
Integrating the R Language Runtime System
with a Data Stream Warehouse

Carlos Ordonez? , Theodore Johnson, Simon Urbanek, Vladislav Shkapenyuk,
Divesh Srivastava

AT&T Labs - Research, USA

Abstract. Computing mathematical functions or machine learning mod-
els on data streams is difficult: a popular approach is to use the R lan-
guage. Unfortunately, R has important limitations: a dynamic runtime
system incompatible with a DBMS, limited by available RAM and no
data management capabilities. On the other hand, SQL is well estab-
lished to write queries and manage data, but it is inadequate to perform
mathematical computations. With that motivation in mind, we present
a system that enables analysis in R on a time window, where the DBMS
continuously inserts new records and propagates updates to materialized
views. We explain the low-level integration enabling fast data transfer in
RAM between the DBMS query process and the R runtime. Our system
enables analytic calls in both directions: (1) R calling SQL to evaluate
streaming queries; transferring output streaming tables and analyzing
them with R operators and functions in the R runtime, (2) SQL call-
ing R, to exploit R mathematical operators and mathematical models,
computed in a streaming fashion inside the DBMS. We discuss analytic
examples, illustrating analytic calls in both directions. We experimen-
tally show our system achieves streaming speed to transfer data.

1 Introduction

Big data analytics is notoriously difficult when there exist multiple streams and
there is a need to perform advanced statistical analysis on them, beyond SQL
queries. In our case, we focus on enabling statistical analytics on a data stream
warehouse (DSW) [7], where the goal is to analyze multiple streams of network-
ing data (logs). Big data analytics research is active. From a systems perspec-
tive, parallel database systems and Apache Hadoop world (HDFS, MapReduce,
Spark, and so on) are currently the main competing technologies [12], to effi-
ciently analyze big data, both based on automatic data parallelism on a shared-
nothing architecture. It is well established a parallel DBMS [4] is much faster
than MapReduce for analytical computations on the same hardware configura-
tion [13]. Spark [15] has become a faster main-memory alternative substituting
MapReduce, but still trailing parallel DBMSs. Our protoype follows the DBMS

? Research work conducted while the first author was a visiting research scientist. C.
Ordonez current affiliation: University of Houston, USA.



approach. Database systems research has introduced specialized systems based
on rows, columns, arrays and streams to analyze big data. Moreover, UML has
been extended with data mining [16]. However, the integration of mathemat-
ical languages, like R, with SQL, remains a challenge [6]. Currently, R is the
most popular open-source platform to perform statistical analysis due to its
powerful and intuitive functional language, extensive statistical library, and in-
terpreted runtime. Unfortunately, as noted in the literature, even though there
exists progress to scale R to large data sets and perform parallel processing, such
as IBM Ricardo (R+MapReduce) [3], SciDB-R (R+SciDB) [14], HP Distributed
R suite (R+Vertica), R remains inadequate and slow to analyze streams.

1.1 Motivation: SQL and R languages

From a language perspective, SQL remains the standard query language for
database systems, but it is difficult to predict which language will be the standard
for statistical analytics: we bet on R. With that motivation in mind, we present
STAR (STream Analytics in R), a system to analyze stream data integrating the
R and SQL languages. Unlike other R tools, STAR can directly process streaming
tables, truly performing ”in-database” analytics. STAR enhances R from several
angles: it eliminates main memory limitations from R, it can perform data pre-
processing with SQL queries, leaving mathematically complex computations as
a job for R. STAR enables analytics in both directions closing the loop: (a) R
programs can call SQL queries. (b) SQL queries can call R functions. In short,
on one hand, users can exploit DBMS functionality (query processing, security,
concurrency control and fault tolerance) and on the other hand, call R as needed
for mathematical processing.

