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Abstract—Due to advances in parallel file systems for big
data (i.e. HDFS) and larger capacity hardware (multicore CPUs,
large RAM) it is now feasible to manage and query network
data in a parallel DBMS supporting SQL, but performing
statistical analysis remains a challenge. On the statistics side,
the R language is popular, but it presents important limitations:
R is limited by main memory, R works in a different address
space from query processing, R cannot analyze large disk-
resident data sets efficiently, and R has no data management
capabilities. Moreover, some R libraries allow R to work in
parallel, but without data management capabilities. Considering
the challenges and limitations described above, we present a
system that allows combining SQL queries and R functions in a
seamless manner. We justify a parallel DBMS and the R runtime
are two different systems that benefit from a low-level integration.
Our parallel DBMS is built on top of HDFS, programmed in
Java and C++, with a flexible scale out architecture, whereas R is
programmed purely in C. The user or developer can make calls in
both directions: (1) R calling SQL, to evaluate analytic queries or
retrieve data from materialized views (transferring result tables
in RAM in a streaming fashion and analyzing them in R), and
vice-versa (2) SQL calling R, allowing SQL to convert relational
tables to matrices or vectors and making complex computations
on them. We give a summary of network monitoring tasks at ATT
and present specific programming examples, showing language
calls in both directions (i.e. R calls SQL, SQL calls R).

I. INTRODUCTION

Big data is characterized by the 3 Vs: volume, variety and
velocity of data, where analyzing data is a central goal. It is
fair to say that managing and analyzing network data is more
difficult than other big data problems due to its streaming
velocity, higher volume and format variety. That is, it has
three more complicated Vs. Big data analytics is notoriously
difficult. This problem becomes orders of magnitude harder
with network big data due to its higher volume, streaming
behavior and format varying over time. In this paper, we
study how to perform statistical processing on a network
database [4], integrating diverse data streams (not packet-
level data, but network data summaries over time). Computer
Science “systems” research has has proposed systems with
optimized storage [10] for specialized processing based on
rows, columns, and arrays [9]. Most common targets include
transactions, queries, detecting patterns and computing math-
ematical models. In our work we focus on the last one.
Streams represent a further challenge, where processing is
pushed to main memory, with algorithms working in one pass.
On the data mining side there are tons of research proposing
algorithms for large data sets, but working mostly on flat files,
outside a DBMS. However, integrating statistical systems, like
R, with a database system is still a challenge. R is one of

the most popular open-source system to perform statistical
analysis due to its simple, but powerful, functional language,
extensive mathematical library, and interpreted runtime. Un-
fortunately, as noted in the literature, even though every vendor
offers some integration between R and the DBMS, R remains
difficult to use and slow to analyze high-velocity streams.
From a practical perspective, SQL remains the standard query
language for database systems, but it is difficult to predict
which language will be the standard for big data analytics: R
has a proven track record. With that motivation in mind, we
introduce STAR, a system to analyze network data integrating
the R runtime with a parallel DBMS for big data supporting
standard SQL queries and materialized views. Unlike other
R tools and prototypes, STAR can directly process relational
tables, truly performing “in-database” analytics. We emphasize
that STAR enables analytics in both directions closing the
analytic loop: (a) An R program can call SQL queries. (b)
An SQL query can call R functions.

II. RELATED WORK

We present an overview of database systems built at AT&T.
GigaScope Tool [2] was a pioneer system that could evaluate a
constrained form of SQL queries on packet-level data streams
(i.e. very high velocity) as network packets were flowing in
a network interface card (NIC). The main analytic goal was
to analyze the probablistic distribution of the data stream
based on histograms [1]. GigaScope had important limitations:
it could not store streaming data, it did not take advantage
of a parallel file system in a cloud infrastructure and it
could not correlate streaming data with stored historical data.
Therefore, as requirements changed it became necessary to
store summarized historical stream data (orders of magnitude
smaller than packet-level data, but orders of magnitude larger
than transactional data) and supporting standard SQL became
a requirement. Specifically, queries could have arbitrary joins
(natural, outer, time band) and diverse aggregations (dis-
tributive, algebraic, holistic). Storing, managing and querying
stream data was significantly more difficult than analyzing
packet-level data, but it enabled advanced analytics to monitor
the network. Such needs pushed the creation of the DataDepot
Warehouse system [3], which featured a POSIX-compliant
parallel file system, standard SQL and extensibility via UDFs
[7], [5] (which enabled mathematical analytics). The DarkStar
data warehouse at ATT, with DataDepot as the backbone
system, can manage hundreds of data streams and maintains
more than two thousand tables with real-time data loading
and long-term histories. This network big data warehouse



