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Abstract. This work discusses theoretical models of decentralized large-scale 

cyber-physical and other types of multi-agent systems (MAS). Arguably, vari-

ous types of Boolean Networks are among the simplest such models enabling 

rigorous mathematical and computational analysis of the emerging behavior of 

such systems and their collective dynamics. This paper investigates determining 

possible asymptotic dynamics of several classes of Boolean Networks (BNs) 

such as Discrete Hopfield Networks, Sequential and Synchronous Dynamical 

Systems, and (finite, Boolean-valued) Cellular Automata. Viewing BNs as an 

abstraction for a broad variety of decentralized cyber-physical, computational, 

biological, social and socio-technical systems, similarities and differences be-

tween open and closed such systems are rigorously analyzed. Specifically, this 

paper addresses the problem of enumerating all possible dynamical evolutions 

of large-scale decentralized cyber-physical, cyber-secure and holonic systems 

abstracted as Boolean Networks. We establish that, in general, the problem of 

enumerating possible dynamics is provably computationally hard for both 

"open" and "closed" variants of BNs, even when all of the following restrictions 

simultaneously hold: i) the local behaviors (node update rules) are very simple, 

monotone Boolean-valued functions; ii) the network topology is sparse; and iii) 

either there is no external environment impact on the system, or the model of 

the environment is of a rather simple, deterministic nature. Our results provide 

lower bounds on the complexity of possible behaviors of "real-world" large-

scale cyber-physical, socio-technical, social and other distributed systems and 

infrastructures, with some far-reaching implications insofar as (un)predictability 

of such systems’ collective dynamics. 

 

Keywords: Cyber-Physical Systems; Multi-Agent Systems; Boolean Networks; 

Cellular & Network Automata; Network Dynamics; Systems Science 

1 Introduction  

Network Science and Agent-Based Modeling (ABM) have provided useful abstrac-
tions, research methodology, as well as mathematical and computational tools for in-
vestigating fundamental behavioral properties of a broad variety of physically and 
logically decentralized, “networked” systems and infrastructures in engineering, phys-
ics, biological sciences and social sciences (see, e.g., [1, 7, 16, 19, 25, 26]). In particu-
lar, investigating possible dynamics of discrete, agent-based models has been of a con-
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siderable research interest among those studying, designing and/or analyzing various 
distributed computing infrastructures, as well as various cyber-physical and cyber-
secure systems. Both analytical and computational (i.e., simulation-based) studies have 
been undertaken, often providing valuable insights that would be much harder, or even 
impossible, to obtain using the “traditional” mathematical and computational methods 
based on solving appropriate systems of ordinary or partial differential equations ana-
lytically whenever possible, or via numerical simulation otherwise.   

One important distinction that is often made about such complex distributed systems 
is, whether a given system is open or closed. In an open system, there is in general 
influence of an “environment” external to the explicitly modeled, designed and/or con-
trolled “agents”; and the system designer, who is in charge of controlling or “program-
ing” the behavior of the agents, in general does not exercise control over that environ-
ment, how the environment may impact the agents, or indeed how will that environ-
ment respond to the agents’ actions. In contrast, in a closed system, there is no (rele-
vant) “environment” or other uncontrollable and/or unpredictable sources of impact on 
the agents in the system, outside of those agents themselves and their own behaviors.  

Everything else being equal, in general it is easier to design, analyze, and predict or 
control behavior of agents in a closed environment than in an open environment. Need-
less to say, however, most if not all “real-world” cyber-physical, socio-technical, bio-
logical and physical systems are in reality open, in the sense that it is rather rare that 
the system designer or the organization deploying a particular engineered multi-agent 
system has the full control of all relevant entities, interactions within and influences on 
that system. However, depending on what properties of the system behavior one is 
interested in, as well as whether and to what extent the actual external factors impact 
those properties of interest, when modeling cyber-physical, socio-technical and other 
decentralized multi-agent systems, assuming the system to be (approximately) closed 
in order to simplify analysis and/or design may still be justifiable. 

Distributed computing and distributed AI researchers have extensively studied in-
teractions, emerging behavior, coordination, resource and task sharing, and other im-
portant problems formulated in both open and closed system settings. In some circum-
stances, it may be appropriate to model a particular multi-agent or cyber-physical sys-
tem as a closed system – for example, when it’s justifiable to assume that no “external” 
aspects of the environment would have any relevant impact on the agents, their re-
sources, decisions, goals or tasks. On the other hand, designing protocols, algorithms, 
and other techniques for autonomous software or robotic agents in open environments 
is, as a rule of thumb, both more realistic and more challenging, esp. when possible 
impact of the environment on agents, their actions and their goals is complex, nonde-
terministic and/or only partially observable (see, e.g., [14, 17]). 

Communicating Finite State Machines (CFSMs) and Boolean (or other discrete-
valued) Networks are among the most popular mathematical formalisms for a broad 
range of biological, physical, computational, cyber-physical, socio-technical and other 
decentralized systems and architectures [2, 3, 15-18, 20, 21]. These models allow for 
crisp formalizations of many properties of such systems’ collective and emerging be-
havior, especially with regards to long-term or asymptotic dynamics [16, 17, 22, 23]. 
One typical example is formalizing the fairness, liveness, deadlock avoidance and 
similar properties of interest when it comes to modeling and verification of distributed 
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computing infrastructures, in terms of the fundamental configuration space properties 
of a formal discrete dynamical system based on CFSMs or Boolean Networks.  