1.2 Related Work: Other Analytic Systems

The problem of integrating machine learning algorithms with a DBMS has re-
ceived moderate attention [6, 11, 9]. In general, such problem is considered diffi-
cult due to a relational DBMS architecture [10], the matrix-oriented nature of
statistical techniques, lack of access to the DBMS source code, and the com-
prehensive set of techniques already available in mathematical languages like
Matlab, statistical languages like R, and numerical libraries like LAPACK. The
importance of pushing statistical and data mining computations into a DBMS is
recognized in [1]; this work emphasizes exporting large tables outside the DBMS
is a bottleneck and it identifies SQL queries and MapReduce (now substituted
by Spark) as two complementary mechanisms to analyze large data sets. As a
consequence, in modern database environments, users generally export data sets
to a statistical or parallel system, iteratively build several models outside the
DBMS, and finally deploy the best model. In practice, exploratory cube anal-
ysis does most of query processing inside the DBMS, but the computation of
statistical models (e.g. regression, PCA, decision trees, Bayesian classifiers, neu-
ral nets), graph analytics (e.g. shortest path, connectivity, clique detection) and
pattern discovery (e.g. association rules) is more commonly performed outside a



DBMS, despite the fact that DBMSs indeed offer some data mining algorithms
and powerful query capabilities.

2 Overview of Interconnected Systems

2.1 Database System for Static Compiled SQL Queries

We first discuss the main features of the data stream warehousing (DSW) sys-
tem TidalRace [7], contrasting them with features from previous systems. We
start with an overview of data stream systems built at AT&T. GigaScope Tool
[2] was a first system that could efficiently evaluate a constrained form of SQL
on packet-level data streams with recent data as they were flowing in a network
interface card. As main limitations, it was not capable of continuously storing
streaming data, it could not take advantage of a parallel file system in a cluster
of computers and it could not correlate (analytical querying) recent data with
historical data. As time went by it became necessary to store summary historical
data from streams (orders of magnitude smaller than packet-level data, but still
orders of magnitude larger than transactional data) and support standard SQL
including arbitrary joins (natural, outer, time band) and all kinds of aggrega-
tions (distributive, holistic). Thus the DataDepot DSW [5] was born, with novel
storage on top a POSIX parallel file system, supporting standard SQL and incor-
porating UDFs [8]. More recently, the big data wave brought new requirements
and new technology: higher stream volume (more streams with more data), inter-
mittent streams (with traffic spikes), more efficient C++ code for queries, HDFS
(instead of a POSIX file system), eventual consistency and advanced analytics
beyond SQL queries. These requirements gave birth to TidalRace [7]. TidalRace
[7] represents a next-generation data warehousing system specifically engineered
for data management of high volume streams, building on long-term experience
from the previous systems.

Storage: TidalRace uses a parallel file system (currently HDFS), where time
partitions (a small time interval) are the main storage I/O unit for data streams,
being stored as large blocks across nodes in the parallel cluster. The storage lay-
out is hybrid: a row store for recent data (to insert stream records and maintain
some materialized views), and a column store for large historical tables with re-
cent and old data (to evaluate complex queries). The system provides a DDL with
time-oriented extensions. Atomic data types include integers, floats, date/time,
POSIX timestamps and strings. Vectors and matrices are supported internally
within UDFs in C++ and special SQL access functions. The DBMS supports
time-varying schemas, where columns are added or deleted from an existing ta-
ble over time. This advanced feature is fundamental to keep the system running
without interruption concurrently processing insertions, queries and propagating
updates to materialized views.

Language: The DBMS provides standard SQL enhanced with time-oriented
extensions to query streaming tables. Its SQL offers both distributive aggrega-
tions (e.g., sum() and count()) and holistic aggregations (e.g., rank, median,
OLAP functions). User-defined functions (UDFs) are available as well: scalar



and user-defined aggregates (especially useful for analytics), programmable in
the C language. Query processing is based on compiling SQL queries into C
code, instead of producing a query plan in an internal representation, which
allows most optimizations at compile time. Materialized views, based on SQL
queries combining filters, joins and aggregations, are a fundamental feature.

Processing: The database is refreshed by time partition, being capable of
managing out-of-order arrival of record batches, intermittent streams and streams
with varying speed (e.g. traffic spikes). That is, the system is robust to ingest
many diverse streams traveling in a large network. The system uses MVCC
(lock-free), which provides read isolation for queries when they are processed
concurrently with insertions. The system provides ACID guarantees for base
tables (historical tables) and database metadata (schema info, time partition
tracking), and eventual consistency for views (derived tables). Therefore, queries,
including those used in views, read the most up-to-date version, which is suffi-
cient to compute queries with joins and aggregations on a time window. Query
processing is multi-threaded, where threads are spawned at evaluation time by
the query executable program. A key feature are materialized views, which are
periodically updated when inserting records. Materialized views are computed
with SQL queries combining selection filters on time partitions, time band joins
and aggregations. We emphasize that every query and view should have a time
range, where such time range generally selects the most recent data. The DBMS
operates with a minimal time lag between data stream loading and querying
(1-5 minutes) and efficiently propagates insertion of new records and removes
old records to update materialized views.