supports networking analytics as well as real-time alerting
and troubleshooting applications for ATT network day-to-day
operations. In short, it is necessary to have access to real-time,
recent and historical data. The big data trend brought more
requirements and new technology: higher stream volume (with
more data), HDFS (instead of a POSIX file system), many
more database sources (more streams from more network
devices) intermittent streams (with traffic spikes and transfer
interruptions), more efficient C++ code for queries (because
critical SQL queries were compiled), eventual consistency and
advanced analytics beyond SQL queries. Given the common
wisdom that one-size-does-not-fit-all [10] and the difficulty of
changing the source code of a large existing system, it was
decided to develop a next generation DBMS, TidalRace [4].

III. SYSTEM DESCRIPTION

A. Parallel DBMS for Big Data: TidalRace

This section explains the main features of the parallel
DBMS TidalRace [4], with a scalable architecture to process
network big data. TidalRace [4] is a next-generation data ware-
housing system specifically built for data management of high
volume network data, building on long-term experience from
previous systems built at AT&T. The following paragraphs
summarize the main features of TidalRace and its limitations
for statistical analysis.

Storage: TidalRace is built on top of HDFS, to support
scale out as data volume grows. Time partitions (a small time
interval) are the main storage I/O unit for data streams, being
stored as large HDFS blocks across nodes in the parallel
cluster. The storage layout is hybrid: a row store for recent
data (to insert stream records and maintain small materialized
views), and a column store to query large historical tables
with recent and old data (to evaluate complex queries). The
system provides a Data Definition Language (DDL) with time-
oriented extensions. TidalRace’s SQL supports both atomic
(i.e. standard) and structured data types (to connect to R).
Atomic data types include integers, floats, date/time, POSIX
timestamps and strings. POSIX timestamps are fundamental
to create time partitions. Vectors and matrices are supported
internally within UDFs in C++ and special SQL access
functions. A major departure from traditional DBMSs is that
the TidalRace DBMS supports time-varying schemas, where
columns are added or deleted from an existing table over time.
This unconventional “varying structure” feature is fundamental
to keep the system running without interruption concurrently
processing insertions from new file formats, critical queries
and propagating updates to materialized views.

Language: The DBMS provides standard SQL enhanced
with time-oriented extensions to query streaming tables. As
mentioned above. TidalRace’s SQL supports both atomic (i.e.
standard) and structured data types (to connect to R). Its
SQL offers both distributive aggregations (e.g., sum() and
count()) and holistic aggregations (harder to compute, like
rank, median, quantiles). User-defined functions (UDFs) are
available as well: scalar and user-defined aggregates (espe-
cially useful to compute multidimensional statistical models

[6]), programmable in the C language. Query processing is
based on compiling SQL queries to efficient C code, instead of
producing a traditional query plan in an internal representation,
which allows optimizations only at compile time. Materialized
views, based on SQL queries combine WHERE filters, joins
and GROUP BY aggregations.

Processing: The database tables are refreshed by time
partition, being capable of managing out-of-order arrival of
record batches, intermittent streams and streams with varying
speed (e.g. traffic spikes). That is, the system is robust to
ingest many diverse streams traveling in a large network.
The system uses MVCC (lock-free), which provides read
isolation for queries when they are processed concurrently
with insertions. The system provides ACID guarantees for
base tables (historical tables) and database metadata (schema
info, time partition tracking), and eventual consistency for
views (derived tables). Therefore, queries, including those
used in views, read the most up-to-date version, which is
sufficient to compute queries with joins and aggregations on
a time window. Query processing is multi-threaded, where
threads are spawned at evaluation time by the query exe-
cutable program. A key feature are materialized views, which
are periodically updated when inserting records. Materialized
views are computed with SQL queries combining WHERE
selection filters on time partitions, time band joins (θ joins) and
GROUP BY aggregations. In general, new records from base
tables are propagated to materialized views with incremental
computation. We emphasize that every query and view should
have a time range, where such time range generally selects the
most recent data. A major goal is to operate on a sliding time
window with low latency. The DBMS operates with a minimal
time lag between data stream loading (less than 1 minute) and
querying (less than 2 minutes after loading) and efficiently
propagates insertion of new records and removes old records
to update materialized views (less than 5 minutes).

