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Abstract—Computing machine learning models in the cloud
remains a central problem in big data analytics. In this work,
we introduce a cloud analytic system exploiting a parallel array
DBMS based on a classical shared-nothing architecture. Our
approach combines in-DBMS data summarization with math-
ematical processing in an external program. We study how to
summarize a data set in parallel assuming a large number of
processing nodes and how to further accelerate it with GPUs.
In contrast to most big data analytic systems, we do not use
Java, HDFS, MapReduce or Spark: our system is programmed
in C++ and C on top of a traditional Unix file system. In our
system, models are efficiently computed using a suite of innovative
parallel matrix operators, which compute comprehensive statis-
tical summaries of a large input data set (matrix) in one pass,
leaving the remaining mathematically complex computations,
with matrices that fit in RAM, to R. In order to be competitive
with the Hadoop ecosystem (i.e. HDFS and Spark RDDs) we
also introduce a parallel load operator for large matrices and
an automated, yet flexible, cluster configuration in the cloud.
Experiments compare our system with Spark, showing orders of
magnitude time improvement. A GPU with many cores widens
the gap further. In summary, our system is a competitive solution.

I. INTRODUCTION

Cloud computing is becoming increasingly important in big
data analytics given its ability to scale out to a large number
of processing nodes, with ample disk and RAM space. As
business and scientific goals become more challenging they
push the need for computing machine learning in the cloud.
From the software side, there exists a long-time existing gap
between mathematical packages and large-scale data process-
ing platforms. On one hand, mathematical packages like R,
Matlab, SAS and more recently Python provide comprehensive
libraries for machine learning and statistical computation, but
none of them are designed to scale to large data sets that
exceed even a single machine’s memory. On the other hand,
Hadoop big data systems (e.g. MapReduce, Spark) and parallel
DBMSs (e.g. Teradata, Oracle, Vertica) are two prominent
families of platforms that offer tremendous storage and parallel
processing capabilities. However, even though there is research
progress, computing machine learning models remains diffi-
cult. UDFs have been shown a great mechanism to plug in
analytic algorithms [1]. On the other hand, it is fair to say that
R remains one of the most popular mathematical packages.
Previous research attempted integrating R with Hadoop as well
as DBMSs including SQL Server and Vertica. Such integration
takes maximum advantage of R’s mathematical capabilities
and large-scale data processing capabilities from Hadoop

and DBMSs. However, scalable parallel matrix computations
remain difficult in cloud computing and parallel DBMSs.

Previous research has pointed out that DBMSs with special-
ized storage can achieve orders of magnitude in performance
improvement. SciDB [4] is an innovative parallel DBMS with
array storage, capable of managing unlimited size matrices (i.e.
as large as space on secondary storage) and well-integrated
with R (with powerful mathematical capabilities). Such scal-
able architecture opens research possibilities to scale machine
learning algorithms. In this work, we explore how to leverage
SciDB’s capabilities to accelerate and scale the computation
of machine learning models in the cloud (a large parallel
cluster of computers). Salient technical contributions include
the following:

1) Parallel data loading into 2-dimensional arrays (matri-
ces).

2) Parallel data summarization in one scan returning a
comprehensive summarization matrix, called Γ.

3) Pushing vector-vector outer product computation to
RAM, resulting in a partitioned matrix multiplication,
with no process synchronization and minimal overhead.

4) Accelerating parallel summarization with a GPU with
many cores.

5) Automated installation and tuning of SciDB in the cloud
(i.e. fast deployment).

II. RELATED WORK

There is significant work on computing machine learning
models in the cloud, before with MapReduce and currently
with Spark. However, computing models with DBMS tech-
nology has received less attention [2]. The Γ summarization
matrix was proposed in [3], which introduces two parallel
matrix-based algorithms for dense and sparse matrices, respec-
tively. This paper showed an array DBMS can be faster than R
(removing RAM limitations), and faster than an SQL engine
(using queries to summarize the data set) and surprisingly,
faster than the high performance ScaLAPACK library. Later,
[?] introduced an optimized UDF to compute the Γ matrix on
a columnar DBMS, passing it to R for model computation.
However, these papers did not explore the cloud angle using
a parallel DBMS, with a large number of nodes, competing
with a Big Data Hadoop system. Since matrix computations
are CPU intensive, it was necessary to study how to further
accelerate computation: GPUs were not considered. Another
aspect we did not envision initially as a limitation turned out to



be a bottleneck: loading data into the array DBMS, especially
in parallel. In this paper we tackle all these research issues:
scale out parallelism, using GPUs, parallel matrix loading. A
careful performance benchmark comparison between our sys-
tem and Spark in the Amazon cloud rounds our contribution.