In Figure 1 we show analytic applications at AT&T, where base tables are
periodically and asynchronously appended by time partition, ingesting different
streams, and derived tables are materialized views of compiled SQL queries.
Derived tables are periodically updated with either incremental computation
when feasible (i.e. joins, distributive aggregations, approximate histograms) or
total recomputation of complex mathematical models during low stream traffic
or low usage periods. In general, STAR pulls data from streams and pushes
new records to derived tables to compute aggregations, descriptive statistics,
histograms and machine learning models using the R language.

2.2 R Dynamic Runtime for Interpreted Functional Programs

Storage: R provides atomic data types and data structures like most program-
ming languages. Atomic data types have a 1-1 correspondence to data types
in the C language and include integer, real, string and timestamp, where only
strings have different storage from C. For data structures R provides vectors,
matrices, data frames, and lists. Vectors represent a collection of elements of
the same atomic data type, especially real and integer. Vectors are stored as one
contiguous block dynamically allocated. Matrices are 2-dimensional array of real
numbers, also stored as one block in column major order dynamically allocated.
Data frames are a list of columns of diverse data types, where each column is a C
array dynamically allocated. Lists are the most general and can have elements of



Fig. 1. TidalRace data stream warehousing system end-user applications.

diverse data types, including atomic data types and even nested data structures.
Therefore, it is feasible to create lists mixing lists, matrices and vectors. Vectors
and matrices are easy to manipulate either as a single block or cell by cell. Data
frames and lists are the most difficult to manage, easy to manipulate in R itself,
but more difficult in the C language. Lists, in their most general form, are the
most difficult to manipulate and transfer to the database system.

Language: By its original specification based on S, R is fundamentally func-
tional, but it also incorporates imperative programming statements (i.e. if-then-
else and loops). The data type of a variable is totally dynamic because it can
change any time with a new value assignment. R also incorporates object-
oriented features that enable the creation of new data types, libraries and reusable
functions. To manipulate vectors, matrices and data frames R provides simple,
yet powerful, subscript operators to access rows, columns and individual cells.
Finally, function arguments are named which allows passing argument values in
different order and providing default values. Based on our experience, the two
most difficult integration aspects are correctly building data structures and set-
ting up all function parameters before calling an R function. From a performance
perspective, the most difficult programming aspect is following a functional style
over an imperative style (i.e. C++) or declarative style (i.e. SQL), which requires
a different algorithmic approach.

Processing: The R language runtime combines a script-based interactive shell
and a dynamic interpreter. Matrix and data frame operators are evaluated in
the C language and certain linear algebra matrix operators and numerical meth-



Fig. 2. STAR architecture: R ⇔ DBMS.

ods are evaluated by the LAPACK library. The most common form to read and
write files is via plain text file I/O (e.g. with csv files), but it is feasible to per-
form binary I/O with pre-defined binary formats. Processing is single-threaded,
which does not exploit multicore CPUs, but which requires simpler memory
management since no locks are required. When R functions are called, the R
runtime creates nested variable environments, which are dynamically scoped.
The R garbage collector takes care of discarding old variable environments and
releasing main memory, which simplifies programming, but it may be inefficient.
Since the core R runtime has not suffered fundamental changes since it was born,
its main memory footprint is small, especially nowadays when computers have
ample RAM. The most difficult memory management aspect is tracking when a
variable is no longer accessible, but this is reasonably managed by R’s garbage
collector.

3 Bidirectional Analytic Processing

3.1 STAR Architecture

Our system provides a fully bidirectional programming API: an R program can
call (evaluate) any SQL query and its results are seamlessly and efficiently trans-
ferred into R. Alternatively, SQL can call any R function via UDFs. Both com-
plementary interfaces are explained below. Our integrated system architecture
is shown in Figure 2.

STAR makes two strong, but reasonable, assumptions to process stream data:
(1) the result table from an SQL query with a time range generally fits in RAM.
(2) for those result tables from SQL queries that cannot fit in RAM they generally
represent materialized views (i.e. pre-processed data streams), which SQL can
handle.



