi ∈ {A,B,C,D} and t2[C] < t1[C]. In this example d = 4.
The skylines w.r.t. each subspace of D, i.e., the set of all skycuboids are depicted in
Table III. This example shows that the skyline results are not monotonic, i.e., neither
X ⊆ X ′ ⇒ Sky(X) ⊆ Sky(X ′) nor X ⊆ X ′ ⇒ Sky(X) ⊇ Sky(X ′) are true. For instance,
Sky(ABD) 6⊆ Sky(T,ABCD) and Sky(D) 6⊇ Sky(AD). This makes partial materializa-
tion of skycubes harder than classical data cubes.

3. PARTIAL MATERIALIZATION OF SKYCUBES
The main goal of the present work is to devise a solution to the partial materialization
of skycubes. The most important requirement is that the partial skycube should be as
small as possible in order to minimize both its storage space and its computation time.
Before formally stating the problem we address, we exhibit some properties holding
between the subspace skylines of a skycube.

3.1. Skylines Patterns Monotony
Even if the skyline query is not monotonic, we can exhibit a monotonic property be-
tween Sky(T,X) and Sky(T, Y) whenever X ⊆ Y . Intuitively, this property is based on
the following observation: for a tuple t to belong to Sky(T,X) it is necessary and suf-
ficient that there exists some tuple t′ ∈ Sky(Sky(T, Y), X), i.e., the skyline over X by
considering only tuples in Sky(T, Y), such that t′[X] = t[X]. This observation is stated
in the following lemma.

LEMMA 3.1. Let X ⊆ Y . Then ∀t ∈ T we have that t ∈ Sky(T,X) ⇔ ∃t′ ∈
Sky(Sky(T, Y), X) s.t. t′[X] = t[X].

PROOF. We prove the two implications.

¶ ⇒: Let t ∈ Sky(T,X). If t ∈ Sky(Sky(T, Y), X) then the statement is clearly sat-
isfied. Assume now that t /∈ Sky(T, Y). Then there exists t′ ∈ Sky(T, Y) such that

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:6 S. Maabout et al.

t′ ≺Y t but t′ ⊀X t because t belongs to Sky(T,X). This implies that t′[X] = t[X] so
t′ also belongs to Sky(T,X). Therefore t′ ∈ Sky(Sky(T, Y), X).

· ⇐: t’ ∈ Sky(Sky(T, Y), X) ⇔ ∀u ∈ Sky(T, Y), u ⊀X t′. On the other hand we have
∀v ∈ T \ Sky(T, Y), ∃u ∈ Sky(T, Y), u ≺Y v. Knowing that u ⊀X t′ and u �X v
because X ⊆ Y , we have that v ⊀X t′ ⇔ t′ ∈ Sky(T,X). Since t[X] = t′[X] then
t ∈ Sky(T,X).

Example 3.2. Consider the subspaces B and BC. As shown in Table III,
Sky(T,BC) = {t2, t4}. From this set of tuple, we deduce Sky(Sky(T,BC), B) = {t2}
(because t2[B] = 3 < t4[B] = 4) and this does not correspond to Sky(T,B) since the
later has actually an extra tuple which is t1. Note however that (i) this missing tuple
t1 coincides with t2 on B and (ii) it is the only one that does satisfy this property.

As a consequence, we obtain an inclusion relationship between the tuples belonging
to Sky(X) and those in Sky(Y) whenever X ⊆ Y . More precisely,

THEOREM 3.3. Let X ⊆ Y and let πX(Sky(X)) be the projection1 on X of the tuples
belonging to Sky(X). Then, πX(Sky(X)) ⊆ πX(Sky(Y)).

Example 3.4. Sky(A) = {t1, t2} and Sky(AC) = {t2, t4}. Although
Sky(A) 6⊆ Sky(AC), we have πA(Sky(A)) ⊆ πA(Sky(AC)). Indeed, the projection
πA(Sky(A))={〈1〉} and πA(Sky(AC))={〈1〉; 〈4〉}.

Theorem 3.3 shows that the skyline points of every subspace skyline form a lattice:
it suffices to project every skyline on the dimensions defining its subspace then fill
all missing dimensions with the special symbol ∗. These generalized tuples define the
skylines patterns.

Example 3.5. Take the subspace B. Sky(B) contains two tuples t1 and t2. The single
pattern defining the tuples in Sky(B) is the generalized tuple 〈∗, 3, ∗, ∗〉. Figure 1 shows
the patterns of the skycube of the running example.

In [Pei et al. 2005] the authors introduced the skyline groups lattice which is quite dif-
ferent from skyline patterns lattice. Indeed, the former is more targeting skyline mem-
bership queries, i.e., given tuple t, which are the subspacesX such that t ∈ Sky(T). The
set of these subspaces X is summarized by a set of upper and lower bound subspaces
pairs and the tuples that share the same pair and same values in some dimensions
are in the same group. For example, tuples t1 and t2 in the running example share
the same values of A and B respectively. Both tuples belong to Sky(AB), Sky(A) and
Sky(B). They are then in the same group defined by the upper subspace AB and the
lower subspaces A and B. More details about this structure and a comparison with the
skyline patterns lattice are given in the related work Section 6.

Theorem 3.1 shows that whenever X ⊆ Y , the computation of Sky(X) can benefit
from the fact that Sky(Y) is already materialized. Algorithm 1 shows how this can be
done.

In simple terms, Algorithm 1 first eliminates the duplicates, w.r.t. X, from Sky(Y)
to obtain S1. The second step consists of computing the skyline of S1 by considering all
its dimensions, i.e., X. This gives the set S2 which is then joined with table T .

1We consider the canonical set semantics of the projection.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:7

Fig. 1. Lattice of the skycube patterns

ALGORITHM 1: Sky X from Sky Y
Input: Table T , Sky(Y), X such that X ⊆ Y
Output: Sky(X)

1 Let S1 = πX(Sky(Y));
2 Let S2 = Sky(S1, X);
3 Return T 1 S2;

Algorithm 1 is correct because since S2 has no duplicates, we have the guarantee
that a tuple t′ ∈ T can be returned at most once. Moreover, Theorem 3.1 guarantees
that all t′ ∈ Sky(X) are retrieved. Hence, all and only t′ ∈ Sky(X) are returned.

Example 3.6. Suppose that Sky(ABC) = {t2, t4} is already materialized and we
want to compute Sky(AB). Algorithm Sky X from Sky Y first projects Sky(ABC)
onto AB and obtains S1 = {〈1, 3〉; 〈4, 4〉}. Then line 2 of the algorithm returns S2 =
Sky(S1, AB) = {〈1, 3〉}. Finally (line 3), T is joined with S2, i.e., we return those t′ s.t
t′[AB] = 〈1, 3〉. There are two such tuples: t1 and t2. Hence, Sky(AB) = {t1, t2}.

Time complexity of Sky X from Sky Y . The projection in line 1 can be performed
in O(|Sky(Y)|) using hashing. Line 2 (skyline computation) can be performed in
O(|S1|.|S2|), that is, every input tuple in S1 is compared to every output tuple in S2.
The join operation between S2 and T can be performed in O(|T | + |S2|) with, e.g., a
hash-join algorithm: traverse S2 = Sky(S1, X) and insert each t in a hash-table H,
then traverse T , hash every t′[X] and check in O(1) whether the value belongs to H. If
that is the case, then return t′. To sum up, the overall computation time is bounded by
O(|Sky(Y)|) +O(|S1|.|S2|) +O(|T |+ |S2|). Thus, if |S1| is close to |T |, we better perform
Sky(T,X) whose complexity is O(|T |.|Sky(X)|).

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:8 S. Maabout et al.

ALGORITHM 2: SemiNaı̈vePartialSkyCube
Input: Table T
Output: Sky(D), Tclean, index I

1 Let SD = Sky(T,D);
2 for every t ∈ T do
3 for every t′ ∈ SD do
4 if ∃Di such that t[Di] = t′[Di] then
5 insert t into Tclean;
6 break;

7 create a bitmap index I on every Di ∈ Tclean;
8 Return SD, Tclean, index I;

3.2. Topmost Skyline Based Materialization
Theorem 3.1 allows us to derive an ad hoc solution for the partial materializa-
tion of skycubes. Indeed, it suffices to materialize Sky(T,D), i.e., the skyline over
all dimensions and use it to answer every submitted skyline query Sky(X) by call-
ing Sky X from Sky Y(T, Sky(D), X). This solution is particularly efficient whenever
Sky(D) is small, for instance |Sky(D)| = O(

√
n). This may happen when the dimen-

sions are correlated and/or when there are few distinct values per dimension. More-
over, once Sky(D) is computed, we know that every tuple t ∈ T that does not match
any t′ ∈ Sky(D) on any dimension can be removed from T because we are sure that it
does not belong to any skycuboid. The next example illustrates this discussion.

Example 3.7. Suppose that we have four dimensions and each of them has three
distinct values {0, 1, 2}. The number of possible values is then equal to 34 = 81. If the
number of tuples in T is n where n � 81, then there is a good chance that the tuple
〈0, 0, 0〉 is present. If it is the case, then every tuple in the top most skyline must be
equal to 〈0, 0, 0〉. In this extreme situation, the size of Sky(D) is equal to one whatever
is the number of duplicates. Moreover, for every tuple t ∈ T and X ⊆ D, t ∈ Sky(X)
iff t[X] = 〈0, . . . , 0〉. In other words, if t has only values different from 0, then we can
safely remove it from T : we know that it does not belong to any skyline. Hence, once
Sky(D) is computed, T can be cleansed so as to obtain Tclean ⊆ T where Tclean contains
only those tuples that have a chance to belong to at least one skyline.

The semi-naı̈ve solution for skycube partial materialization is described in Algo-
rithm 2. Cleansing T can actually be done in O(n): for each dimension Di, we create
a hash table Hi corresponding to πDi(Sky(D)). We obtain d hash tables. Then, we tra-
verse T and we check for every t ∈ T whether t[Di] ∈ Hi. If that is the case, then t is
added to Tclean. The complexity of this cleaning is in O(dn) and if d is fixed then it is in
O(n).

In Line 8, we create a bitmap index on Tclean w.r.t. every Di in order to op-
timize the join operation when skyline queries are submitted, i.e., line 3 of Al-
gorithm 1. More precisely, every skyline query Sky(X) is evaluated by calling
Sky X from Sky Y(Tclean, Sky(D), X). Line 3 of Algorithm 1, i.e., S2 1 Tclean, is
performed as follows: for every t ∈ S2, select from Tclean those tuples t′ satisfying
t[X] = t′[X]. Thanks to the bitmap index I, these tuples are retrieved efficiently.

When the skyline over D is large, materializing just the top most skyline together
with an index is clearly inefficient. Indeed, the cost of the first step of query evaluation,
i.e., Sky(Sky(T,D), X), is almost the same as that of evaluating Sky(T,X). Therefore,
and from a query optimization perspective, we need to precompute more skycuboids
than just Sky(D).

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:9

The next section addresses the problem of partial skycube materialization when
Sky(D) is large. Our objective will be to materialize a portion of the skycube sufficient
to answer every skyline query without making access to the underlying data.

3.3. Minimal Information-Complete Subskycube (MICS)
Before giving the formalization of the addressed problem, we first give some defini-
tions. We start with the information-completeness property of partial skycubes.

Definition 3.8 (Information-Complete Subskycube). Let S be a subskycube of S. S
is an Information-Complete Subskycube (ICS) iff for every subspace X, there exists a
subspace Y such that X ⊆ Y , Sky(Y) ∈ S and Sky(X) ⊆ Sky(Y).

Intuitively, S is an ICS iff it contains a sufficient set of skycuboids which is able
to answer every Skyline query. Recall that Sky(T,X) ⊆ Sky(T, Y) ⇒ Sky(T,X) =
Sky(Sky(T, Y), X). In other words, Sky(X) can be evaluated using Sky(Y) instead of
T .

Example 3.9. One can easily verify that the subskycubes S1 = {Sky(ABCD),
Sky(ABD)} and S2 = {Sky(ABCD), Sky(ABD), Sky(AC)} are both ICS’s. If
for example, S1 is materialized, then the query Sky(T,A) can be evaluated as
Sky(Sky(ABD), A) using 4 tuples instead of using table T which contains 6 tuples.
Note that S3 = {Sky(ABCD)} is not an ICS because, e.g., there is no superset Y of
ABD such that Sky(ABD) ⊆ Sky(Y).

From the storage space usage perspective, it is natural to try to identify smallest
ICS’s.