III. BACKGROUND

This is a reference section that can be skipped if the reader
is familiar with machine learning models and array DBMSs.

A. Input Data Set and Output Model

All models take a d × n matrix X as input. Let X =
{x1, x2, . . . , xn} be the input data set with n points, where
each point xi is a vector in R

d. The goal is to compute some
machine learning model Θ, minimizing some error metric.
In linear regression (LR) and variable selection (VS), X is
augmented with a (d+1)th dimension with output variable Y ,
represented by X as a (d + 1)× n matrix. We use i = 1 . . . n

and j = 1 . . . d as matrix subscripts. For convenience in
mathematical notation we use column vectors and column-
oriented matrices.

Our system allows the computation of a wide range of
linear (fundamental) models including principal component
analysis (PCA), linear regression (LR), variable selection
(VS), Naı̈ve Bayes classifier, K-means (and EM) clustering,
logistic regression and linear discriminant analysis. Those
models involve many matrix computations, which are a good
fit for an array DBMS. All the models we support can derive
their computations from the data summarization matrix Γ.
However, non-linear models such as SVMs, decision trees and
deep neural networks are not supported.

B. Overview of the SciDB Array DBMS

SciDB stores data as multi-dimensional arrays in chunks,
instead of rows compared to traditional DBMSs, where each
chunk is in effect a small array that is used as the I/O unit.
SciDB preserves the most important features from traditional
DBMSs like external algorithms, efficient I/O, concurrency
control and parallel processing. From a mathematical perspec-
tive, SciDB offers a rich library with matrix operators and
mathematical functions. From a systems angle, SciDB allows
the development of new array operators extending its basic set
of operators.

IV. MACHINE LEARNING IN THE CLOUD WITH A
PARALLEL ARRAY DBMS

A. System Architecture

Figure 1 illustrates our major system components in an N -
node parallel cluster showing how data moves through them.
In order to simplify the diagram each node in the cluster runs
only one SciDB instance, but we want to point out it is feasible
to spawn one instance per core. We emphasize that N can be
large (i.e. a cloud).

The data set file is first uploaded from a local server to the
cloud. After the cluster has been set up, SciDB loads the data

Fig. 1. Diagram of system components in an N -node cluster (1 SciDB
instance per node) and data flow.

set into a two-dimensional array in parallel. The input matrix
thereafter goes through a two-phase algorithm [3]:

1) Parallel data summarization to get Γ;
2) Model Θ computation in RAM using R, including

iterative behavior if necessary.
During the data summarization phase the Γ matrix is com-

puted in parallel using our user-defined operator in SciDB.
The Γ matrix is far smaller than the original data set X and
can easily fit in the main memory. We will then compute the
model exploiting the Γ matrix in R, using the SciDB-R library.

Notice that in our system, because R only plays the interface
role between the user and the parallel array DBMS, it resides
only on the coordinator node, not on every worker node. R by
architecture is a single threaded platform for one node. Our
system use SciDB to do the heavy processing in parallel, the
summarization matrix is condensed in the coordinator. Based
on that fact that model computation itself fits in RAM and its
not I/O intensive we exploit R to compute the model. Even
though we are aware that there are many efforts from people
to make R work in parallel with multiple nodes, we concluded
that placing R only in the coordinator is an acceptable solution
because Γ fits in RAM.

B. Parallel Data Loading

SciDB provides two mechanisms for loading data into
arrays: (1) Convert the CSV file into a temporary file with a
SciDB-specific array format for later loading, or (2) We have
to load the data into a one-dimensional tuple array first and
then go through a re-dimensioning process to transform the
one-dimensional array (array of tuples) into a 2-d array (ma-
trix). Since the second mechanism can be used directly with
CSV files it is the default. Unfortunately, both mechanisms are
slow in a cloud environment. Both loading alternatives require
2 full disk reads and 2 full disk writes. (one full disk read from
the CSV file, then one full disk write, using SciDB-specific
text format or as a one-dimensional array, then 1 full disk
read to read them back, finally, a full disk write into the ma-
trix format). In addition, re-dimensioning requires completely
reshaping d sets of 1D chunks and transforming them into one
set of 2D chunks with a different data partitioning (i.e. slow



reshuffling of data). Since both approaches are inefficient to
load the data in parallel, we developed a novel user-defined
operator load2d() for parallel matrix loading into SciDB.