B. System Architecture and Streaming Processing

From the parallel DBMS TidalRace we get a parallel file
system (currently HDFS, formerly a POSIX file system),
stream data management and query processing. On the other
hand, from the R side we get single threaded processing
in main memory, text file I/O and rich set of mathematical
operators and libraries.

C. Chunk-based Processing in RAM

We make two reasonable assumptions to process data
streams based on a sliding time window: (1) the result table
from an SQL query or materialized view having a time range
filter generally fits in RAM. (2) the result data frame or output
matrix from an R program can be divided into chunks (data
blocks in RAM) and processed in streaming fashion. Our
system incorporates optimizations to efficiently transform a
relational table into an R data frame and vice-versa under
the assumption that the data set fits in RAM. This is a valid
assumption because the data set is computed by an SQL query



Fig. 1. Bi-directional analytic architecture: R ⇔ DBMS.

in a materialized view. That is, our system assumes data is pre-
processed, transformed and summarized in SQL, not in R.

Based on these assumptions, our system provides a fully
bidirectional programming API: an R program can call (eval-
uate) any SQL query and its results are seamlessly and effi-
ciently transferred block-wise into R. Alternatively, SQL can
call any R function via UDFs (embedding R calls into C code)
and stored procedures (mixing queries with procedure calls).
This bidirectional communication is achieved by a direct
binding between R and DBMS runtimes in main memory,
bypassing network communication protocols. Our integrated
system architecture is shown in Figure 1.

The key issues to integrate R with a parallel Database
System are understanding main memory management, layout
of vectors and matrices in RAM, building data frames as a set
of columns, setting up R function calls, access serialization and
properly configuring the operating system environment. Main
memory management is significantly different in both systems.
R has a garbage collector and the runtime is single threaded.
R can address main memory with 64 bits, but integers for
subscripts to access data structures are internally 32 bits. On
the other hand, the C++ in the DBMS uses a flat 64 bit
memory space also with a single thread per compiled query,
but no garbage collector. Therefore, each system works as
a separate process with its own memory space. In addition,
since both systems internally have different data structure
formats it is necessary to transfer and cast atomic values
between them. A fundamental difference with other systems,
integrating R and a parallel data system is that building
data structures and transferring them is done only in main
memory, copying atomic values as byte sequences in most
cases, moving memory blocks from one system to the other
and avoiding creating files.

D. Mapping Data Types and Data Transfer

R and SQL exchange data with a careful mapping between
atomic values. Data structures like vectors, matrices, data
frames and tables are built from atomic values. Data structures
include vectors, matrices and data frames on the R side and
only tables (including materialized views) in SQL. To achieve
maximum efficiency, transferring is always done as byte se-

quences: string parsing is avoided. We make sure a data frame
only contains atomic values, thereby enabling converting data
into an SQL table. Notice lists in R violate a database first
normal form. Therefore, they cannot be transferred into the
DBMS, but they can be pre-processed converting them into a
set of data frames. Transferring in the opposite direction, an
SQL table is straightforward to convert into an R data frame
since the latter is a more general data structure. Converting
an SQL table into an R matrix requires considering a sparse
or dense matrix storage and how subscripts are represented in
SQL. Finally, vectors and matrices in C++ are a mechanism to
efficiently transfer and serialize data from the UDF to vectors
and matrices in R (which have different storage and require
memory protection), but not to perform statistical analysis.
That is, they are transient data structures.

E. R calling SQL

Since R has a flexible script-based runtime it is not nec-
essary to develop specialized C code to call an SQL query:
the SQL query is simply called with a system command
call. Transferring data from the evaluated SQL query to R is
achieved via a packed binary record format that is converted
into data frame format and then incrementally transferred to a
data frame in RAM (via Unix pipes). This format resembles a
big network packet, with a header specifying fields and their
sizes, followed by a payload with the sequence of packed
records. We note that since in a DBMS strings generally
have variable length then records also have variable length.
Therefore, conversion and transfer row by row is mandatory
(instead of block by block), but it can be efficiently done in
RAM, moving byte sequences. In the unusual case (because
a time range is assumed) that the output SQL table does not
fit in RAM the data set can be processed in a block-by-block
fashion in R; the drawback is that many existing R functions
assume the entire data set is used as input and therefore they
must be reprogrammed. Finally, a data frame containing only
real numbers can be easily converted to matrix. Therefore, it
becomes feasible to call most R functions with a data frame or
a matrix as input. Further math processing happens in R and
in general R mathematical results (models, a set of matrices,
diagnostic statistics) remain in R. However, when the R output
is a data frame, preferably with a timestamp attribute, it can be
converted to our packed binary format and then loaded back
into the DBMS, possibly into a materialized view.