The key issues to integrate R with a DBMS are understanding main memory
management, layout of vectors and matrices in RAM, building data frames as
a set of columns, setting up R function calls, access serialization and properly
configuring the operating system environment. Main memory management is
significantly different in both systems. R has a garbage collector and the runtime
is single threaded. R can address main memory with 64 bits, but integers for
subscripts to access data structures are internally 32 bits. On the other hand,
the C++ in the DBMS uses a flat 64 bit memory space also with a single thread
per compiled query, but no garbage collector. Therefore, each system works as a
separate OS process with its own memory space. In addition, since both systems
internally have different data structure formats it is necessary to transfer and
cast atomic values between them. A fundamental difference with other systems,
integrating R and a parallel data system, is that building data structures and
transferring them is done only in main memory, copying atomic values as byte
sequences in most cases, moving memory blocks from one system to the other and
avoiding creating files. In other words, we developed a direct binding between R
and DBMS runtimes, bypassing slow network communication protocols.

3.2 Mapping Data Types and Assembling Data Structures

STAR exchanges data between R and the DBMS with a careful mapping between
atomic values. Data structures like vectors, matrices, data frames and tables
are built from atomic values. The atomic mapping is defined as follows: A real
in R and the DBMS are both internally a C double in their interpreter and
SQL compiler, respectively. Integers are more complicated because in C they are
tied to the CPU register size, but R has an older code base; 32 bit integers are
directly mapped between both systems, but C++ 64 bit integers are problematic
because an integer in R internally still uses a 32 bit integer. Therefore, a 64 bit
integer in C++ must be mapped to a real in R (a double in C), which avoids
potential overflows. Conversely, when transferring from R to the DSW integers
are mapped to 32 bit integers. Strings in the DSW are managed storing their
length to avoid scanning for the C null terminator, whereas in R strings are
vectors of characters. That is, neither system uses standard C or C++ strings.
Therefore, strings require more involved manipulation, but since their length is
pre-computed and stored they can be easily moved as byte sequences. Finally,
POSIX timestamps are integers on the DBMS side, but real (C double) on the
R side, which requires type casting going into either system.

Data structures include vectors, matrices and data frames on the R side and
tables (including materialized views) in SQL. To achieve maximum efficiency,
transferring is always done moving atomic values between systems as byte se-
quences: string parsing is avoided. We make sure a data frame only contains
atomic values (i.e. complying with 1NF), thereby enabling transferring data into
an SQL table. Lists in R violate a database first normal form. Therefore, they
cannot be transferred into the DBMS, but they can be pre-processed converting
them into a collection of data frames. Transferring in the opposite direction, an
SQL table is straightforward to convert into an R data frame since the latter is a



more general data structure. Converting an SQL table into an R matrix requires
considering a sparse or dense matrix storage and how subscripts are represented
in SQL. Finally, vectors/matrices in C++ are a mechanism to efficiently transfer
and serialize data from the UDF to vectors/matrices in R (which have different
storage and require memory protection), but not to perform statistical analysis.
That is, they are transient data structures.

3.3 Data Transfer

We start by considering storage layout and processing in both systems. From
the DBMS side we aim to process streams which come in row form by default.
On the R side, there are two main data structures: data frames and matrices
(vectors being a particular case). Notice that in general, matrices come as output
from a machine learning algorithm, transforming the input data set into matrix
form if needed. Data frames are organized in RAM by column, which means that
a single column is stored in contiguous space. The second consideration is size:
we assume tables coming from the DBMS cannot fit in main memory. The row
to column conversion and limited main memory leads to block-based algorithms,
which transform SQL table rows into column-oriented chunks (blocks) of a data
frame. Given the bidirectional transfer, one algorithm transfers data from the
DBMS to the R runtime and the second one from the R runtime to the DBMS. In
order to handle such bidirectional data transfer efficiently we developed a packed
(binary, space-efficient) record binary file format, which allows mixing integers,
reals, date/time and variable length strings into variable length records. Data
values are transferred as transferred back and forth as long byte sequences. That
is, there is no parsing to maximize throughput. This packed record binary file
is the basic mechanism to transfer data in both directions. Our fastest data
transfer algorithms are programmed in the C language and they are exposed
as R functions, to provide intuitive extensibility and interoperability (R), and
maximum processing speed (C).