We now explain our optimized loading operator in terms
of X , an n × d matrix loaded in parallel using N nodes. We
set the chunk size for our matrix in SciDB to 10000× d as a
default setting. To get started, based on n and d, the operator
computes how many chunks are needed: Ctotal = b n−1

10000 +
1c, and determine how many chunks each node will store:
Ceach = bCtotal−1

N
+ 1c. As a second step, the coordinator

node scans the file and determines the segment of the file
which each instance will need to read based on Ceach and the
vertical chunk size (10000). Then the N nodes start reading the
file in parallel without locking. SciDB uses a standard round-
robin algorithm to distribute and write chunks. Our loading
operator directly outputs the matrix in SciDB chunk format
with optimal chunk size, avoiding any intermediate files on
disk and the slow re-dimensioning process. To summarize, our
parallel load operator can load significantly faster than the
built-in SciDB loading function because: (1) It requires less
I/O work: only 2 disk scans to read data and 1 disk scan to
write. (2) It saves significant CPU time by not re-dimensioning
from 1D into 2D. (3) There is no data redistribution among
the N nodes, which would add communication and double I/O
overhead.

C. Data Summarization Matrix

This section applies to any parallel system, including
Hadoop systems. A key optimization of our system in the
algorithms is that we implemented our statistical model com-
putations based on a data summarization matrix Γ instead of
the large data set X or X.

Γ Matrix: As mentioned in Section III-A, supervised mod-
els, like linear regression, use an augmented matrix X. We
introduce a more general matrix Z, created by appending X

with a row vector of 1s. Since X is d × n, Z has (d + 2)
rows and n columns, where Z[0] is a row-vector of n 1s and
Z[d + 1] is Y .

The Γ matrix is a generalization of sufficient statistics [1]
and it is defined as:
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Matrix Γ contains a comprehensive, accurate and sufficient
summary of X to efficiently compute all models previously
mentioned. Due to space limitation we will not expand in detail
how the models we mentioned in this article can derive their
computations from the Γ matrix. Those details are included in
our previous work [3].

D. Parallel Summarization with new Array Operator

A fundamental property of the Γ matrix is that it can be
computed by a single matrix multiplication using Z. Therefore,
the computation of Γ can be expressed as the matrix product
Γ = ZZ

T =
∑n

i=1 zi ·zT
i

. Our previous research [3] examined

all available programming mechanisms in SciDB to compute
the Γ matrix. Experimental results showed that the user-
defined operator is the most efficient approach.

Our Γ operator works fully in parallel with a partition
schema of X into N subsets X [1] ∪ X [2] ∪ . . . ∪ X [N ] = X ,
where we independently compute Γ[I] on X [I] for each
node I (we use this notation to avoid confusion with matrix
powers and matrix entries). In SciDB terms, each worker I

will independently compute Γ[I]. No synchronization between
instances is needed once the computation starts therefore the
parallelism is guaranteed. When all workers are done the
coordinator node will gather all results and compute a global
Γ = Γ[1]+ . . .+Γ[N ] with O(d2) communication overhead per
node (much smaller than O(dn). This is essentially a natural
parallel computation, coming from the fact that we can push
the actual multiplication of zi · zi into the array operator.

E. Accelerating Summarization with a GPU

Computing Γ by evaluating ZZ
T is a bad idea because

of the cost of computing and materializing Z
T . Instead, we

evaluate the sum of vector outer products
∑n

i=1 zi · zT
i , which

is easier to parallelize and update in RAM. Moreover, since Γ
is symmetric, we only compute the lower triangle of the matrix
during computation to save execution time. Our Γ matrix
multiplication algorithm works fully in parallel with a partition
of X into N subsets X [1] ∪ X [2] ∪ . . . ∪ X [N ] = X , where
we independently compute Γ[I] on X [I] for each processor
I . A fundamental aspect is to optimize computation when X
(and therefore Z) is sparse: any multiplication by zero returns
zero. Specifically, nnz ≤

√
dn can be used as a threshold to

decide using a sparse or algorithm, where nnz is the number of
non-zero entries in X . Computing Γ on sparse matrices with
a GPU is challenging because tracking and partitioning non-
zero entries may reduce parallelism by adding more complex
logic in the operator code. In this paper we focus on the dense
matrix algorithm.