F. SQL calling R

SQL is neither a flexible nor an efficient language to
manipulate data structures in main memory, but it offers UDFs
programmable in C/C++ (called in a SELECT statement) and
stored procedures (calling external routines). On the other
hand, the most flexible mechanism to call R to perform low-
level manipulation of data is to embed R function calls inside
C (or C++) code. Since UDFs are C++/C code fragments
plugged into the DBMS that isolate the programmer from the
internals of physical database operators and memory manage-
ment we use them as the main programming mechanism to



TABLE I
TABLES STORED ON THE DBMS.

Name Type Size
Device Measurement base large
Link utilization base large
Phone call base large
Connection base large
Feeds base large
Interrupted phone call derived large
Device measurement summary by minute derived medium
Link utilization by hour derived medium
Connection summarization derived medium
Feed summary by source/dest derived medium
High traffic site derived medium
Minutes used per phone derived medium
Quantile traffic approximate histogram derived small
Abnormal connections derived small

call R, bypassing files and network communication protocols.
Specifically, calling R from the UDF C++ code is achieved by
building temporary C++ vectors and then converting the set of
C++ vectors into an R matrix. Notice we do not convert SQL
records to data frame format in R because we assume the R
function to call takes a matrix as input, the most useful case
in practice. R results can be further processed in C++ inside
the DBMS and potentially be imported back into a table. Only
R results that are a data frame can be transferred back into an
SQL table. In general, there exist materialized views which
have a dependence on this temporary table. From a query
processing perspective when the R result is a data frame the
DBMS can treat R functions as table user-defined operators,
where the size of the result is known or bounded in advance.

IV. STATISTICAL ANALYSIS ON NETWORK BIG DATA

A. Network Big Data Tables

As mentioned before, TidalRace stores a mix of tables to
ingest stream data on base tables and periodically propagate
changes to derived tables (materialized views). Table I shows
tables going from stream ingestion to sophisticated data ana-
lytics.

B. Network Monitoring

As mentioned above, our system assumes every SQL query
has a time range, which results in a sliding time window.
Such time range represents the last x minutes in real time,
where 1 ≤ x ≤ 60 (with 1 minute being near real-time or
so-called active data warehousing) or the last y hours where
1 ≤ 24 (with 24 hours being a worst case scenario with
systemic patterns too hard to detect quickly). That is, our
system enables monitoring the network for the most recent
events with up to one hour delay, but not sooner than one
minute. In general, it is not possible to guarantee an event
is detected in less than one minute because streams must be
transferred from diverse sources on the network all over the
world, ingested into a single-point feed management system
(Bistro [8]), transformed into quasi-relational files (because
schema varies over time) and then transferred, distributed and

Fig. 2. Network big data analytics.

stored on HDFS. Recall that these two last steps are performed
by the TidalRace DBMS.

Figure 2 shows important end-user applications at AT&T,
where base tables are periodically appended by time partition
as streams are ingested and derived tables represent material-
ized views, periodically refreshed during low traffic periods.

C. Analytic Examples in Both Directions

R calling SQL: Assume there exists a long script with
many SQL queries to derive a data set for statistical analysis.
In a network data warehouse environment, such data set is
periodically recomputed from a materialized view based on a
sliding time window (e.g. every 5 minutes, every 30 minutes,
every day). The resulting data set is produced by aggregating
columns to create variables for statistical analysis in the R
language. We contrast analytic calls on streams with three
transfer mechanisms going from slowest (but most portable) to
fastest (but ad-hoc): (1) JDBC connection, the standard DBMS
protocol; (2) plain files exported from the DBMS and loaded
into R; (3) binary files directly transferred in RAM to R via
Unix pipes. By leveraging sufficient statistics maintained on
the time window the analyst can call R functions to compute a
predictive model such as linear regression (to predict a numeric
variable) or classification (to predict a discrete variable). These
analytic tasks boil down to developing an SQL script, starting
the R language runtime, sending the SQL queries to the DBMS
for evaluation, transferring the final SQL table for the data
set into a data frame and then analyzing the R data frame
with R operators and mathematical functions. We emphasize
that in general the output of these calls cannot be easily and
intuitively transferred back to the DBMS because they are a
complicated collection of diverse vectors, matrices, arrays and
associated diagnostic metrics (e.g. error, fit, and so on). That
is, it is preferable they are managed by the R language.