We consider two alternatives to program data transfer between both sys-
tems: (1) programmed in the R language; (2) programmed in the C language.
In alternative (1) data mapping and building data structures is done entirely
with existing R data structures, operators and functions. That is, nothing is
programmed in the C language and therefore it is elegant and intuitive for an-
alysts to customize. The caveat if alternative (1) is low speed. On the other
hand, in alternative (2) we develop new R functions whose source code is pro-
grammed in the C language. That is, these functions directly access R internal
data structures, especially data frames (somewhat similar to a table) and ma-
trices (multidimensional array). Such data structures are converted to tabular
form, as explained below. In alternative (2) function calls are intutitive to the
analyst, but the source code is difficult to extend and customize. We emphasize
that both alternatives execute within the R runtime in the R language native
data structures, with dynamic memory.

Each alternative has different application scenarios. Alternative (1) (R lan-
guage) is necessary to export machine learning models, which are composed of



vectors, matrices and associated statistical metrics. That is, machine learning
models cannot be directly converted to relational tables in SQL. Instead, the
DBMS can store them as binary objects that can be accessed calling external
C functions (i.e. cannot be called in SQL). Notice machine learning models are
small: they take little space in main memory. In addition, the R language can
provide a flexible way to transform small data sets exploiting R mathematical
operators and functions. On the other hand, our system offers R data transfer
functions programmed in the C language (alternative (2)). Evidently, the C lan-
guage is more efficient, especially for large data sets and streams. However, C
data transfer functions are tailored to data frames. Therefore, they cannot com-
pute models with R language statements and therefore such C functions are not
adequate to transfer models from R to SQL. In summary, data sets are trans-
ferred in both directions between the R runtime and the DBMS but machine
learning models are transferred only in one direction (from R to the DBMS).

To round up this section, we provide a brief complexity analysis. For a data
set having p attributes and n rows the time complexity of data transfer algo-
rithms is linear O(pn) because each table row (SQL) or data frame row (R) is
accessed once and each value is touched once as well. In the specific case that
the data set is a matrix with d dimensions (all p attributes are real numbers)
and n points time complexity is O(dn). Space complexity is the same, but we
emphasize the DBMS and R run in different processes: they do not share mem-
ory. Therefore, data transfer is required and space consumption doubles. Finally,
models consist of a collection of matrices whose size is generally O(d) or O(d2).
That is, they are much smaller than O(dn).

3.4 Calls in Both Directions

We proceed to explain processing in more technical depth.

R calling SQL (evaluate SQL query)

Since R has a flexible script-based runtime and SQL queries in the DBMS are
compiled to an executable C program it is not necessary to develop specialized
C code to call an SQL query: the SQL query is simply called with a system com-
mand call. Transferring data from the evaluated SQL query to R is achieved via
the packed record binary format that is converted to data frame format (column-
oriented) and then incrementally transferred to a data frame in RAM (via Unix
pipes). This format resembles a big network packet, with a header specifying
fields and their sizes, followed by a payload with the sequence of packed records.
Notice that since in the DBMS strings have highly variable length then records
also have variable length. Therefore, conversion and transfer record by record is
mandatory (instead of block by block), but it is efficiently done in RAM, always
moving byte sequences. When the output SQL table does not fit in RAM the
data set can be processed in a block-by-block fashion in R; the drawback is that
most existing R functions assume the entire data set is used as input and there-
fore they must be reprogrammed. When the algorithm behind the R function



is incremental the respective R function is called on each block. This is a com-
mon case for transforming columns of a data set with mathematical functions,
computing models with gradient descent or when partial data summaries can be
merged at the end. Otherwise, when there is no incremental algorithm multiple
models must be compared or merged, which is more difficult to do. A data frame
containing only real numbers can then be converted to matrix. That is, it is fea-
sible to call most R functions using a data frame or a matrix as input. Further
math processing happens in R and in general R mathematical results (models,
a set of matrices, diagnostic statistics) are locally stored in R. However, if the
output of an R program is a data frame, preferably with a timestamp attribute,
it can be converted to our packed binary format and then loaded back into the
DBMS.

We list the main programming steps for the R analyst: (1) execute SQL query
(which must have a time range); (2) transfer the SQL result table to one R data
frame with a simple R variable assignment; (3) call R function on either: (a)
entire data frame (once when result table fits in RAM, common case); (b) with
a block-based algorithm (iteratively, less common case). Complex R statistical
results cannot imported back into the DBMS, due to R being a more general
language and its functional computation model. The main reasons behind this
limitation are: models are composed of matrices, vectors and associated metrics,
not flat tables like SQL; the need to incorporate time ranges on every result
so that they become streams as well. However, a data frame containing atomic
values can be be converted to an SQL table, but this scenario makes more sense
to be managed by the DBMS, as explained below.