Our following discussion focuses on integration with an
array DBMS, given its ability to manipulate matrices. From
a systems perspective, we integrated our model computation
using Γ with the SciDB array DBMS and the R language,
with a 2-phase algorithm: (1) data summarization in one pass
returning Γ; (2) exploiting Γ in intermediate computations to
compute model Θ. We emphasize zi is assembled in RAM
(we avoid materializing zi to disk). Unlike normal UDFs in
a traditional DBMS, which usually need to serialize a matrix
into binary/string format then deserialize it in succeeding steps,
our operators in SciDB returns Γ directly in array format,
which is a big step forward compared to previous in-DBMS
approaches. Phase 2 takes place in R on the master node
leveraging R’s rich mathematical operators and functions.
Although this phase does not run in parallel across nodes,
it does not impact the overall performance since Γ passed
from SciDB in the first step is much smaller than the data set,
resulting in much faster iterations working in RAM. That is,
Phase 1, computing Γ, is the main task to parallelize.



Parallel processing happens as follows. In SciDB, arrays
are partitioned and stored as chunks and such chunks are
only accessible by C++ iterators. In our previous work [3],
we compute the vector outer product zi · zT

i as we scan the
data set in the operator. We emphasize zi is assembled in RAM
(we avoid materializing zi to disk). In general, interleaving I/O
with floating point computation is not good for GPUs because
it breaks the SIMD paradigm. In our GPU accelerated operator,
we first extract matrix entries in each chunk into main memory.
Then we transfer the in-memory subsets of X to GPU memory,
one chunk at a time. Then the GPU computes the vector outer
products zi · zT

i fully in parallel with its massive amount of
processing units (cores). The sum is always maintained in the
GPU memory. It takes log(n) time to accumulate n partial Γs
into one using the reduction operation. When the computation
finishes for the whole data set, the Γ matrix is transferred
back from GPU memory to CPU main memory. The C++
operator code is anotated with OpenACC directives to work
with GPU. In our current GPU version, the CPU only does
the I/O part. Since the DBMS becomes responsible for only
I/O our approach also has promise in relational DBMSs.

V. EXPERIMENTAL EVALUATION

We present benchmarking experiments in the Amazon cloud
(S3). We created a configuration script to automate the com-
plicated system setup in parallel, which makes running SciDB
in the cloud as easy as running HDFS/Spark. Moreover, our
system provides a GUI, where all system components can be
manipulated.

As mentioned above, we developed a parallel data loading
operator that offers tight integration with Amazon S3 infras-
tructure. Due to lack of space we did not conduct a benchmark
comparing loading speed between our cloud system and Spark.
But we should point out our parallel operator to load matrix
X from a CSV file takes similar time to copying the CSV file
from the Unix file system to HDFS plus creating data set in
Spark’s RDD format. We would also like to point out that the
time to load data is considered less important than the time to
analyze data because it happens once.

A. Benchmark on a Large Cluster

We compare our array DBMS cloud solution with Spark,
the most popular analytic system from the Hadoop big data
world. We tried to be as fair as possible: both systems run
on the same hardware, but we acknowledge SciDB benefits
from manipulating data being pre-processed in matrix form.
We analyze data summarization and model computation.

Hardware: a parallel cluster with N = 100 nodes, where
each node has 2VCPUs running at 2 GHz, 8GB RAM and
1 TB. Spark takes advantage of an additional coordinator
node with 16 GB RAM (i.e. N = 101 for Spark). As
mentioned before, we developed scripts for fast automatic
cluster configuration.

In Figure 2 we compare both systems computing the Γ
summarization matrix. That is, we compute the submatrices
L, Q in Spark using its gramian() function, without actually

Fig. 2. Γ computation time: array DBMS vs. Spark.

Fig. 3. Model computation time for LR: array DBMS vs. Spark.

computing the machine learning model. That is, we could
simply export L, Q from Spark to R and compute the model
in R in RAM. As can be seen, our system scales out better
than Spark as N grows. In fact, Spark increases time when
going from N = 10 to N = 100, which highlights a sequential
bottleneck. At N = 100 the gap between both systems is close
to two orders of magnitude.

Figure 3 compares both systems with a fundamental model:
linear regression (LR). This comparison is also important
because LR is computed with Stochastic Gradient Descent
(SGD) in Spark, whereas ours is based on data summarization.
In Spark we used 20 iterations, which was the recommended
setting in the user’s guide to get a stable solution. At N = 1
the difference is more than one order of magnitude, whereas
at N = 100 our system is more than two orders of magnitude
faster than Spark. We emphasize that even running Spark with
one iteration, which would get an unstable solution, our system
is 10X faster (i.e. 920/20 ≈ 46, compared to 6 seconds).