Definition 3.10 (Minimal Information Completeness). S is a minimal ICS (MICS)
iff there exists no other ICS S′ such that S′ ⊂ S.

Example 3.11. S1 = {Sky(ABCD), Sky(ABD)} is smaller than S2 =
{Sky(ABCD), Sky(ABD), Sky(AC)}. One can easily verify that S1 is the unique
MICS of T .

Now we are ready to formalize the problem of partial materialization of skycubes as
we address it.

Problem Statement: Given a table T and its set of dimensions D, find an MICS of T
that will be materialized in order to answer all the skyline queries over subsets of D.

The following proposition shows that actually, every table T admits a unique MICS.

PROPOSITION 3.12. Given T , there is a unique MICS of T .

PROOF. Consider the directed graph G = (V,E) where V = 2D and E ⊆ V × V such
that (X,Y) ∈ E iff X ⊂ Y and Sky(X) ⊆ Sky(Y). Let Σ be the set of nodes without any
outgoing edge. Then clearly S = {Sky(X)|X ∈ Σ} is the unique MICS.

Identifying the unique MICS is easy when the full skycube is available however, this
is inefficient from a practical point of view.

In the remaining part of this section we devise a method leveraging the functional
dependencies concept in order to avoid the full materialization. For this, we show that
the presence of some functional dependencies implies the inclusion of skylines. Hence,
we can avoid to compute some of them.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:10 S. Maabout et al.

Fig. 2. Inclusions between skycuboids captured by FDs

3.4. Using FDs to discover Inclusion between Skylines
Recall that the functional dependency X → Y is satisfied by T iff for every pair of tu-
ples t1, t2 ∈ T , if t1[X] = t2[X] then t1[Y] = t2[Y]. The following theorem represents our
main result. It shows how an existing functional dependency can be used to identify a
monotonic inclusion between two skylines.

THEOREM 3.13. LetX → Y be an FD satisfied by T . Then Sky(T,X) ⊆ Sky(T,XY).

PROOF. Suppose that the claim of the theorem is not true and let t ∈ Sky(T,X) \
Sky(T,XY). Since t /∈ Sky(T,XY), there must exist t′ which dominates t w.r.t. XY , i.e.,
t′ ≺XY t. t′ cannot dominate t w.r.t. X because otherwise t cannot belong to Sky(T,X).
We conclude that t[X] = t′[X]. On another hand, X → Y is satisfied by hypothesis and
from t[X] = t′[X] we derive that t[Y] = t′[Y] and thus t[XY] = t′[XY] which contradicts
the fact that t′ dominates t w.r.t. XY .

Example 3.14. Turning back to the running example, the set of minimal functional
dependencies satisfied by T are

A→ B A→ D BD → A CD → B
BC → A BC → D CD → A

The inclusions of skylines identified by the FDs satisfied by T are depicted in Fig-
ure 2. Each node X represents Sky(T,X). An edge from X to Y represents an in-
clusion. Paths also represent inclusions. For example, we can see that Sky(T,A) ⊆
Sky(T,AB) ⊆ Sky(ABD). One should notice that these are only the inclusions we can
deduce from the FDs satisfied by T . There may be other inclusions that are not de-
tected by FDs. For example, Sky(C) = {t4} ⊆ Sky(BC) = {t2, t4}, and this inclusion is
not captured by the FDs.

The distinct values property has been used in previous work [Xia et al. 2012; Pei
et al. 2006; Lee and won Hwang 2014] to optimize the skycube computation. More
precisely, T satisfies the distinct values property iff |πDi(T)| = n. In other words, all
the values appearing in each dimension are distinct. The following result shows that
when T satisfies this property, it guarantees that skylines are monotonic.

THEOREM 3.15. [Pei et al. 2006] If T satisfies the distinct values property then for
every subspaces X and Y , the following implication holds: X ⊆ Y ⇒ Sky(X) ⊆ Sky(Y).

The above result can be seen as a consequence of Theorem 3.13. Indeed, under the
distinct values hypothesis, every single attribute determines all other attributes: it is
a key in FDs terminology. In particular, ∀X,Y we have X → Y . By theorem 3.13 we
deduce that Sky(X) ⊆ Sky(XY).

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:11

The following proposition shows how the FDs can be leveraged to derive an ICS.

PROPOSITION 3.16. Let I be the set of skylines inclusions derived from the FDs
satisfied by T and let GI = (V, E) be the directed graph where V = 2D and E ⊆ V × V
such that (X,Y) ∈ E iff Sky(X) ⊆ Sky(Y) ∈ I. Let Γ = {X ∈ V | X has no outgoing
edge}. Then Γ is an ICS.

PROOF. It suffices to show that Γ includes the unique minimal ICS. Since the set of
inclusions I is a subset of the actual inclusions, a node in the graph G, as defined in
the proof of Proposition 3.12, has no outgoing edge only if it has no outgoing edge in
GI . This shows that Γ contains the MICS.

As a consequence of the previous proposition, we can conclude that having Γ is suf-
ficient to infer the MICS. For example, in Figure 2, the nodes in a black box form
Γ. For example, both B and ABD belong to Γ. From Table III, one can see that
Sky(B) ⊆ Sky(ABD). Therefore, Sky(B) is removed from Γ.

Now, we provide some properties of the elements of Γ that allow to identify them
efficiently. By Theorem 3.13, we conclude that a subspace X belongs to Γ iff there is no
subspace Y such that X ∩ Y = ∅ and the FD X → Y is satisfied by T . In the functional
dependency literature, these subspaces are classically called closed sets of attributes.
We recall briefly the definition and suggest, e.g., references [Maier 1983; Mannila and
Räihä 1992] for more details.

Definition 3.17 (Closed Subspace). Let F be a cover set of the FDs satisfied by T
and X be a subspace of T . The closure of X w.r.t. F , noted X+

F or simply X+, is the
largest subspace Y such that F ` X → Y where ` represents the implication between
FDs. X is closed iff X+ = X.

Example 3.18. Consider our running example. A is not closed because there exists
another attribute determined by A. For example, T satisfies A → D. ABD is closed
because the only remaining attribute is C and T does not satisfy ABD → C.

The elements of Γ are the closed subspaces. Hence, having the FDs satisfied by T ,
it becomes easy to find its MICS. It is important to note that the functional depen-
dencies we consider are those that hold in the instance T . These are not supposed to
be known beforehand. So we distinguish between those FDs that act as constraints
which are always satisfied by the instances of T and those that are just satisfied by
the present instance. Therefore, we need an efficient algorithm to mine the FDs satis-
fied by the instance T from which we can derive the closed subspaces. To the best of
our knowledge, no algorithm has been proposed so far in the literature for addressing
the problem of finding the closed attributes sets. Previous research proposed rather
efficient algorithms for computing the closure of a set F of FDs, i.e., all FDs that are
logically implied by F . Interestingly, it is shown that this closure can be computed
in linear time w.r.t. the size of F [Mannila and Räihä 1994]. The description of the
algorithm we propose for this purpose is postponed to Appendix A.

[Previous Section 3.8] Now we can describe the procedure which, given a table T ,
returns its corresponding MICS. It is depicted in Algorithm 3. It first finds the closed
subspaces, then it computes their respective skylines. The third step consists in re-
moving every subspace X whose skyline is included in that of some Y provided that
X ⊂ Y .

Example 3.19. Recall that the closed subspaces of the running example are
ABCD,ABD,B,C and D. Algorithm 3 first computes their respective skylines. Then
it discovers the inclusions Sky(B) ⊆ Sky(ABD), Sky(C) ⊆ Sky(ABCD), Sky(D) ⊆

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:12 S. Maabout et al.

ALGORITHM 3: MICS
Input: Table T
Output: MICS

1 Let ClosedSub = ClosedSubspaces(T);
2 for every X ∈ ClosedSub do
3 // Loop executed in parallel
4 compute Sky(T,X);
5 for every X ∈ ClosedSub do
6 for every Y ∈ ClosedSub s.t X ⊂ Y do
7 if Sky(T,X) ⊆ Sky(T, Y) then
8 ClosedSub = ClosedSub \ {X};
9 Break;

10 Return ClosedSub and their respective skylines;

Sky(ABD) and Sky(D) ⊆ Sky(ABCD). Hence, only Sky(ABCD) and Sky(ABD) be-
long to MICS. This is the minimal set of skycuboids that must be materialized.

3.5. Analysis of the number of closed subspaces
Obviously, the more dependencies are satisfied by table T , the less there are closed
subspaces. The number of distinct values per dimension is an important parameter
that has been identified in the FD mining literature in that it impacts the number
of valid FDs2. Intuitively, when this parameter is large, statistically it becomes hard
to find two tuples sharing the same value on X and different values on Y making
X → Y violated. To illustrate, suppose that each dimension has n distinct values,
i.e., the number of rows in T . In this extreme case, it is impossible to violate any FD.
As another extreme case, suppose now that every dimension has only two distinct
values. If n is large enough, i.e., n� 2d then for every X,Y there is a high probability
that there exist two tuples sharing the same value on X and different values on Y
making X → Y violated. This intuitive discussion can be formalized under some data
distribution hypothesis.

Let ||X|| denote the number of attributes in X, for example ||ABC|| = 3, and let k
be the number of distinct values of every dimension and m be the number of distinct
tuples in table T . X is a key of T iff |X| = m. Clearly, if X is a key then every Y
such that Y ⊇ X, Y is not closed (apart from the special case where Y is the set of all
dimensions).

Assuming a uniform distribution, if ||X|| ≥ logk(m) then X has a high probability
for being a key [Harinarayan et al. 1996]. Moreover, since X ⊇ Y ⇒ |X| ≥ |Y |, the
probability for X to be a key increases when ||X|| increases. We conclude that: the
larger k, the smaller ||X||makingX to be a key, the larger the number of supersets ofX
and the fewer the closed subspaces. Figure 3(a) shows the evolution of projection sizes
w.r.t. the number of dimensions: when this number reaches logk(m) the projections
reach the same number of distinct tuples in T meaning that these are keys. The more
we have keys, the less closed subspaces there are as it is illustrated in Figure 3(b).
Note that the area where closed subspaces belong to may contain non closed subspaces
too.

2It is often called correlation factor in the FD mining literature.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:13

(a) Size of projections w.r.t. dimensionality
||X||

(b) Closed subspaces in the subspaces lattice

Fig. 3. Keys and closed subspaces behaviors

3.6. Analysis of Skyline Size
When the cardinality k of dimensions decreases, the number of closed subspaces in-
creases and may reach 2d − 1. From partial materialization point of view, this is a bad
situation: all skylines are materialized. In fact, by contrast to the number of closed sub-
spaces, the size of skylines is proportional to k. This indicates that when k is small, we
do not need to materialize other skycuboids than the one for the topmost subspace, i.e.,
Sky(D). This fact is sufficient to answer all skyline queries efficiently using Algorithm
1 as we described it in Section 3.2. The following theorem formalizes this result.

THEOREM 3.20. Let n and d be fixed. Let Tk denote the set of tables with d inde-
pendent dimensions, n tuples and at most k distinct values per dimension uniformly
distributed. Let Sk denote the average number of distinct tuples int the skylines of all
tables Tk ∈ Tk. Then we have that: k ≤ k′ ⇒ Sk ≤ Sk′

PROOF. See Appendix B for a detailed proof.

In other words, the above theorem states that for fixed n and d, the size of the sky-
line (in terms of the number of distinct tuples) tends to increase when the number
of distinct values per dimension grows. The following example gives a more intuitive
illustration.

Example 3.21. For k and d, the number of possible tuples is kd. Let n = 5 and d = 2.
When k = 2, we are sure that there are duplicates among the 5 tuples. Moreover, there
is a high probability that the tuple 〈0, 0〉 is present and in this case, this is the unique
distinct tuple in the skyline. Consider now the case where k = 4. Here the number of
possible tuples is 16. Choosing 5 tuples among these lets small chances that 〈0, 0〉 does
appear. Hence, the number of tuples in the skyline tends to be larger than 1.

Figure 4 illustrates how both the number of closed subspaces and skyline size
evolves w.r.t. the number of distinct values k when n < kd. The main conclusion is
that when the number of closed subspaces increase, the size of skyline tends to de-
crease. This is why in case of no FDs, we are almost sure that the topmost skyline is
small.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:14 S. Maabout et al.