SQL calling R (evaluate R expression or call function)

SQL is neither a flexible nor an efficient language to manipulate data structures
in main memory, but it offers UDFs programmable in C++, which can be easily
called in a SELECT statement. On the other hand, the most flexible mechanism
to call R to perform low-level manipulation of data is to embed R code inside C
(or C++) code. Since UDFs are C++ code fragments plugged into the DBMS
that isolate the programmer from the internals of physical database operators
we use them as the main programming mechanism to call R, bypassing files
and communication protocols. Specifically, calling R from the UDF C++ code
is achieved by building temporary C++ vectors and then converting the set of
C++ vectors into an R matrix. Notice we do not convert SQL records to data
frame format in R because we assume the R function to call takes a matrix as
input, the most useful case in practice. We should mention that directly moving
data from an SQL table to an R data frame in embedded R code is significantly
more involved to program, but not faster than matrices. R results can be further
processed in C++ inside the DBMS and potentially be imported back into a
table. Only R results that are a data frame can be transferred back into some
SQL table. In general, there exist materialized views which have a dependence
on this temporary table. From a query processing perspective when the R result



is a data frame the DSW can treat R functions as table user-defined operators,
where the size of the result can be known or bounded in advance.

We summarize the main programming steps in the UDF C++ for the SQL
developer: (1) Include R header files; (2) load our R library; (3) setup parameters
for R function; (4) build matrix in the UDF aggregation phase (row by row, but
in RAM); (5) call R function in UDF final phase, (6) write R function results
back into the DBMS either as: vector or matrix (accessible via special SQL
functions) or table (accessible via SQL queries) when the result is a data frame.

3.5 Examples

We discuss typical analytic examples on network data. These examples illustrate
two different needs: (1) an analyst, with basic SQL knowledge, just wants to ex-
tract some relevant data from the DBMS to perform compute some machine
learning model. (2) a BI person, with advanced SQL and data cubes knowl-
edge, but basic statistical background, wants to compute some mathematical
transformation on the data set that is cumbersome or difficult to do in SQL.

R calling SQL: The analyst writes several SQL queries in a script to build a
data set extracted by selecting records with a time window and then aggregating
columns to create variables for statistical analysis. Then this data set is ideal
to be analyzed by R to get descriptive statistics like the mean or standard
deviation for numeric variables and histograms for numeric or discrete variables.
After the data set is well understood the analyst can exploit R to compute
a predictive model such as linear regression (to predict a numeric variable) or
classification (to predict a discrete variable). These tasks boil down to writing an
SQL script, starting the R environment, sending the SQL script to the DBMS for
evaluation, transferring the final SQL table into a data frame and then analyzing
the R data frame as needed. Notice that the output of these calls cannot be sent
to the DBMS since they are collection of diverse vectors, matrices, arrays and
associated statistics and diagnostic metrics.

SQL calling R: In this case there is an experienced SQL user who needs
to call R to exploit some complicated mathematical function. A first example
is getting the covariance or correlation matrix of all variables in the data set.
Many insights are derived from these matrices. Moreover, these matrices are
used as input to multidimensional models like PCA. Assume the user builds the
data set with SQL queries as explained above, but the user wants to store the
correlation matrix in the DBMS. To accomplish this goal, the user simply needs
to create a “wrapper” aggregate UDF that incrementally builds a matrix, row
by row. The aggregation phase reads each record and converts it to a vector in
RAM. After the matrix is built R is called in the final phase of the UDF. At the
end, the correlation matrix is locally stored in the DBMS to be consumed by a
C++ program using our vector/matrix library. A second example is analyzing
a stream as a time series and smoothing the time series in order to visualize it
or analyze it. In this case the user does want to store the smoothed time series
back into the DBMS. In more detail, the user wants to call R to solve the Fast
Fourier Transform to find the harmonic decomposition of the time series and



identify its period. Once the period is known values are averaged with a moving
time window. The net result is a time series that is easier to interpret because
it has less noise and a periodic pattern has been identified. Assuming the input
table has a timestamp and some numeric value an aggregate UDF builds a data
frame in the aggregation phase and then it calls R in the final phase to get an
output data frame. This “cleaned” time series can be transferred back into the
DBMS as a streaming table.