B. Benchmark with a Big GPU

The previous experiments beg the question if processing can
be further accelerated with GPUs. Since Spark does not offer
off the shelf functions exploiting GPUs we cannot compare it.
However, we emphasize that we established that our solution is
orders of magnitude faster than Spark. Therefore, it is unlikely
that Spark could be faster exploiting GPUs.



Fig. 4. Γ computation time: CPU vs. GPU.

Setup: In this section we examine how much time improve-
ment GPU processing can bring to model computation using
Γ. We ran our experiments on a parallel cluster with 4 nodes.
Each node has an 8-core Intel Xeon E5-2670 processor, an
NVIDIA GRID K520 GPU with 1,536 CUDA cores. The GPU
card has 4GB of video memory, while the machine has 15 GB
of main memory. On the software side, on those machines
we installed Linux Ubuntu 14.04, which is currently the most
reliable OS to run the SciDB array DBMS. The system is
equipped with the latest NVIDIA GPU driver version 352.93.
We also installed the PGI compilers for OpenACC and SciDB
15.7. We revised our CPU operator C++ code with OpenACC
annotations marking key vector operations in the loops to be
parallelized with GPU cores so that they are automatically
distributed for parallelism. The data sets are synthetic, dense
matrices with random numbers. We loaded the data sets into
SciDB as arrays split into equal-sized chunks and evenly
distributed across all parallel nodes, where each chunk holds
10,000 data points.

Figure 4 illustrates GPU impact on data summarization,
which is the most time consuming step in our 2-phase algo-
rithm. The bar figure shows the GPU has little impact at low
d (we do not show times where d < 100 since the GPU has
marginal impact), but the gap between CPU and GPU rapidly
widens as d grows. On the other hand, the right plot shows
the GPU has linear time complexity as n grows, an essential
requirement given the I/O bottleneck to read X . Moreover, the
acceleration w.r.t CPU remains constant.

We now analyze GPU impact on the overall model compu-
tation, considering machine learning models require iterative
algorithms. Table I shows the overall impact of the GPU.
As can be seen SciDB removes RAM limitations in the R
runtime and it provides significant acceleration as d grows. The
GPU provides further acceleration despite the fact the dense
matrix operator is already highly optimized C++ code. The
trend indicates the GPU becomes more effective as d grows.
Acceleration is not optimal because there is overhead moving
chunk data to contiguous memory space and transferring data
to GPU memory and because the final sum phase needs to be
synchronized. However, the higher d is, the more FLOP work
done by parallel GPU cores.

TABLE I
COMPARING COMPUTATION OF MODEL Θ USING R, DBMS+R, AND
DBMS+R+GPU; DENSE MATRIX OPERATOR; N=1 NODE (CPU=8

CORES); TIMES IN SECS.

n d model CPU GPU
R R+SciDB R+SciDB

1M 100 PCA 29 14 8
1M 200 PCA 90 46 16
1M 400 PCA fail 165 33

10M 100 PCA fail 147 104
10M 200 PCA fail 466 215
10M 400 PCA fail 1598 455
10M 100 LR fail 147 103
10M 200 LR fail 464 212
10M 400 LR fail 1594 451

VI. CONCLUSIONS

We presented a parallel analytic system for the cloud using
a parallel array DBMS, not built on top of HDFS. That is,
our system represents an alternative approach following a
traditional shared-nothing architecture without a parallel file
system. We introduced a summarization matrix that benefits
many machine learning models. We studied how to optimize
the computation of such matrix in an array DBMS, considering
it has significantly different storage compared to traditional
relational DBMSs. Moreover, we studied how to further accel-
erate summarization with GPUs. Our experiments showed our
system is orders of magnitude faster than Spark, to summarize
the data set and to compute a typical machine learning model.
A GPU widens the gap.

There are many issues for future work. Our algorithms
and optimizations are ideal for an array DBMS because they
are matrix computations. However, they are applicable in
any parallel DBMS, with some performance penalty. Our
summarization matrix is a great fit for GPUs, but we need
to study in more depth how to parallelize the vector outer
products. Instead of competing with Spark we want to study
how to integrate our algorithms and our system with Spark.
Integrating our algorithms would require reprogramming them
in Java or Scala. The main drawback about integrating systems
is the need to move data between the DBMS and HDFS/Spark.
A major limitation of our system, compared to Spark, is the
lack of fault tolerance during computation: if a node fails the
computation must be restarted.
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