Fig. 4. The evolution of skyline size and number of closed subspaces w.r.t. cardinality k

Fig. 5. The Partial Skycube

4. QUERY EVALUATION
In this section we show how skyline queries are efficiently evaluated when the MICS
is materialized. To simplify presentation, we assume that materialized skycuboids are
those associated to X, where X is closed. That is, this is a superset of the MICSs, and
is denoted SkycubeC(T).

4.1. Evaluating Sky(Sky(X+), X)

When a query Sky(T,X) is submitted, we first compute the closure X+ to find the ma-
terialized ancestor skycuboid from which the query is to be evaluated. For example,
the query Sky(T,A) is computed from Sky(T,A+) = Sky(T,ABD). As a matter of fact,
Sky(T,ABD) = {t1, t2, t3, t4}. Hence, instead of computing Sky(T,A) form T , thus us-
ing 6 tuples, we rely on Sky(T,ABD) containing only 4 tuples. The closure of every
X can either be hard coded or it can be computed on the fly by using the available
set of FDs that have already been mined. For the running example, Figure 5 repre-
sents the materialized part of the skycube (nodes in black boxes) as well as the closure
relationships.

Let us analyze in more depth the query evaluation complexity. First, we recall
that all algorithms proposed so far for evaluating a skyline query from a data set
with n tuples have a worst case time complexity in O(n2) which reflects the num-
ber of comparisons. So we expect that by partially materializing a skycube, the cost
of evaluating skyline queries should be less than O(n2). Suppose that the query is
Sky(X) and Sky(X+) is materialized. Therefore, evaluating Sky(X) is performed with
an O(|Sky(X+)|2) time complexity. Is it possible that |Sky(X+)| be equal to n, which

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:15

means that we get no gain in computing Sky(X) from Sky(X+) rather than computing
it from T ? We show that, unless X+ = D, the cost is strictly smaller than O(n2) even if
the size of Sky(X+) is equal to n.

4.2. Using Partitions
In this section, we exhibit some properties that can be derived from those FDs holding
in T for optimizing skyline query evaluation. These properties are based on skyline
partitions.

Definition 4.1 (Partition). Let Y be a subspace such that Y + = X. Then PY (X) =
{p1, . . . , pm} denotes the partition of the tuples in Sky(X) w.r.t their Y values, i.e.,
ti ≡ tj iff ti[Y] = tj [Y]. Let τi ∈ pi, then [PY (X)] = ∪i=1...m{τi} is a representative of
PY (X).

Example 4.2. A+ = ABD and Sky(ABD) = {t1, t2, t3, t4}. PA(ABD) = {{t1,
t2}; {t3}; {t4}}. [PA(ABD)] = {t1, t3, t4} and [PA(ABD)] = {t2, t3, t4} are both repre-
sentatives of PA(ABD).

The following lemma shows that computing Sky(Y) can be evaluated from [PY (X)]
instead of Sky(X).

LEMMA 4.3. Let Y be such that Y + = X and let [PY (X)] be some representa-
tive. Let ti ∈ [PY (X)] and t′i be a tuple in Sky(X) such that ti[Y] = t′i[Y]. Then
t′i ∈ Sky(Sky(X), Y) iff ti ∈ Sky([PY (X)], Y).

In other words, it suffices to evaluate Sky(πY (Sky(X)), Y) and if ti is in the result then
all of its equivalent tuples in Sky(X) belong to Sky(Y) too.

Example 4.4. Suppose that for evaluating Sky(A) the representative [PA(ABD)] =
{t2, t3, t4} is used. This means that query Sky([PA(ABD)], A) is evaluated and it re-
turns {t2}. Since t1 is equivalent to t2 then t1 is also in Sky(A).

The above lemma would suggest that for each query Sky(Y), we should partition
Sky(X) w.r.t. Y . In fact, it is much easier than that because it suffices to partition once
the tuples of Sky(X) w.r.t X and this partition is exactly the same as those w.r.t every
Y such that Y + = X.

PROPOSITION 4.5. Let Y + = X. Then PY (X) = PX(X).

PROOF. Because T |= X → Y iff PX(T) = PXY (T).

For example, since A+ = ABD the partitions PA(ABD) and PABD(ABD) are equal.
The above result shows that the complexity of retrieving a non materialized skycuboid
does not depend on the number of tuples in its materialized ancestor but rather on
the size of its partition. Note however Proposition 4.5 does not completely answer our
previous question since a priori, the number of parts could be equal to |Sky(X)| and
since |Sky(X)| could itself be equal to |T | then we would have no gain by using Sky(X)
instead of T . The following proposition shows that in fact this could happen in only one
case, namely when X = D. More precisely,

PROPOSITION 4.6. Let X be a closed subspace and PX(X) be the partition
{p1, . . . , pm}. If X 6= D then m < |T |.

PROOF. Suppose that the number of parts is equal to |T | = n. This means that there
are n distinct values when the tuples in Sky(X) are projected onto X. Therefore, X is
a key of T . Hence, X = D, which contradicts the hypothesis.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:16 S. Maabout et al.

In [Raı̈ssi et al. 2010], a special class of skycuboids is identified, namely the class
of skycuboids of Type I. The authors use this class for inferring the content of other
skycuboids. By Lemma 4.3 we infer some skylines without any computation when sky-
cuboids of Type I are used. Let’s first recall the definition of skycuboids of Type I.

Definition 4.7. Sky(X) is of Type I iff ∀t1, t2 ∈ Sky(X), t1[Ai] = t2[Ai] for every
Ai ∈ X.

In other words, Sky(X) is of Type I iff the projection of Sky(X) over X, i.e., πX(Sky(X))
has a single element.

Example 4.8. In the running example, Sky(AD) = {t1, t2} and it is of Type I because
t1[AD] = t2[AD].

The following proposition shows that under some conditions on FDs, some skylines can
be derived without effort.

PROPOSITION 4.9. If Sky(X) is of Type I then for every Y ⊆ X such that Y → X,
we have Sky(Y) = Sky(X).

PROOF. This is a direct consequence of Lemma 4.3. Indeed, if Sky(X) is of Type I,
then the partition of its elements w.r.t. X gives only one part. Therefore, every tuple
of this part is necessarily in Sky(Y). Since Y ⊆ X, and Y → X then Sky(Y) ⊆ Sky(X)
then we conclude that Sky(X) = Sky(Y).

Example 4.10. Since Sky(AD) is of Type I and since A → D is valid FD in T , we
conclude that Sky(A) = Sky(AD).

4.3. Evaluating Sky(Sky(Y), X)

When only the skycuboids belonging to MICS are materialized, it may happen that
Sky(X+) is not materialized for some X because we found that Sky(X+) ⊆ Sky(Y)
and X ⊂ Y for some closed subspace Y . In this case, the properties we developed in
the previous section are no longer valid. So, we need to use some standard skyline algo-
rithm for evaluating Sky(X) using a materialized Sky(Y) without all the optimization
we have seen so far.

Example 4.11. Table III shows that for closed subspaces C and ABCD, we have
e.g., Sky(C) ⊆ Sky(ABCD). Therefore, Sky(C) does not belong to MICS(T). Hence, if a
user asks for Sky(C), we need to evaluate Sky(Sky(ABCD), C). Note that all tuples in
Sky(ABCD) are distinct from each other. So the partition w.r.t. ABCD contains three
parts while the partition of these tuples w.r.t. C contains only two tuples, namely 〈3〉
and 〈4〉.

The above example shows that trying to reduce the storage space by not materializing
some skycuboids of closed subspaces comes with query evaluation price. Nonetheless,
it is always better than evaluating the queries from the underlying table T .

4.4. Full Skycube Materialization
A special case of query evaluation is when we want to compute all skyline queries. This
is equivalent to the full materialization of skycubes. To deal with this case and to avoid
the naı̈ve solution which consists in evaluating every skyline from T , previous works
exhibit derivation properties and cases where computation sharing among skylines is
possible so as to speedup this process.

Since this materialization turns to evaluate every possible skyline query, the previ-
ous properties we identified can easily be exploited in this context. Hence, we propose

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:17

ALGORITHM 4: FMC algorithm
Input: Table T
Output: Skycube of T

1 Let SD = Sky(T,D);
2 if |SD| is small then
3 Tclean = cleanup(T);
4 create index I;
5 for every X ⊂ D do
6 // Loop executed in parallel
7 Let S = Sky X from Sky Y(Tclean, SD, X);
8 Skycube T = Skycube T ∪ {S};
9 Return Skycube T ;

10 else
11 Closed = ClosedSubspaces(T);
12 foreach X ∈ Closed do
13 // Loop executed in parallel
14 Compute Sky(T,X);
15 foreach subspace X do
16 // Loop executed in parallel

17 Compute Sky(Sky(X+), X);
18 Return

⋃
X∈2D Sky(X);

FMC (for Full Materialization with Closed subspaces) as a procedure for solving this
problem. It is described in Algorithm 4.
FMC first computes the topmost skyline Sky(D). If this skyline is small enough then,
as we have seen previously, every Sky(X) can be efficiently obtained from Sky(D) and
Tclean. If Sky(D) is not small, then FMC proceeds in three main steps: (i) it finds the
closed subspaces, then (ii) it computes their respective skylines, and finally (iii) for
every non closed subspace X, it computes Sky(Sky(X+), X).

The main advantage of FMC is that its main computation steps can benefit from
a parallel execution. The second advantage is its low memory consumption: in case
of a small topmost skyline, all what we need is to keep in memory is this skyline
together with the bitmap index. In the opposite case, we keep the skylines over all
closed subspaces but those are not many as we have seen in Section 3.5. Despite its
simplicity, FMC turns to be very efficient in practice and outperforms state of the art
algorithms as this is shown in Section 7.

5. MAIN ALGORITHM: ASSEMBLING ALL COMPONENTS TOGETHER
In this section we summarize our proposal by assembling the different procedures we
introduced so far. On one hand, we show how skycube materialization is addressed
and on another hand we describe how query evaluation is handled. Algorithm 5 de-
scribes the materialization of skycubes. It takes as input a table T and an indication
of whether a full or a partial materialization is requested. In case of the second option,
the algorithm may decide to store only the topmost skyline if it small. This property,
being small, can be an input of the user, e.g., a certain percentage of the underlying
table T or hard coded in the algorithm.

On the other hand, with respect to query evaluation, it depends on how the skycube
is materialized. Algorithm 6 shows how skyline queries are handled. In case of partial
materialization, we see that for computing Sky(X) we need to know X+ (Line 10). This
information can be stored offline during the computation of the functional dependen-

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:18 S. Maabout et al.

ALGORITHM 5: Skycube Materialization
Input: Table T , TypeMat ∈ {full, partial}
Output: Partial or full Skycube of T

1 if TypeMat=full then
2 Return FMC(T);
3 else
4 // The user asks for a partial materialization
5 Let SD = Sky(T,D);
6 if |SD| is small then
7 // The small condition can be input by the user. E.g., as a percentage of

size(T)
8 Tclean = cleanup(T);
9 create index I;

10 Return SD;
11 else
12 // We need to minimize the memory storage space
13 Return MICS(T);

ALGORITHM 6: Skyline Query Evaluation
Input: Table T , TypeMat ∈ {full, partial}, subspace X
Output: Sky(X)

1 if TypaMat=full then
2 Return Sky(X);
3 // No required computation

4 else
5 if |SD| is small then
6 // SD is always materialized
7 Return Sky X From Sky Y(T, SD, X);
8 else
9 if X+ is materialized then

10 Return Sky(Sky(X+), X);
11 else
12 // i.e., only skylines in MICS are stored

13 Let Y be the remaining ancestor of X+ in MICS;
14 Return Sky(Sky(Y), X);

cies, i.e., a table that maps every X to X+. A second option would be to store a minimal
cover of the mined FDs and use it online to compute X+. Recall that computing the clo-
sure of X can be done in linear time w.r.t. the size of the cover set [Mannila and Räihä
1992]. Also, when computing MICS, a skyline Sky(X) of some closed X is removed iff
there exists some closed Y such that Y is an ancestor of X. If it is the case, we need
to keep this information in order to be able to answer Sky(X) as well as all queries
Sky(Z) such that Z+ = X.