4 Experimental Evaluation

We did not conduct a detailed benchmark of STAR at AT&T due to two main
reasons: (1) STAR can work with any DBMS supporting SQL and materialized
views. (2) TidalRace, our current DBMS, works with confidential data whose
characteristics cannot be disclosed. Instead, we focus on understanding STAR’s
ability to analyze high-volume streams with low-end hardware (i.e. under pes-
simistic conditions).

4.1 Hardware and Software

Our benchmark experiments were conducted on a rack server with a Quad-core
CPU running at 2.153 GHz (i.e. 4 cores), 4GB RAM and 1 TB disk. As explained
above, STAR was programmed in the R and C languages, providing an API to
transfer data and make function/query calls in both directions.

In order to test correctness of results we performed full bi-directional data
transfers with large data sets (tens of attributes, millions of records): (1) export-
ing an SQL table to an R data frame and then exporting the R data frame back
to the DBMS to another SQL table. (2) transferring a data frame to an SQL
table and then exporting such SQL table back to R as another data frame. We
did not test correctness of complex SQL queries or arbitrary R scripts computing
models because we do not alter the results returned by each system. Since these
tests are basically a Y/N check mark they are omitted.

Our STAR system works with any DBMS supporting SQL. The time to
evaluate SQL queries will vary widely depending on the specific query, DBMS
storage (e.g. row or column based), indexing data structures for sliding time
windows and size of result table. On the other hand, the time to import data
into a DBMS will vary widely depending on parallel processing, storage layout
and file format. On the other hand, R functions to compute models (e.g. K-
means, linear regression, PCA) take a few seconds working on our data set.
We emphasize our packed record binary file allows processing as efficient as
possible. It is understood R does not scale well to large n. Therefore, we focus
on measuring time after the SQL query result is ready or before the packed
binary file is imported into the DBMS.



Table 1. Comparing languages: transfer time and throughput (10 mixed type at-
tributes, time in secs).

n R C
bin csv bin recs/sec

100k 60 1.1 0.011 9.1M
1M 604 9.5 0.096 10.0M

10M na 98.1 0.968 9.7M

4.2 Benchmarking Data Transfer

In general, network data streams have few columns (2-10), resembling normal-
ized tables. Most stream data sets have at least one time attribute (typically
a timestamp) and some measurement (count or real number). Additional at-
tributes include geographical location, network connection information (source
and/or destination), and device information (e.g. MAC, firmware version). Based
on this motivation, we use a data set with 10 attributes, including a timestamp,
two variable length strings and seven measurements selected from the KDD net-
work intrusion data set obtained from the KDD Cup web site. Each record is
about 60 bytes which is wide enough to trigger heavy I/O. Our goal is to compare
speed and measure maximum throughput. Table 1 compares speed to transfer
data from the DBMS to R, with data transfer programmed in R and data trans-
fer programmed in tuned C code. We stopped execution at one hour. The R
language is more than three orders of magnitude (1000 times) slower than C to
process the packed binary file. The R language provides built-in routines to read
CSV text files, programmed in the C language. In this case our packed binary
file is two orders of magnitude faster (100 times). The last column in Table 1
highlights our system is capable of transferring 10M records/second between the
DBMS and R, surpassing DBMS query processing speed and R mathematical
speed in most cases (i.e. our system is not a bottleneck to process a large data
set despite the fact it is strictly sequential and it reads/writes to secondary stor-
age). We emphasize that any reasonably complex SQL query (mixing joins and
aggregations) or R program working on a large data set with 10M records is
likely to take a few seconds or minutes, even with parallel processing. Export-
ing a model takes only a fraction of one second (e.g. 0.1, 0.5 secs) for data sets
with up to hundreds of dimensions after the model is computed (refer to Section
3.3 for an explanation on data set and matrix sizes). Therefore, we omit time
measurements to evaluate specific SQL queries or to export a machine learning
model (e.g. K-means clustering, PCA, linear regression, classification).