SQL calling R: In this scenario we assume there is an
experienced SQL user, with basic statistics knowledge, who
needs to call R to exploit some mathematical function in a



materialized view. In contrast to the previous case all process-
ing takes place in main memory. A representative analysis
is getting the covariance or correlation matrix of all variables.
Moreover, these matrices are used as input to multidimensional
models like PCA. Assume the user builds the data set with
SQL queries as explained above, but the user wants to compute
some model with data residing on the DBMS. To accomplish
this goal, the user just needs to develop a “wrapper” function
(aggregate UDF) that incrementally builds a matrix, row by
row. Every tuple is dynamically converted to vector format
in RAM. When the matrix is ready the desired R function is
called in embedded C code. A second representative analysis
is building a time series and smoothing the time series. In con-
trast to the previous example, the analyst stores the smoothed
time series back into the DBMS. A common scenario is that
the user wants to call R to solve the Fast Fourier Transform
(FFT), a sophisticated mathematical computation definitely out
of reach for SQL, to find the harmonic decomposition of
the time series (i.e. from primitive time series) and identify
its oscillation period (the one with strongest correlation to
some specific primitive time series). When the period has
been determined time series values are averaged (smoothed)
with a sliding time window. The result is a transformed time
series that is much easier to interpret and further analyze
because it has less noise and a periodic pattern has been
identified. We assume the input table has a timestamp and
some numeric measure. Then a DBMS user-defined function
(UDF) dynamically builds a data frame in RAM and then it
calls R to get an output data frame. Finally, this transformed
time series is efficiently transferred back into the DBMS as a
stream, but only in RAM. That is, the stream data records do
not touch disk on the R side.

D. Throughput and Performance

Two major goals are to monitor devices and monitor connec-
tions. To monitor devices, in general, each record contains at
a minimum 3 attributes: a timestamp, a device id or network
address, and some measurement (i.e. bytes per second). To
monitor connections records are used to track data transmis-
sion, which requires more attributes: source and destination
(IP addresses), protocol, transmission time, received time,
throughput metrics and status. Summarizing, network data
sets have between 3 and 10 attributes. In other words, they
are relatively narrow, but extremely large. It is assumed SQL
queries reduce such size orders of magnitude because they
compute summarizations. Therefore, in general the data sets
for statistical analysis in R fit in RAM.

Given our system efficiency, high-end hardware and sim-
plicity we did not conduct a detailed performance study.
Our system is capable of transferring between n =1M and
n =10M records per second from the DBMS to R and vice-
versa on average hardware (e.g. a Quadcore CPU, 8 GB of
RAM). This time excludes the actual time to compute an SQL
query or update a materialized view. In an analog manner,
this time excludes the time to call R on a data frame or
matrix and transform, return results as an SQL table and

loading them back into the DBMS. Analyzing overall time
to compute statistical models or transformations on diverse
network monitoring problems is an issue for future research.

V. CONCLUSIONS

We presented a system that enables fast bi-directional data
transfer between a parallel DBMS and the R runtime. In one
direction our system converts SQL relational tables into R
data frames or matrices. On the opposite direction an R data
frame or matrix is converted into a relational table, with a
transformed data frame being the most common case. Our
system is built on top of a careful mapping between atomic
data types. The system efficiently constructs data structures
(i.e. non-atomic data types) in RAM in one pass over a data
set. The net gain is that an R script can call an SQL query
or materialized view to analyze the result set. On the other
hand, an SQL query (not a script or longer embedded SQL
program) can call an R function to perform some mathematical
computation in an intermediate step.

Our initial prototype opens several research directions. We
want to define functional constructs in the R programming
language to transform relational tables into data frames. In a
similar manner, we want to study alternatives to transform a
matrix into an SQL object (flat table, subscript/value triples,
or binary object). Propagating insertions to materialized views
and then to a mathematical model computed by R is a
challenging problem. Finally, we need to conduct a detailed
performance study on the ATT network data warehouse.
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