6. RELATED WORK
Many algorithms for computing skylines have been proposed in the literature. The
complexity of most of them is analyzed in RAM cost setting, e.g., [Godfrey et al. 2007;
Bartolini et al. 2008; Lee and won Hwang 2010]. Some algorithms have been specifi-

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:19

cally tailored to the case where dimensions have low cardinalities, see e.g., [Morse et al.
2007]. All these algorithms have O(n2) worst case complexity where n is the size of ta-
ble T . The pioneering work [Börzsönyi et al. 2001] considered external memory cost
and showed the inadequacy of SQL to efficiently evaluate skyline queries. Nonethe-
less, the algorithms proposed there do suffer from the polynomial time complexity too.
Recently, [Sheng and Tao 2012] proposed an I/O aware algorithm guaranteeing, in the
worst case, a polylog number of disk accesses. [Sarma et al. 2009] proposed a ran-
domized algorithm requiring O(log(n)) passes over the data to find an approximation
of the skyline with high probability. Other works make use of some pre-processing
like multidimensional indexes. For example, [Papadias et al. 2005] proposed to use R-
trees to optimize skyline points retrieval in a progressive way. We emphasize that the
optimization techniques we propose in the present paper do not rely on any skyline
computation algorithm. So every progress that can be made in skyline algorithms will
benefit our approach.

As for multidimensional skylines, most previous works considered the full material-
ization of skycubes [Lee and won Hwang 2014; 2010; Pei et al. 2005; Yuan et al. 2005].
In order to avoid the naı̈ve solution consisting of computing every skyline from the
underlying table, they try to amortize some computations by using either (i) shared
structures facilitating the propagation/elimination of skyline points of Sky(X) to/from
Sky(Y) when Y ⊆ X or (ii) shared computation. More precisely, the idea here consists
in devising some derivation rules that help in finding Sky(X) by using some parts of
Sky(Y). For example, if Y ⊂ X then a tuple ti cannot belong to Sky(Y) if it does not
match some tj in Sky(X). In order to take advantage of this property, one must keep
Sky(X) in memory. Since several skylines must be kept in that way, this may become
a real bottleneck when data are large. In the next section, we compare experimentally
FMC implementation and these state of the art algorithms and show that they do not
scale with large dimensions and/or large data. Due to the exponential number of sky-
lines, some works tried to devise compression techniques [Xia et al. 2012; Raı̈ssi et al.
2010], thereby to reduce the storage space occupied by the entire skycube.

[Raı̈ssi et al. 2010] proposed the closed skycube concept as a way to summarize sky-
cubes. Roughly speaking, this method partitions the 2d − 1 skycuboids into equivalent
classes: two skycuboids are equivalent if their respective skylines are equal. Hence,
the number of materialized skylines is equal to the number of equivalent classes. Once
the equivalent classes are identified and materialized, query evaluation is immediate:
for each query Sky(T,X), return the skyline associated to the equivalence class of X.
Given T , the size of MICS or even SkycubeC(T) and that of the closed skycube of T
are incomparable in general. Our experiments with various data sets show however,
that in practice, MICS is computed in general much faster and consumes less memory
space than closed skycube. This shows that our proposal is a reasonable trade-off be-
tween skyline query optimization, storage space and the speed by which the solution
is computed.

[Pei et al. 2005] proposed the skyline group lattice which can be seen as a skycube
partial materialization technique. We recall that structure intuitively rather than us-
ing formal definitions. This lattice consists in storing for every tuple t, a set of pairs of
the form 〈max-subspace, min-subspaces〉. The elements of each pair act as borders: the
first is an upper border and the second is a lower one. The semantics of theses pairs
is that t belongs to all the skylines relative to subspaces included in the max-subspace
and including at least one of the min-subspaces. For example, suppose that the pair
p1 = 〈ABCD, {AC,AD}〉 is associated to tuple t. p1 means that t belongs to skylines
w.r.t ABCD, ABC, ACD, AC and AD but neither to those related to BCD, BC or BD
because none of them contains AC or AD (the lower frontier) nor to those related to
A, C and D (the immediate subsets of the lower border) and nor to the subspaces of

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:20 S. Maabout et al.

the form ABCDEi, i.e., an immediate superset of ABCD (the upper border). All tuples
sharing some pair and having the same value in the max-space form a skyline group
and the set of all skyline groups form a lattice. This technique reasons on a tuple
level in that it tries to reduce the number of times a tuple is stored while our
approach uses a subspace level reasoning by trying to store the least number
of skycuboids. From a different angle, the rich semantics of this lattice comes with
a price: it is harder to compute than the full skycube. As regards storage space, the
two methods seem incomparable in general. For example, if Sky(A) ⊂ Sky(ABC) and
Sky(A) 6⊆ Sky(AB) then MICS does not store Sky(A) while the skyline group lattice
stores some information about the tuples in Sky(A) \ Sky(ABC). On another hand, if
for some X there is no Y such that X ⊆ Y and Sky(X) ⊆ Sky(Y) then Sky(X) is stored
entirely while Skyline group can avoid to store information about all tuples in Sky(X).
Finally, it is interesting to note that the inclusions between skylines that we are able
to identify thanks to FDs can speedup the computation of the skyline group lattice in
the following way: We know that all tuples belonging to Sky(X) ∩ Sky(X+) belong to
every Sky(Z) such that X ⊆ Z ⊆ X+. This information can simplify skyline group
lattice construction, e.g., if Sky(X) = Sky(X+).

[Xia et al. 2012] proposed the Compressed SkyCube (CSC) structure. CSC can be de-
scribed as follows. Let t be a tuple belonging to Sky(X). Then t is in the minimum sky-
line of Sky(X) iff there is no Y ⊂ X such that t ∈ Sky(Y). min sky(X) denotes the min-
imal skyline tuples of Sky(X). The compressed skycube consists simply in storing with
every X the set min sky(X). The authors show that this structure is lossless in the
sense that Sky(T,X) can be recovered from the content ofmin sky(Y) such that Y ⊆ X.
More precisely, t ∈ Sky(T,X) iff ∃Y ⊆ X such that t belongs to Sky(min sky(Y), X).
Therefore, the dimensionality d can become a bottleneck for query evaluation. Indeed,
evaluating Sky(X) requires the traversal of all subsets of X, an exponential number,
collect all the tuples then execute a standard skyline query to remove those that are
dominated w.r.t X. As it is shown in the experimental section, CSC does not provide
competitive query evaluation performance. From the storage space point of view, CSC
and MICS are incomparable in general. In our experiments, it turns that MICS is
always less space consuming, and, perhaps more importantly, much faster to obtain.

It is interesting to note that in the case where all dimensions values are distinct,
CSC, skyline groups and MICS store exactly the same tuples: all and only those tuples
belonging to the topmost skyline. MICS stores them once (the topmost skyline) and
every Sky(X) is obtained by evaluating Sky(Sky(D), X). CSC and skyline groups store
every skyline point t in Sky(Y) such that Y is a minimal subspace for t. Hence, every
tuple is replicated as many times as there are minimal subspaces where it belongs to.
Evaluating Sky(X) turns to make the union of Sky(Y) such that Y ⊆ X. Hence, in this
very special situation, the storage space is larger for CSC and Skyline groups than
MICS but for query evaluation, the later are optimal.

Recently, [Bøgh et al. 2014] proposed the Hashcube structure to encode the skycube
by using bit strings for the storage and boolean operations for query evaluation. The
experiments presented in that reference show that in general, hashcubes compress the
skycube storage space by a factor 10 while it is about 10 times slower for query eval-
uation. We note however that the authors do not provide a specialized procedure for
building the hashcube directly from the underlying data. Instead, the whole skycube is
assumed to be already available. Recall that computing MICS does not require to com-
pute the whole skycube. On the other hand, achieving a 10% compression ratio means
that the hashcube structure has an exponential growth w.r.t d since the skycube size
grows exponentially. Our empirical study shows a linear growth of MICS size w.r.t d
giving an evidence that MICS scales better w.r.t d.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:21

Even if FDs have already been used in semantic query optimization [Chakravarthy
et al. 1990; Godfrey et al. 2001] and in data cubes partial materialization [Garnaud
et al. 2012], to the best of our knowledge, we are the first to show their usefulness
in the context of skylines. From another side, it is interesting to note that since the
early works dealing with skyline [Börzsönyi et al. 2001], the statistical correlation
has been identified as a key parameter impacting both the skyline size and query
execution time. FDs can be seen as a special case of correlation and the present work
shows their impact on multidimensional skylines. Our findings may appear surprising
because FDs are agnostic to data semantics and much less to any order based on any
attributes while the corner stone for skyline queries is the different orders defined
among the different attributes.

Some works have been proposed in order to estimate the skyline size, e.g., [Godfrey
et al. 2007; Shang and Kitsuregawa 2013; Chaudhuri et al. 2006]. We could have used
those results in order to show the relationship we established between the number
of distinct values per dimension and the skyline size. Unfortunately, most of those
works assume the distinct values hypothesis which was not helpful for us. [Godfrey
et al. 2007] considers the same data distribution as the one we used (independence
of dimensions) while [Shang and Kitsuregawa 2013] focuses on anti-correlated data.
[Chaudhuri et al. 2006] does not consider any data distribution hypothesis but the esti-
mator is not a closed formula. A noticeable exception is [Godfrey 2004] where repeated
values in dimensions are allowed. However, their main result is an upper bound of the
skyline size. More specifically, it is shown that for fixed n and d, the skyline size when
we have k distinct values is bounded by the skyline size when k = n, i.e., the case of
distinct values hypothesis. But this result does not show the skyline size trend w.r.t k.

An important research direction in data mining and cube processing has been the
integration of analytic algorithms into a DBMS with User-Defined Functions (UDFs)
[Ordonez 2010] or SQL queries [Ordonez et al. 2016]. UDFs could help finding closed
subspaces in the skycube or in skycube materialization. Furthermore, it is worthwhile
to investigate the impact of column-based storage to optimize multidimensional sky-
line queries following a similar approach to how recursive queries were re-optimized
in a columnar DBMS [Ordonez et al. 2016]. This could be done in combination with
the partitions based storage described in Section 4.2.

7. EXPERIMENTAL EVALUATION
We conduct experiments aiming to illustrate the strengths and the weaknesses of our
approach. For this purpose, we consider 3 directions: (i) We compare our solution to the
previous works targeting the skycube full materialization. In this scope, we analyze
scalability w.r.t. both d (dimensionality) and n (table size). It turns that our solution
outperforms state of the art algorithms for full materialization when both data and
dimensions get larger; (ii) we compare our partial materialization proposal to state
of the art techniques by considering three parameters: (a) the time required to build
the partial skycube, (b) the memory space used by the structures, and (c) the query
execution time. Finally, (iii) we analyze the impact of materialization in query cost
reduction. Table IV summarizes the compared algorithms regarding full and partial
materialization of skycubes. All experiments were conducted on a machine with 24G
of RAM, two 3.3 GHz hexacores processors, and a 1 Tb disk under Redhat Entreprise
Linux OS.

7.1. Data sets
We used both real and synthetic data sets. Table V describes NBA, IPUMS and MBL
real data which are well known in the skyline literature. As they are relatively small,
we augmented artificially their respective sizes by just copying them multiple times.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:22 S. Maabout et al.

Table IV. Compared algorithms w.r.t. tasks
Materialization Our algorithm Other Algorithms

Full FMC OrionTail, BUS, TDS,
QSkyCubeGS, QSkyCubeGL

Partial MICS Orion, CSC, Hashcube

Table V. Real data sets
Data set n d

NBA 20493 17
IPUMS 75836 10
MBL 92797 18
NBA50 1024650 17
IPUMS10 75836 10
MBL10 927970 18
USCensus 2458285 20
Householder 2628433 20

For example, NBA50 is obtained from NBA data set by copying every tuple 50 times.
We call these three sets and their variations as benchmark data sets. In addition, we
used two larger real data sets, namely USCensus and Householders. We use them be-
cause of their larger size, but more importantly, because they satisfy a very different
number of functional dependencies in either data set (almost zero in USCensus, many
in Householder). Moreover, we use synthetic data generated by a software available at
pubzone.org and p rovided by the authors of [Börzsönyi et al. 2001]. It takes as input
the values of n and d as well as a data distribution (correlated, independent or anticor-
related) and returns n tuples of d dimensions respecting the prescribed distribution.
Attributes values are real numbers normalized into [0, 1].

7.2. Parallel Processing
We implemented our solutions using C++ language together with OpenMP to benefit from
parallelism. This API makes it very easy to spawn several threads in parallel. For
example a loop of the form:
for(int i=0; i<1000; i++){f(i); }
can be executed by 4 threads just by adding a compilation directive (pragma) to the
source code as follows:
]pragma omp parallel for num threads(4)
for(int i=0; i<1000; i++){f(i); }
In theory, its execution time is then divided by 4 if we have four processing units.
In practice this is rarely the case because (i)the execution of f(i1) can take more or
less time than that of f(i2) thus we do not have a perfect load balancing and (ii) if
both f(i1) and f(i2) need to access a shared structure then we need to control this
concurrency, for example by using locks, so some threads need to wait until others free
their locks and this penalizes the parallel execution. Moreover, following Amdhal’s law,
algorithms have sequential parts that cannot benefit from parallelism. Thus whatever
is the number of available processing units, these parts are necessarily executed by a
single thread.