5 Conclusions

We presented a “low level connector” system to efficiently transfer data and en-
able calls between SQL and the R languages in both directions, thereby removing



R main memory limitations, allowing SQL to perform mathemtical computa-
tions, achieving streaming speed and improving interoperability between both
systems. Our system defends the idea of combining sequential processing in R
with a streaming computation model, where the stream is either: a query result
table coming from the DBMS or a transformed data set coming from R imported
back into the DBMS. We introduced a packed binary file which allows efficient
data transfer in both directions for data sets having fixed (integers, reals, date,
timestamp) and variable length columns (strings). We provide functions that
allow calling R functions from SQL and calling SQL queries from R. In addi-
tion, we provide external functions to transfer machine learning models from R
to the DBMS, as objects. Benchmark experiments show data transfer functions
programmed in C are orders of magnitude faster than functions programmed
in R. However, such C functions can only convert data frames into SQL tables
and vice-versa. That is, they cannot convert mathematical models, consisting of
matrices, vectors and statistics, into SQL tables. On the other hand, functions
programmed in the R language are slow to transfer data sets, but efficient and
intuitive to export models from R to the DBMS. Despite its limitations, we be-
lieve R will remain as a major alternative to perform statistical and even more
general mathematical processing on large data sets and streams. Our prototype
is a step in that direction.

Our bidirectional transfer/call approach offers many research opportunities.
Scaling R beyond RAM limits and exploiting parallel processing remain im-
portant research issues. Specifically, we want to develop incremental machine
learning algorithms for large SQL tables that can call R mathematical operators
and functions. Parallel processing in R challenging since its architecture is single-
threaded, but matrix operators and numerical methods are highly parallel. At a
more fundamental level we will keep studying how to transform SQL tables into
matrices and vice-versa and how to exploit SQL queries on transformed data
frames and matrices.

References

1. J. Cohen, B. Dolan, M. Dunlap, J. Hellerstein, and C. Welton. MAD skills: New
analysis practices for big data. In Proc. VLDB Conference, pages 1481–1492, 2009.

2. C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: a stream
database for network applications. In Proc. ACM SIGMOD, 2003.

3. S. Das, Y. Sismanis, K.S. Beyer, R. Gemulla, P.J. Haas, and J. McPherson. RI-
CARDO: integrating R and hadoop. In Proc. ACM SIGMOD Conference, pages
987–998, 2010.

4. A. Ghazal, A. Crolotte, and R. Bhashyam. Outer join elimination in the Teradata
RDBMS. In DEXA Conference, pages 730–740, 2004.

5. L. Golab, T. Johnson, J. Spencer Seidel, and V. Shkapenyuk. Stream warehousing
with DataDepot. In Proc. ACM SIGMOD, pages 847–854, 2009.

6. J. Hellerstein, C. Re, F. Schoppmann, D.Z. Wang, E. Fratkin, A. Gorajek, K.S.
Ng, and C. Welton. The MADlib analytics library or MAD skills, the SQL. Proc.
of VLDB, 5(12):1700–1711, 2012.



7. T. Johnson and V. Shkapenyuk. Data stream warehousing in Tidalrace. In CIDR,
2015.

8. C. Ordonez. Building statistical models and scoring with UDFs. In Proc. ACM
SIGMOD Conference, pages 1005–1016, NY, USA, 2007. ACM Press.

9. C. Ordonez. Statistical model computation with UDFs. IEEE Transactions on
Knowledge and Data Engineering (TKDE), 22(12):1752–1765, 2010.

10. C. Ordonez. Can we analyze big data inside a DBMS? In Proc. ACM DOLAP
Workshop, 2013.

11. C. Ordonez and J. Garćıa-Garćıa. Vector and matrix operations programmed with
UDFs in a relational DBMS. In Proc. ACM CIKM Conference, pages 503–512,
2006.

12. C. Ordonez and I.Y. Song. Relational versus non-relational database systems for
data warehousing. In Proc. ACM DOLAP Workshop, 2010.

13. M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden, E. Paulson, A. Pavlo, and
A. Rasin. MapReduce and parallel DBMSs: friends or foes? Commun. ACM,
53(1):64–71, 2010.

14. M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database Manage-
ment System for Applications with Complex Analytics. Computing in Science and
Engineering, 15(3):54–62, 2013.

15. M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In HotCloud USENIX Workshop, 2010.

16. J. Zubcoff and J. Trujillo. Extending the UML for designing association rule mining
models for data warehouses. In Proc. DaWaK, pages 11–21. Springer, 2005.