7.3. Full Skycube Materialization
In this section, we compare the execution time of FMC to state of the art algorithms,
namely BUS and TDSG [Pei et al. 2006], OrionTail [Raı̈ssi et al. 2010], as well as
the most recent proposals QSkycubeGS and QSkyCubeGL reported in [Lee and won

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:23

Hwang 2014]. We used the authors implementations without any change3. All these
algorithms take as input a table and return its respective skycube. All of them are
implemented in C++. For FMC, we make use of the BSkyTree implementation [Lee and
won Hwang 2010] for computing skylines. Unless otherwise stated, for every execution
of FMC we fixed the number of threads to 12 (number of available cores). Since all pre-
vious algorithms are sequential, and to make the comparison faithful, we sometimes
report the speedup of FMC over its competitors instead of their execution times. More
precisely,

Speedup=execution time of algorithm i
execution time of FMC

If the speedup is greater than 12, we can safely conclude that FMC outperforms its
competitor since its sequential execution cannot be twelve times slower than its par-
allel execution. For a topmost skyline to be considered as small we used the condition
that its size should be less than

√
n. The rational behind this choice is to be sure that

skyline evaluation complexity becomes linear in n.

7.3.1. Synthetic data: scalability w.r.t dimensionality d. To analyze the effect of dimension-
ality growth, we start with synthetic data. We fix n to 100K tuples (a relatively small
value of n) and vary d from 10 to 16. We consider the three kinds of data correlations.
The results are reported in Figures 6(a)-6(c). Figure 6(a) shows that the speed-up ob-
tained by FMC increases w.r.t. d. This tends to demonstrate that, for this kind of data
distribution, FMC is more appropriate to use when d gets larger. A more detailed look
to the performance of QSkycubeGL shows that when d = 10, the speed-up of FMC is
only about 7. One may be tempted to conclude that executing FMC with a single thread,
i.e., sequential execution, is slower than QSkycubeGL. Actually, it turns that both al-
gorithms perform equally in that case. We should also note that the actual execution
time is about 2 seconds. For the other two distributions, Figures 6(b) and 6(c) show
that with d = 10, we already have a speed-up larger than 12. Even if we note that all
algorithms do not have the same behavior w.r.t d growth, FMC is consistently much
more efficient than them in all cases.

7.3.2. Synthetic data: scalability w.r.t. data size. Here we fix d to 16 and vary the value
of n by considering 200K, 500K and 1M tuples. The results are reported in Figure 7.
The experiments show that FMC outperforms all algorithms in all cases. Moreover, the
speed-up increases uniformly when n increases. Even though, it is interesting to note
that QSkyCubeGL and QskyCubeGS are the most scalable algorithms.

Remark 7.1 (On Synthetic Data Generation and FMC Extension). In the course of
our experiments, we found that the synthetic data sets tend to satisfy the distinct val-
ues property, i.e., every dimension has almost n distinct values. This is because the
values in each dimension are reals picked uniformly at random from [0, 1] dense in-
terval. So, the probability that the same value is picked twice from this, theoretically
infinite, set is close to zero. This case tends to reduce the set of closed subspaces to just
D and some single dimensions. Therefore, during the execution of FMC most of the
skylines are evaluated from Sky(D). In the case of correlated data, this is beneficial
because the size of Sky(D) is small compared to that of T . This is not the case with
anti-correlated and even independent data. Actually, in the former situations, FMC
almost turns to become the naı̈ve algorithm since the size of Sky(D) is close to that
of T and most skycuboids are computed from Sky(D). Nevertheless, as the previous
experiments have shown, FMC is still competitive in those cases essentially for two

3We are grateful to the authors of [Lee and won Hwang 2014] who provided us with an implementation of
all these algorithms.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:24 S. Maabout et al.

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

10

20

30

40

50

Sp
ee

du
pd = 10

d = 12
d = 14
d = 16

(a) Correlated

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

10

20

30

40

50

Sp
ee

du
p

(b) Independent

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

10

20

30

40

50

Sp
ee

du
p

(c) Anticorrelated

Fig. 6. Speedup w.r.t dimensionality d (n = 100K)

reasons (i) its parallel execution and (ii) the fact that we do not make any extra com-
putation aiming to retrieve potentially missed tuples of Sky(T,X) when we evaluate
Sky(Sky(D), X). This second point represents a bottleneck of previous works. Indeed,
they make unnecessary and wasteful checks. More importantly, the previous experi-
ments show that previous solutions perform worse than the naı̈ve algorithm when the
dimensionality as well as the number of distinct values per dimension increase.

Remark 7.2. FMC can be easily optimized by better exploiting skylines inclusions
that are induced by FDs. For example, suppose that D = {A,B,C,D} and that the
distinct values property holds in T . Then for every subspace X 6= ABCD, FMC evalu-
ates Sky(Sky(ABCD), X). A better choice would be to evaluate the skyline of X from
the skyline of one of its immediate parents, e.g., Sky(A) from Sky(AB), Sky(AC) or
Sky(AD). This can be performed by making either breadth or depth first traversal of
the subspaces lattice.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:25

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

101

102

Sp
ee

du
p

in
lo

gs
ca

le

n = 200K
n = 500K
n = 1M

(a) Correlated

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

10

20

30

40

50

Sp
ee

du
p

(b) Independent

O
ri

on
T

B
U

S

T
D

S

Q
G

S

Q
G

L

10

20

30

40

50

Sp
ee

du
p

(c) Anticorrelated

Fig. 7. Speedup w.r.t data size n (d = 16)

10 12 14 16 18 20

100

101

102

103

104

dimensions d

E
xe

cu
ti

on
T

im
e

(s
ec

.)

FMC
QGL
QGS

(a) USCensus

10 12 14 16 18 20

10−1

100

101

102

103

dimensions d

E
xe

cu
ti

on
T

im
e

(s
ec

.)

FMC
QGL
QGS

(b) Householders

Fig. 8. Full Skycube Computation with large real data sets

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:26 S. Maabout et al.

7.3.3. Real Data Analysis. In order to avoid the biases introduced by the way synthetic
data are generated, we performed the same kinds of experiments as before by using
three real data sets. US Census is a well known data set used in machine learning and
available from the UCI repository. All attributes are positive integer valued and even
if not all of them have a meaningful ranking, still, the data set is interesting because
of its real data distribution. We picked 20 columns at random for our experiments.
The second data set is publicly available from the French INSEE institute website
(statistics and economic institute) and describes householders in south-west region
in France. It has more than 2.5 ∗ 106 tuples described by 67 variables. Here too, we
picked 20 attributes but by contrast to USCensus, these columns have a meaningful
ranking semantics (e.g., number of persons living in the house, number of rooms, and
so on). Although both data sets have almost the same number of tuples and the same
dimensionality, their respective data distributions are radically different: while with
USCensus all subspaces are closed meaning that there are no FDs, with householders
the proportion of closed subspaces is very small (less than 2%) when d ≥ 10.

US Census data set. Figure 8(a) shows the execution times needed by FMC, QSky-
CubeGS and QSkyCubeGL to fully materialize the skycube by varying d from 10 to
20. We consider only these two competitors because the others took too much time.
Nevertheless, we note that starting from d = 16 both QSkyCubeGS and QSkyCubeGL
saturated the total 24 Gb of available memory and started to swap to disk during the
computation. That why we stopped their execution otherwise it would have taken too
much time. This shows the limit of data structure sharing of skycube full materializa-
tion techniques. We should mention that we were careful to modify the original source
codes of those algorithms so that as soon as a skycuboid is computed, its content is
cleared. So memory saturation is not due to the size of the skycube but rather to the
STreeCube shared data structure used by those algorithms in order to speedup execu-
tion time. Note the rapid growth of the speedup when d increases reaching 3 orders
of magnitude when d = 16 with QSkyCubeGL and almost 600 with QSkyCubeGS. A
specificity of this data set is that its dimensions have a very small number of distinct
values: about 10 distinct values per each. This makes functional dependencies hard to
be satisfied while the number of tuples is quite large. In fact this data set does not sat-
isfy any FD. Therefore all subspaces are closed. However, the topmost skyline is quite
small. For example, for d = 10, Sky(D) contains only 3873 tuples. Moreover, these tu-
ples have exactly the same values in every dimension; Sky(D) is of Type I. This makes
the computation of any skyline easy.

It is the semi-naı̈ve skycube computation that is chosen by FMC (lines 2-6 in Algo-
rithm 4). Hence, computing Sky(X) is performed by a join operation which simply con-
sists in retrieving those tuples t from T such that t[X] = t′[X] where t′ is the unique
representative of Sky(D). To optimize this join operation, in our implementation we
make use of a bitmap index4[Lemire et al. 2012]. This experiment empirically confirms
the relationship between the number of distinct values per dimension, the number of
FDs and the size of the topmost skyline.

Householders data set. The results are reported in Figure 8(b). Here again, both
QSkyCubeGS and QSkyCubeGL were unable to handle the cases where d ≥ 16. A no-
ticeable difference between this data set and the previous one is that many FDs are
satisfied. The number of closed subspaces is around 29000 out of the 220−1 subspaces.
The number of distinct values per dimension varies from 2 to 4248. The topmost sky-
line has 154752 tuples. This shows the effectiveness of using the skylines of the closed

4We used the EWAH bitmap index implementation of D. Lemire which is available from
https://github.com/lemire/EWAHBoolArray

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:27

Table VI. Execution times (sec.) for small real datasets. FMC is
executed with 1 and 12 threads

NBA
FMC(1) FMC(12) QGL QGS

1.01 0.22 8.15 4.57
IPUMS

FMC(1) FMC(12) QGL QGS
1.36 0.45 2.27 10.24

MBL
FMC(1) FMC(12) QGL QGS

12.3 4.5 63.85 267.1

Table VII. Execution times (sec.) for artificially enlarged real
datasets FMC is executed with 1 and 12 threads

NBA50
FMC(1) FMC(12) QGL QGS

23 7 59 336
IPUMS10

FMC(1) FMC(12) QGL QGS
22 6 16 336

MBL10
FMC(1) FMC(12) QGL QGS

311 47 780 5963

subspaces to compute the rest of the skylines. Indeed, even if the speedups we obtain
are less impressive than those with the previous data set, FMC is still 50 times faster
than QSkyCubeGL and even more comparatively to QSkyCubeGS.

Benchmark real data sets. NBA, IPUMS and MBL are relatively small sets. For
these data sets, we executed FMC twice: In the first execution, denoted by FMC(1),
we used only one thread, i.e., a sequential execution , and in the second one, denoted
by FMC(12), we used 12 threads. We did not make any modification to the program. Ta-
ble VI shows the execution times. Note however that when the number of dimensions
is small which is the case with IPUMS, the speed-up of FMC(12) w.r.t. QSkycubeGL is
rather weak (about 5.04). It is much larger with NBA and MBL which have 17 and 18
dimensions respectively. This tends to show that parallel FMC is rather more appro-
priate when the number of dimensions becomes large. Interestingly, we executed the
naı̈ve algorithm with IPUMS: for every subspace X, compute Sky(T,X). This loop was
executed using 12 threads too. The algorithm terminates after 0.68 seconds providing a
speedup of 3.8 over QskycubeGL. So the question of when using shared data structures
and/or computations is really worthwhile remains open.

We artificially enlarged these data sets by just copying their content multiple times.
Table VII shows the execution times. We note that FMC scales almost linearly w.r.t data
size. QSkyCubeGS does not scale well. QSkyCubeGL seems to be the algorithm having
the best behavior regarding data size growth. Note however that it is the algorithm
which is more memory consuming. For example, we tried to execute QSkyCubeGL with
NBA100 and it saturated the memory while FMC handled this data set and finished
its execution after 13 seconds.

Finally, we analyzed the behavior of the three algorithms w.r.t dimensionality. We
used MBL10 and varied d from 4 to 18. Figure 9 compares FMC(12) execution times

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:28 S. Maabout et al.

4 6 8 10 12 14 16 18

10−2

10−1

100

101

102

103

104

Varying d

E
xe

cu
ti

on
ti

m
e

(s
ec

.)

FMC(12)
QGL
QGS

Fig. 9. Full materialization with MBL10

Table VIII. MICS vs Orion
NBA

Technique time to build (sec.) Materialized skycuboids
MICS 12.8 5304
Orion 9 5304

IPUMS
Technique time to build (sec.) Materialized skycuboids

MICS 2.1 11
Orion 322 738

MBL
Technique time to build (sec.) Materialized skycuboids

MICS 172 29155
Orion 11069 43075

to those of QSkycubeGS and QSkycubeGL. The speed-up of our algorithm is almost
constant.

7.4. Partial Skycube Materialization
7.4.1. MICS vs Closed Skycubes:. We compare our solution to OrionClos the algorithm

proposed in [Raı̈ssi et al. 2010] to compute the Closed Skycubes. We make the com-
parison by considering (i) the storage space usage and (ii) the speed for materializing
the sub-skycube. We consider the three real data sets used in that reference: NBA,
IPUMS and MBL. We compare the number of equivalence classes, i.e., the number of
effectively stored skylines in the closed skycube and the number of skylines we store in
the MICS. For both techniques, we also report the total computation time. The results
are presented in Table VIII.

In general, we note that the MICS requires less skycuboids than closed skycubes.
For NBA the solutions are identical. For IPUMS, we store 73 382 tuples, correspond-
ing to 11 skycuboids, and the closed skycube requires 530 080. For MBL, we store 118
640 340 versus 133 759 420. The storage space ratio is not that large. By contrast,
our solution is often much faster than its competitor. More precisely, the speedup ratio
seems increasing with data size n. In addition to these data sets, we tried to test Ori-
onClos with larger data sets but it was unable to terminate in a reasonable time. For
example 36 hours were not sufficient to process a correlated data set with d = 20 and

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:29

Table IX. Partial skycube vs CSC
NBA

Technique time to build (sec.) storage query time (sec.)
CSC 631 57571 150

Partial Skycube 0.0008 3 3.5
MBL

Technique time to build (sec.) storage query time (sec.)
CSC 47654 921911 7212

Partial Skycube 10 78 58
IPUMS

Technique time to build (sec.) storage query time (sec.)
CSC 3776 129812 142

Partial Skycube 6 73382 2
Correlated

Technique time to build (sec.) storage query time (sec.)
CSC 4533 498 10

Partial Skycube 0.015 2 0.03
Independent

Technique time to build (sec.) storage query time (sec.)
CSC 36123 921911 6212

Partial Skycube 35 83650 78
Anti-correlated

Technique time to build (sec.) storage query time (sec.)
CSC 51263 4556789 11972

Partial Skycube 62 121347 129

n = 100K. By contrast, it took 20 seconds to find and materialize the MICS of the same
data set. This is due to the fact that synthetic data generators tend to return distinct
values making the computation of equivalence classes required by OrionClos harder.

7.4.2. Compressed Skycubes (CSC). In this section, we compare our proposal to the com-
pressed skycubes (CSC) approach of [Xia et al. 2012] following three criteria: (i) time
to build, (ii) storage space and (iii) query execution time. For this purpose, we use
the three real data sets: NBA, MBL and IPUMS as well as three synthetic data sets
with 16 independent/correlated/anti-correlated dimensions and 100k tuples. Regard-
ing query evaluation performance, we consider a workload of all the 2d − 1 possible
skyline queries in order to get an idea about the average execution time for queries.
To make a fair comparison, our algorithms are executed sequentially. Recall that our
solution either stores only the topmost skyline if its size is found small or it relies to
MICS. The results are depicted in Table IX. As it can be observed, our proposal out-
performs CSC in all criteria. Note that for real data sets NBA and MBL as well as
correlated set, our solution requires the storage of the topmost skylines which contain
respectively 3, 78 and 2 tuples.

7.4.3. Partial Skycube vs Hashcube. We use two data sets, namely NBA and Householder,
to illustrate the advantages as well as the limitations of the Hashcube structure [Bøgh
et al. 2014]. While the first data set is small and correlated, the second one is much
larger and non correlated. We report the size of the Hashcucube and the partial sky-
cube we obtain in terms of the number of tuples they store. We also report the execution
time to answer the 2d − 1 possible skyline queries. Table X summarizes our findings.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:30 S. Maabout et al.

Table X. Partial skycube vs Hashcube
NBA

Technique storage query time (sec.)
Hashcube 541316 0.029
Partial 3 3.5

Householder
Technique storage query time (sec.)
Hashcube 2431675126
Partial 49022451 128

With NBA, we see that Hashcube requires too much storage space compared to our
solution. We recall that the skycube itself requires to store about 4.7∗106 tuples. Hence,
Hashcube achieves, as it was reported in [Bøgh et al. 2014], a compression ratio of
almost 10%. We note however that the query execution time with hashcube is 100×
faster.

For the second data set, the size of the hashcube structure was too large to fit into
the available memory. The skycube contains around 15 ∗ 109 tuples. Hence, we did not
continue the experiment for the query part because it would had taken too much time.
Note that our solution is about 300× smaller than the skycube.

To conclude, one should use Hashcubes in the following situation: (i) the Skycube
is already available and its size is too large to fit into memory and, (ii) the hashcube
structure makes it possible to fit into memory.

7.4.4. Storage Space Analysis. In the second part of the experiments, we generated a
set of independent synthetic data by fixing the following parameters: d is the number
of attributes, n is the number of tuples, k is the average number of distinct values
taken by each attribute. For example, 100K 10K designates a data set where n = 100K
and the number k of distinct values per dimension is 10K. Since the data generator
returns floats in [0, 1] interval, it suffices to keep the first f decimal digits to get a data
set where every dimension has on average k = 10f distinct values. For example, 0.0123
is replaced by 12 if k = 103. Doing so, the correlation between the different columns is
preserved. Even if we we report only the results obtained with the independent data
sets, we should mention that we performed the same experiments with correlated and
anti-correlated data. The conclusion were the same.

We firstly investigate the number of closed subspaces comparatively to the total
number in the skycube. The results are reported in Figure 10(a). We note that the
proportion of closed subspaces decreases when the number of attributes increases. For
example, consider the data set 100K 10K when d = 10. There are about 7% of the sub-
spaces out of the total 210 − 1 that are closed. This proportion falls to 0.035% when
d = 20. In addition, the number of closed subspaces grows when the number of dis-
tinct values taken by each attribute decreases. For example, when d = 10, only 7% of
the subspaces are closed with 100K 10K while there are 84.5% closed subspaces with
100K 100. This second case could indicate that the memory saving when storing only
the skycuboids associated to closed subspaces is marginal. The second experiment (see
Figure 10(b)) shows that this is not systematic. Here, we compute a ratio between the
total numbers of tuples that should be stored when only the closed subspaces are ma-
terialized over the total number of skycube tuples. We see that in all cases, the memory
space needed to materialize the skylines w.r.t. the closed subspaces never exceed 10%
of the whole skycube size. For example, even if we materialize 84.5% of the skylines of
the skycube related to 100K 100 data set when d = 10, this storage space represents
less than 10% of the related skycube size. This would indicate that either our proposal

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:31

10 12 14 16 18 20
10−2

10−1

100

101

102

Varying d

(#
cl

os
ed

/#
to

ta
l)

*1
00

100K 10K
100K 1K
100K 100

(a) Percentage of materialized skycuboids

10 12 14 16 18 20
10−3

10−2

10−1

100

101

102

Varying d

10
0*

Sp
ac

e(
cl

os
ed

)/S
pa

ce
(t

ot
al

)

100K 10K
100K 1K
100K 100

(b) Ratio of consumed storage space

10 12 14 16 18 20

101

102

103

Varying d

E
xe

cu
ti

on
ti

m
e

in
Se

c. 100K 10K
100K 1K
100K 100

(c) Running time for finding closed sub-
spaces and materializing their respective
skylines

Fig. 10. Quantitative Analysis of the Closed Subspaces

tends to avoid the materialization of heavy skycuboids, i.e., or the size of skylines tend
to decrease when the number of closed subspaces increase. We next empirically show
that it is rather because the size of skylines decreases.

Finally, Figure 10(c) shows the execution times for the data sets we considered so far.
We stress the fact that these times represent (i) the extraction of the closed subspaces
and (ii) their respective skylines. Clearly, the less distinct values per dimension, the
more closed subspaces there are and the more time is needed to compute them.

We conducted a second series of experiments aiming to show the evolution the sky-
line size when both the cardinality k and the dimensionality d vary while the size of
data n is kept fixed. The results are shown in Figure 11. We observe that the size of the
skyline increases uniformly regarding k whatever is d. This gives a clear explanation
of the behavior noticed in Figure 10(b), i.e., when k decreases, the number of closed
subspaces increases while their respective sizes decrease (See Theorem 3.20).

Therefore, the main lesson we retain from the above experiments is that when the
number of closed subspaces increases, the size of the skylines decreases. So, even if our
solution stores more skylines, this does not mean necessarily that it uses more storage
space. The second lesson we derive is that when k is small, every skycuboid tends to
be small. Therefore, from a pragmatic point of view, materializing just the topmost
skyline is sufficient to efficiently answer every skyline query by using Algorithm 1.
This is in concordance with the analytic study developed in Sections 3.5 and 3.6.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:32 S. Maabout et al.

Fig. 11. Skyline size evolution w.r.t. k and d with n = 106

7.5. Query Evaluation
In this part, we analyze the efficiency of our proposal in terms of query evaluation time
after the partial materialization of the skycube, i.e., once the skylines of the closed sub-
spaces are computed. We use the Householder data set, vary d from 16 to 20, and vary n
from 500K to 2M . We generate 1000 distinct skyline queries among the 2d − 1 possible
queries as follows: the 2d−1 subspaces are listed and sorted w.r.t. a lexicographic order
in a vector Q. We pick randomly and uniformly an integer number i lying between 1
and 2d − 1. Sky(Q[i]) is part of the workload if it does not correspond to a closed sub-
space. We repeat this process until the total number of distinct skyline queries reaches
1000. The obtained workload contains distinct queries of different dimensions. Each
time we pick a value of i, the probability that it corresponds to a query with δ dimen-

sions is (dδ)
2d−1 . The results are presented in Table XI. For every combination (n, d) we

report three important information: (i) the total execution time when materialized sky-
cuboids are used, (ii) the total execution time when skylines are evaluated from T and
(iii) the proportion of skycuboids that are materialized. For example, when n = 2M
and d = 20, 0.049 seconds are sufficient to evaluate 1000 queries from the materialized
skycuboids while it takes 99.92 seconds when T is used. The execution time is there-
fore divided by more that 2000. This performance is obtained by materializing only
0.31% out of the 220−1 skycuboids. What is remarkable is that in all cases, with a very
small effort of materialization, the skyline queries are evaluated orders of magnitude
faster from the materialized skycuboids than from T . We finally should mention that
the overall partial skycube calculation takes only few seconds.

8. CONCLUSION AND FUTURE WORK
In this paper we show how the classical concept of FDs may be used used to identify
inclusions between skylines over different subspaces. Thanks to this information, we
investigate the partial materialization of skycubes. We also leverage the FDs to the full
materialization case. This is surprising because FDs are independent of the order used
between the attributes values. In contrast, skyline queries are based on these orders.
This shows the robustness of FDs. Our proposal for partial materialization can be seen
as a trade-off among (i) the space consumption (we try to store as least as possible), (ii)
the query execution time (we avoid reading the entire data set) and (iii) the speed to

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:33

Table XI. Query execution times in seconds: optimized/not opti-
mized and (Proportion of materialized skycuboids)

n\d 16 18 20

500K
0.024/18.9 0.026/22.54 0.027/25.78

(1.19%) (0.55%) (0.13%)

1M
0.034/36.78 0.036/44.41 0.047/49.68

(2.197%) (1.098%) (0.274%)

2M
0.041/73.74 0.044/87.92 0.049/99.92

(2.22%) (1.45%) (0.31%)

obtain the partial skycube. We have experimentally compared our proposal to state of
the art implementations. The conclusion is that our solutions scales better when data
and dimensionality grow. On real data sets, by materializing a small fraction of the
skycube, we gained orders of magnitude on query evaluation time.

New directions for future work can be pursued thanks to the foundations we pro-
vide. For example, distributed skycubes have not been addressed so far. To extend our
work in that direction, it is not clear whether we need global or local FDs. Just like
the join operator and the lossless decomposition theory, it is tempting to come up with
a decomposition theory under skyline re-composition constraint with the help of FDs
or maybe with other classes of dependencies like Order dependencies. In this paper we
identified the minimal set of skycuboids to be materialized (MICS). To further reduce
the skyline queries evaluation, it is tempting to materialize additional skycuboids.
Investigating how given a storage space constraint, which is necessarily a multiple
of the MICS size, we can find the best set of skycuboids satisfying the space budget
constraint and minimizing query cost. We also intend to investigate the incremental
maintenance of the materialized skycuboids. When the insertions violate the FDs, the
set of closed subspaces is updated. It is then interesting to come up with incremental
solutions to discover the new closed subspaces and compute their content efficiently.
As we have seen, the topmost skyline plays an important role in capturing the shape
of the different skylines. We think that it can also be useful in the context of incre-
mental maintenance. Since FDs are invariant upon isomorphic data transformations,
the inclusions detected by the FDs are invariant w.r.t the chosen orders on dimensions.
We are wondering whether our findings can be extended to contexts where users can
dynamically define their own preferences. For example, flight companies can be (par-
tially) ordered in different ways depending on users. Therefore, the best tickets for one
user can be different from those for another user just because they do not consider
flight companies in the same order.

APPENDIX
A. COMPUTING THE CLOSED SUBSPACES
The naı̈ve algorithm for finding the closed sets of attributes consists simply in comput-
ing the size of every πX(T). If there exists Y ⊃ X such that |πX(T)| = |πY (T)| then X is
not closed because this means that X → Y \X holds. Otherwise, X is closed. This algo-
rithm is inefficient because it requires 2d projections. In this section we develop a more
efficient algorithm whose aim is to prune the search space by avoiding unnecessary
projections.

Our algorithm can be summarized as follows: suppose that for some attribute A, we
are given the maximal subspaces X which do not determine A. Thanks to the anti-
monotonicity of FD’s, i.e., if X 6→ A then Y 6→ A for every Y ⊆ X, we can conclude
that all subsets of those maximal subspaces are potentially closed and all others are

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:34 S. Maabout et al.

certainly not closed. In order to efficiently find these maximal subspaces, our algorithm
tries to exploit this anti-monotonic property by avoiding to test 5 the obviously not
closed subspaces as well as testing all potentially closed subspaces. In the remaining
of this section, we formalize these observations.

We start with some lemmas letting us to characterize the closed subspaces. We use
the following notations:

—DetAi is the set of minimal sets of attributes X such that T |= X → Ai.
—Di = D \Ai.

LEMMA A.1. For each X ∈ 2Di , if there exists X ′ ∈ DetAi s.t X ′ ⊆ X then X is not
closed.

PROOF. X ′ ∈ DetAi means that T |= X ′ → Ai. Hence, T |= X → Ai and therefore
X+ 3 Ai showing that X is not closed.

Example A.2. From the running example, we have DetA = {BD,CD,BC}. BCD ∈
2DA is not closed because, e.g., BCD ⊃ BD.

The converse of the previous lemma does not hold. Indeed, even if when some X ∈ 2Di

does not include any element of DetAi then X 6→ Ai, this does not imply necessarily
that X is closed because it is possible that there exists Aj 6= Ai such that X ∈ 2Dj

and T |= X → Aj making X not closed. In fact, we have the following necessary and
sufficient condition for X being closed.

PROPOSITION A.3. Let C−i be the set of non closed subspaces derived by Lemma A.1
and C− =

⋃
i C
−
i . Then X is closed iff

—X = D (all the attributes) or
—X ∈ 2D \ C−.

PROOF. The first item is obviously true thus we prove the second one. Let us first
show the implication X ∈ 2D \ C− ⇒ X is closed: For the sake of contradiction, let
X ∈ 2D \ C−, X 6= D and suppose that X is not closed. In this case, there must exist
some Ai /∈ X such that Ai ∈ X+. Hence, there should exist X ′ ⊆ X such that X ′ ∈
DetAi which implies that X ∈ C−i . We get a contradiction. Let us now show X closed
⇒ X ∈ 2D \ C−. Assume the contrary, i.e., X is closed and X /∈ 2D \ C−. Thus, there
must exist Ai such that X ∈ C−i . By Lemma A.1 we conclude that X is not closed which
contradicts the hypothesis.

Example A.4. For the running example we have DetA = {BD, BC, CD}, DetB =
{A,CD}, DetC = ∅ and DetD = {A,BC}. From these sets, we derive C−A = DetA ∪
{BCD}, C−B = DetB ∪ {AC,AD,ACD}, C−C = DetC ∪ ∅ and C−D = DetD ∪ {AC,ABC}.
Notice for example that ABD /∈ C−A even if it is a superset of BD. Recall that for C−A
we consider only elements from 2DA and ABD does not belong to this set. Figures
12(a) and 12(b) show a part of the non closed subspaces that we infer from the sets of
attributes determining, respectively, A and B.

Procedure ClosedSubspaces (c.f. Algorithm 8) takes as input the table T and returns
the closed subspaces. As one may see, the most critical part of this algorithm is the
statement in Line 2 which consists in computing a set of violated functional dependen-
cies.

5Testing X is costly because it means testing whether X → A.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:35

(a) Non closed sets w.r.t. A: B, C and D are
the maximal sets not determiningA. Hence, all
their supersets not containingA are not closed.

(b) Non closed sets w.r.t. B: C and D are the
maximal sets not determining B. All their
supersets not containing B together with A
are not closed.

Fig. 12. Pruned sets w.r.t. attributes A and B: BCD is pruned by A and is not part of any of the search
spaces associated to B, C and D. Hence, πBCD(T) is never computed. ACD is pruned by B. Therefore,
πACD(T) is never computed. πAC(T) is pruned by B because A → B is found satisfied and AC is not part
of 2D\A but it can be tested with D. The same with AD which can be tested with C.

A.1. Extracting Maximal Violated Functional Dependencies
As we have seen previously, all subsets of the left hand side of violated functional de-
pendencies are potentially closed sets of attributes. So, given an attribute Ai the first
part of our procedure consists to extract the maximal X ’s such that X → Ai is not sat-
isfied. There are several algorithms for computing minimal functional dependencies
in the literature, e.g. [Yao and Hamilton 2008; Lopes et al. 2000; Huhtala et al. 1999;
Novelli and Cicchetti 2001]. Inferring from these sets the maximal violated dependen-
cies can be performed by computing the minimal hypergraphs transversals, also called
minimal hitting sets [Eiter and Gottlob 1995]. Since the minimal transversals compu-
tation is in general hard, its precise complexity is still an open problem and no known
polynomial algorithm for the general case has been proposed so far, we use instead
MaxNFD (for Maximal left hand side of Non Functional Dependencies). It is an adap-
tation of an algorithm proposed in [Hanusse and Maabout 2011] for mining Maximal
Frequent Itemsets. MaxNFD is depicted in Algorithm 7. It can be described as follows:
let X be a candidate for which we want to test whether T 6|= X → Ai. If (i) X passes the
test then it is possibly a maximal not determining set. Hence it is added to Max and
its parent is generated as a candidate for next iteration. The parent of X is simply the
successor superset of X in the lexicographic order. For example, the parent of BDF is
BDFG. If (ii) X does not pass the test, i.e., T |= X → Ai, then (a) its children are candi-
dates for the next iteration and (b) its sibling is a candidate for the iteration after the
next one. For example, the children of BDF are BF and DF , i.e., all subsets of BDF
containing one attribute less but the prefix (BD is not a child of BDF). The sibling of
BDF is BDG, i.e., F is replaced by its successor G. If |D| = d, it is shown in [Hanusse
and Maabout 2011] that at most 2d − 1 iterations are needed for each attribute Ai to
find the maximal X ’s that do not determine Ai. This explains the While loop in Line
3 of Algorithm 7. The correctness of the algorithm is already proven in [Hanusse and
Maabout 2011]. An important property of MaxNFD is its amenability to be executed
in a parallel way. Indeed, the Foreach loop in Line 4 of the algorithm shows that all
the subspaces which belong to the set Candidates[k] can be tested in parallel.

A.2. Inferring Closed Subspaces
The subsets returned by the previous procedure are potentially closed. Indeed, X is
closed iff X does not determine any Ai ∈ X. It is not sufficient to make the intersection

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:36 S. Maabout et al.

ALGORITHM 7: MaxNFD
Input: Table T , Target attribute Ai

Output: Maximal X s.t T 6|= X → Ai

1 Candidates[1]← {A1};
2 k ← 1;
3 while k ≤ (2d− 1) do
4 foreach X ∈ Candidates[k] do
5 // Loop executed in parallel
6 if @Y ∈Max st Y ⊇ X then
7 if T 6|= X → Ai then
8 Add X to Max;
9 Remove the subsets of X from Max;

10 Add the parent of X to Candidates[k + 1];
11 else
12 Candidates[k + 1]]RightChildren(X);
13 Candidates[k + 2]]RightSibling(X);

14 k ← k + 1;
15 Return Max;

ALGORITHM 8: ClosedSubspaces
Input: Table T
Output: Closed subspaces

1 for i = 1 to d do
2 L− = MaxNFD(T,Ai);
3 L− = SubsetsOf(L−, Ai);
4 if i = 1 then
5 Closed = L−;
6 else
7 Closedi = {X ∈ Closed |X 3 Ai};
8 Closed =

(
Closed ∩ L−

)⋃
Closedi;

9 Return Closed;

of these sets because, e.g., no such set X relative to Ai does contain Ai, still there
may exist closed sets containing Ai. ClosedSubspaces exploits the previous results
to infer the closed subspaces.

B. THE INFLUENCE OF DIMENSIONS CARDINALITY IN SKYLINE SIZE
In this section we provide a detailed proof of Theorem 3.20. We first give some defini-
tions and notations.

Definition B.1. Let Tk denote the set of all tables T with d independent dimensions,
n tuples and at most k distinct values per dimension (the values of each dimensions
belong to {1, 2, . . . , k}). The tuples of T are not necessarily distinct.

Definition B.2. Let Π(T) denote a table with the same tuples as T but in which each
tuple appears only once.

Let Sky(T) denote the skyline of T over all its dimensions, i.e., Sky(T) = Sky(T,D),
and S(T) denote the size of Sky(T), i.e., S(T) = |Sky(T)|.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:37

Definition B.3. Let S(T)T∈Tk
denote the average (the expected value) of S(T) where

T belongs to Tk.

THEOREM B.4. We have the following

k ≤ k′ ⇒ S(Π(T))T∈Tk
≤ S(Π(T))T∈Tk′

In other words, the above theorem states that for fixed n and d, the number of distinct
tuples appearing in the skyline tends to increase when the number of distinct val-
ues per dimension grows. Note that this is exactly the same result as Theorem 3.20.
We rephrase it here for the sake of rigor. In order to prove the previous theorem the
following definitions and Lemmas are presented.

Definition B.5. Let f be a relation which associates to each integer a the random
value 2a − X where X is a random variable following Bernoulli distribution with a
parameter equal to 1

2 . In other words, f(a) can be equal to 2a − 1 or 2a with the same
probability. Let F (T) denote the set of all tables which can be obtained by applying f
to each cell of T . Let Tk ∈ Tk. Then
F (Tk) = {T2k ∈ T2k : T2k[i, j] = f(Tk[i, j]),∀i,j1 ≤ i ≤ n and 1 ≤ j ≤ d}

LEMMA B.6. The set {F (Tk), Tk ∈ Tk} is a partition of T2k.

PROOF. To each table Tk ∈ Tk is assigned a set F (Tk) of tables T2k ∈ T2k such that
T2k results from Tk by applying f to each value. Reciprocally, each table T2k ∈ T2k is
assigned to a single table Tk ∈ Tk (we get Tk by dividing and rounding each value of T2k
by 2, f−1(a) = da2 e). The size of Tk is given by |Tk| = kn·d. Indeed, each cell (i, j) in Tk
can take k values and since there are n× d cells, we obtain kn·d. Hence, |T2k| = (2k)n·d.
On another hand, for every Tk, we have that |F (Tk)| = 2n·d because each value of Tk has
two possible mappings in T2k. Clearly,

⋃
Tk
F (Tk) ⊆ T2k. Now let T2k ∈ T2k. We prove

that there exists Tk such that T2k ∈ F (Tk). Let T be s.t each cell (i, j) of T2k is replaced
by dT2k[i, j]/2e. T is in Tk and clearly T2k ∈ F (T). Let T 6= T ′ ∈ T2k. We show that
F (T) ∩ F (T ′) = ∅. Since T 6= T ′ then there exists a cell (i, j) such that T [i, j] 6= T ′[i, j].
Let a = T [i, j] and a′ = T ′[i, j]. For the sake of contradiction, let T” ∈ F (T)∩F (T ′). This
means that both values a and a′ can be mapped to the same value a” in T”. Thus, from
T we have that a” ∈ {2a− 1, 2a} and from T ′ we get a” ∈ {2a′− 1, 2a′}. This contradicts
the fact that a 6= a′.

LEMMA B.7. ∀ Tk ∈ Tk,∀ T2k ∈ F (Tk), the skyline size S(Π(Tk)) is less or equal to
S(Π(T2k)).

S(Π(Tk)) ≤ S(Π(T2k))

PROOF. Assume the general case where each dimension j of a table T contains kj
distinct values. If S = S(Π(T)) increases when the cardinality of only one dimension
increases then by repeating the process for all the dimensions the skyline size will also
increase. Without loss of generality, assume f is applied to D1. Let T (1) be the obtained
table. The first dimension of T (1) contains 2k1 distinct values. Let S(1) = S(Π(T (1))) be
the number of distinct tuples of skyline of T (1). Let t be a tuple belonging to Π(T), t′ and
t̂ be the two possible images by f of t such that t′[D1] = 2t[D1] and t̂[D1] = 2t[D1] − 1,
in other words f(t) ∈ {t′, t̂}. Hereinafter, f(t) means independently t′ or t̂ appearing as
image by f of t. It is obvious that if t ∈ Sky(Π(T))⇒ f(t) ∈ Sky(Π(T (1))) then S(1) ≥ S.
Therefore, it suffices to show that t ∈ Sky(Π(T))⇒ f(t) ∈ Sky(Π(T (1))).
By contradiction
f(t) /∈ Sky(Π(T (1))) ⇒ ∃u ∈ Π(T) such that f(u) ≺ f(t). However t ∈ Sky(Π(T)) thus
u ⊀ t. We have to consider the following three cases:

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:38 S. Maabout et al.

• u[1] = t[1]. We know that f(u)[2 . . . d] = u[2 . . . d], f(t)[2 . . . d] = t[2 . . . d] and u[2 . . . d] ⊀
t[2 . . . d] (otherwise u dominates t). We conclude that f(u)[2 . . . d] ⊀ f(t)[2 . . . d]. There-
fore f(u)[2 . . . d] ⊀ f(t)[2 . . . d] and f(u) ≺ f(t) ⇒ f(u)[2 . . . d] = f(t)[2 . . . d] ⇒ (u = t).
This represents a contradiction because u 6= t since all tuples are distinct in Π(Tk).
• u[1] < t[1] ⇒ f(u)[1] < f(t)[1]. However, f(u)[2 . . . d] = u[2 . . . d] and f(t)[2 . . . d] =
t[2 . . . d]. Then f(u) ≺ f(t)⇒ u ≺ t which represents a contradiction because u ⊀ t.
• u[1] > t[1] ⇒ f(u)[1] > f(t)[1]. Then f(u) ⊀ f(t) which represents a contradiction

because f(u) ≺ f(t).

We can conclude that S ≤ S(1). Let S(j) be the size of the skyline of table Π(T (j))
which denotes the projection on D of table T in which f has been applied on all j
first dimensions (S(0) = S(Π(T)), S(1) = S(Π(T (1))), . . . , S(d) = S(Π(T (d)))). Consider
T = Tk, then we have the following

S(Π(Tk)) = S(0) ≤ S(1) ≤ S(2) ≤ · · · ≤ S(d) = S(Π(T2k))

PROOF OF THEOREMB.4. We show that the expected value S(Π(T))T∈Tk
of the

random variable S(Π(Tk)) is less than S(Π(T))T∈Tk′
for every k′ = k(1 + α) where

α is a positive integer. For convenience, we show the result for α = 1. The same proof
scheme can be used for arbitrary α.

S(Π(T))T∈Tk
=

1

kn·d

∑
Tk∈Tk

S(Π(Tk))

S(Π(T))T∈T2k
=

1

(2k)n·d

∑
T2k∈T2k

S(Π(T2k))

S(Π(Tk)) ≤ S(Π(T2k)) ∀ T2k ∈ f(Tk)⇒
S(Π(Tk)) ≤ 1

2n·d

∑
T2k∈f(Tk)

S(Π(T2k))

By applying E (Expected value) to both sides, we obtain
1

kn·d

∑
Tk∈Tk

S(Π(Tk)) ≤ 1

kn·d

∑
Tk∈Tk

1

2n·d

∑
T2k∈f(Tk)

S(Π(T2k))

≤ 1

(2k)n·d

∑
Tk∈Tk

∑
T2k∈f(Tk)

S(Π(T2k))

≤ 1

(2k)n·d

∑
T2k∈T2k

S(Π(T2k))

S(Π(T))T∈Tk
= E(S(Π(Tk))) ≤ E(S(Π(T2k))) = S(Π(T))T∈T2k

S(Π(T))T∈Tk
≤ S(Π(T))T∈Tk′

Which concludes the proof of the theorem.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions,
which were helpful to improve the clarity of the manuscript.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

Skycube Materialization Using the Topmost Skyline or Functional Dependencies XXXX:39

REFERENCES
Sameet Agarwal, Rakesh Agrawal, Prasad Deshpande, Ashish Gupta, Jeffrey F. Naughton, Raghu Ramakr-

ishnan, and Sunita Sarawagi. 1996. On the Computation of Multidimensional Aggregates. In proc. of
VLDB conf.

Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated Selection of Materialized
Views and Indexes in SQL Databases. In proc. of VLDB conf.

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella. 2008. Efficient sort-based skyline evaluation. ACM Trans.
Database Syst. 33, 4 (2008).

Kenneth S. Bøgh, Sean Chester, Darius Sidlauskas, and Ira Assent. 2014. Hashcube: A Data Structure
for Space- and Query-Efficient Skycube Compression. In Proceedings of the 23rd ACM International
Conference on Conference on Information and Knowledge Management, CIKM.

Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. 2001. The Skyline Operator. In Proc. of ICDE
conf.

Upen S. Chakravarthy, John Grant, and Jack Minker. 1990. Logic-Based Approach to Semantic Query Op-
timization. ACM Trans. Database Syst. 15, 2 (1990), 162–207.

Surajit Chaudhuri, Nilesh N. Dalvi, and Raghav Kaushik. 2006. Robust Cardinality and Cost Estimation
for Skyline Operator. In ICDE.

Thomas Eiter and Georg Gottlob. 1995. Identifying the Minimal Transversals of a Hypergraph and Related
Problems. SIAM J. Comput. 24, 6 (1995), 1278–1304.

Eve Garnaud, Sofian Maabout, and Mohamed Mosbah. 2012. Using Functional Dependencies for Reducing
the Size of a Data Cube. In Proceedings of FoIKS conference. Springer, 144–163.

Parke Godfrey. 2004. Skyline Cardinality for Relational Processing. In Proc. of FoIKS Conference.
Parke Godfrey, Jarek Gryz, and Calisto Zuzarte. 2001. Exploiting Constraint-Like Data Characterizations

in Query Optimization. In SIGMOD Conference.
Parke Godfrey, Ryan Shipley, and Jarek Gryz. 2007. Algorithms and analyses for maximal vector computa-

tion. VLDB Journal 16, 1 (2007).
Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali Venkatrao, Frank

Pellow, and Hamid Pirahesh. 1997. Data Cube: A Relational Aggregation Operator Generalizing Group-
by, Cross-Tab, and Sub Totals. Data Mining and Knowledge Discovery 1, 1 (1997), 29–53.

Nicolas Hanusse and Sofian Maabout. 2011. A parallel algorithm for computing borders. In Proc. of CIKM
conf.

Nicolas Hanusse, Sofian Maabout, and Radu Tofan. 2009. A view selection algorithm with performance
guarantee. In Proceedings of EDBT conference, Vol. 360. ACM, 946–957.

Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. 1996. Implementing Data Cubes Efficiently.
In SIGMOD conf.

Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE: An Efficient Algorithm for
Discovering Functional and Approximate Dependencies. Computer Journal 42, 2 (1999), 100–111.

Jongwuk Lee and Seung won Hwang. 2010. BSkyTree: scalable skyline computation using a balanced pivot
selection. In Proc. of EDBT conf.

Jongwuk Lee and Seung won Hwang. 2014. Toward efficient multidimensional subspace skyline computa-
tion. VLDB Journal 23, 1 (2014), 129–145.

Daniel Lemire, Owen Kaser, and Eduardo Gutarra. 2012. Reordering rows for better compression: Beyond
the lexicographic order. ACM Trans. Database Syst. 37, 3 (2012).

Jingni Li, Zohreh A. Talebi, Rada Chirkova, and Yahya Fathi. 2005. A formal model for the problem of view
selection for aggregate queries. In Proc. of ADBIS conf.

Stéphane Lopes, Jean-Marc Petit, and Lotfi Lakhal. 2000. Efficient Discovery of Functional Dependencies
and Armstrong Relations. In proc. of EDBT conf.

David Maier. 1983. The Theory of Relational Databases. Computer Science Press.
Heikki Mannila and Kari-Jouko Räihä. 1992. Design of Relational Databases. Addison-Wesley.
Heikki Mannila and Kari-Jouko Räihä. 1994. Algorithms for Inferring Functional Dependencies from Rela-

tions. Data and Knowledge Engineering 12, 1 (1994), 83–99.
Michael D. Morse, Jignesh M. Patel, and H. V. Jagadish. 2007. Efficient Skyline Computation over Low-

Cardinality Domains. In Proceedings of VLDB conf.
Noël Novelli and Rosine Cicchetti. 2001. FUN: An Efficient Algorithm for Mining Functional and Embedded

Dependencies. In Proc. of ICDT conf.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

XXXX:40 S. Maabout et al.

Carlos Ordonez. 2010. Statistical Model Computation with UDFs. IEEE Transactions on Knowledge and
Data Engineering (TKDE) 22, 12 (2010), 1752–1765.

Carlos Ordonez, Wellington Cabrera, and Achyuth Gurram. 2016. Comparing Columnar, Row and Array
DBMSs to Process Recursive Queries on Graphs. Information Systems (2016).

Dimitris Papadias, Yufei Tao, Greg Fu, and Bernhard Seeger. 2005. Progressive skyline computation in
database systems. ACM Trans. Database Syst. 30, 1 (2005).

Jian Pei, Wen Jin, Martin Ester, and Yufei Tao. 2005. Catching the Best Views of Skyline: A Semantic
Approach Based on Decisive Subspaces. In Proc. of VLDB conf.

Jian Pei, Yidong Yuan, Xuemin Lin, Wen Jin, Martin Ester, Qing Liu, Wei Wang, Yufei Tao, Jeffrey Xu Yu,
and Qing Zhang. 2006. Towards multidimensional subspace skyline analysis. ACM TODS 31, 4 (2006),
1335–1381.

Chedy Raı̈ssi, Jian Pei, and Thomas Kister. 2010. Computing Closed Skycubes. Proc. of VLDB conf. (2010).
Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and Jun Xu. 2009. Randomized Multi-pass Streaming

Skyline Algorithms. In Proceeding of VLDB.
Haichuan Shang and Masaru Kitsuregawa. 2013. Skyline Operator on Anti-correlated Distributions.

PVLDB 6, 9 (2013).
Cheng Sheng and Yufei Tao. 2012. Worst-Case I/O-Efficient Skyline Algorithms. ACM Trans. Database Syst.

37, 4 (2012).
Jaroslaw Szlichta, Parke Godfrey, and Jarek Gryz. 2012. Fundamentals of Order Dependencies. Proc. of

VLDB conf (2012).
Tian Xia, Donghui Zhang, Zheng Fang, Cindy X. Chen, and Jie Wang. 2012. Online subspace skyline query

processing using the compressed skycube. ACM TODS 37, 2 (2012).
Hong Yao and Howard J. Hamilton. 2008. Mining functional dependencies from data. Data Mining and

Knowledge Discovery 16, 2 (2008), 197–219.
Yidong Yuan, Xuemin Lin, Qing Liu, Wei Wang, Jeffrey Xu Yu, and Qing Zhang. 2005. Efficient Computation

of the Skyline Cube. In Proc. of VLDB conf.
Yihong Zhao, Prasad Deshpande, and Jeffrey F. Naughton. 1997. An Array-Based Algorithm for Simultane-

ous Multidimensional Aggregates. In Proc. of SIGMOD conf.

ACM Transactions on Database Systems, Vol. V, No. N, Article XXXX, Publication date: 2015.