The rest of this paper is organized as follows. In Section 2 we introduce open and 
closed distributed multi-agent and cyber-physical systems, as well as how they can be 
formalized in terms of Boolean Networks (BNs). We also outline some MAS applica-
tions that could benefit from our theoretical analysis of differences in possible emerg-
ing behaviors between open and closed systems. In Section 3 we formally define the 
key configuration space properties of BNs that capture the most important aspects of 
asymptotic dynamics of those networks. We then focus on the computational complex-
ity of characterizing network dynamics, i.e., answering fundamental questions about 
those Boolean Networks’ configuration spaces. We characterize those problems in 
both open and closed system settings, and summarize key results for a broad range of 
sparse BNs with simple local interactions. To the best of our knowledge, no prior work 
has addressed such comparative analysis of open vs. closed discrete dynamical systems 
in a formal Boolean Network setting. Last but not least, we summarize the key insights 
and outline some directions for future research. 

2 On Collective Dynamics of Open and Closed Systems  

Our goals in this paper are to, first, mathematically formalize open and closed decen-
tralized information processing systems, and, second, establish some key properties of 
such systems from a unified standpoint of dynamical system theory and computational 
complexity / (un)predictability. We would like our framework to be sufficiently ab-
stract yet versatile, so that it provides meaningful insights on a broad variety of decen-
tralized information processing systems and distributed infrastructures, ranging from 
the classical distributed computing environments and cyber-physical systems to social 
networks and socio-technical systems to biological systems.  

In case of the main results in this paper, these insights will for the most part be in 
the form of lower bounds on complexity of an agent ensemble’s collective dynamics. 
By a unified dynamical systems and computational complexity viewpoint, we mean 
that we want to understand the dynamics of these complex networks (as our abstraction 
of the real-world cyber-physical, socio-technical, biological and other systems), and in 
particular to address the computational complexity (that is, relative hardness or easi-
ness) of characterizing that dynamics. 

Our choices of mathematical abstractions for the open and closed distributed multi-
agent systems are driven by our interests in agent-based modeling and distributed AI 
on one hand, and network science, on the other – and esp. the cross-fertilization be-
tween these two research areas. In particular, the networks we study are characterized 
by the following properties: time is discrete (and there is an implicit assumption of the 
existence of a global clock, an important premise discussed in detail, e.g., in [16, 19]). 
Likewise, the states of the individual agents are discrete. For simplicity, we will as-
sume each agent is binary-valued, i.e., it can, at any discrete time step t, be in one of 
two possible states: 0 or 1. The graph or network structure captures, which (pairs of) 
agents can potentially directly influence each other. Under these ontological commit-
ments, Boolean Networks of interconnected Finite State Machines are a natural model-
ing framework [2, 16, 20]. (Of course, other modeling choices are possible – for exam-
ple, those in which either time, or states of agents, or both, are continuous as opposed 
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to discrete. Closer to our adopted modeling framework, individual agents or nodes are 
often allowed to be more general finite state machines, so that, in particular, each node 
may have more than two states. We prefer the Boolean, i.e., binary-valued model for 
two reasons: (i) it’s the simplest non-trivial model w.r.t. the states of individual nodes 
or agents, and (ii) binary-valued nodes allow for direct comparisons with the rich exist-
ing literature on discrete Hopfield networks, cellular automata and other types of bina-
ry-valued Network Automata.)   

How do we differentiate between open and closed multi-agent systems in this mod-
eling framework provided by Communicating Finite State Machines (CFSMs) in gen-
eral, and Boolean Networks as a restricted class of CFSMs, in particular? A closed 
system can be captured by a Boolean Network in which each node is an agent, whose 
individual behavior is defined, controlled, or at the very least, well-understood by us. 
In contrast, in an open system abstracted as a CFSM or a Boolean Network, some 
nodes correspond to agents, whereas other nodes capture the “environment” that influ-
ences the agents, and that we do not have control over. The novelty in the present pa-
per is the explicit differentiation between “open” and “closed” CFSMs and BNA, and 
how the openness (that is, the presence of an “uncontrollable” environment external to 
the network of agents) impacts some of these fundamental properties of discrete net-
work’s dynamics and their configuration spaces. 

An alternative approach, studied by researchers working at the intersection of multi-
agent systems and statistical physics, is based on a network of agents operating in an 
external potential field akin to external electric or magnetic or other force fields studied 
in physics. We will not discuss this latter class of models; for us, every relevant aspect 
of the world is a node (finite state machine) in the network, but while we have control 
over the behavior of certain nodes (namely, those representing our “agents”), we do not 
have control over others (capturing various relevant aspects of “the environment”).  
We note that the explicit distinction between open and closed multi-agent systems, and 
some implications of that distinction, has been studied by the Distributed AI research-
ers (see, e.g., [1]), although, as far as we are aware, not within our formal modeling 
framework based on Boolean Networks. 

2.1 Some Examples of Open and Closed Cyber-Physical Multi-Agent Systems 

To provide some real-world “grounding” of the theoretical models of MAS studied in 

the rest of the paper, we outline some decentralized cyber-physical and/or multi-agent 

applications in which one can readily differentiate between open and closed systems. 

Team Robotics. One popular example is robotic soccer: two teams of robots, each 

belonging to a different designer, playing soccer against each other. Within a single 

team, we have a purely cooperative multi-agent system engaging in distributed coor-

dination (see, e.g., [25, 27]). However, from a Distributed AI standpoint, the coordi-

nation of robots within the same team is more complex than that in purely collabora-

tive, distributed problem-solving settings, as it is done in presence of an adversary – 

namely, the other team of robots. Importantly, however, the entire “environment” in 

this application is made of the agents from the two teams of robots (plus the ball, goal 

posts, and other relevant aspects of the environment that, however, in general do not 

act deliberately or unpredictably); in particular, there is no “external control” nor an 

unknown external “environment node” that may unpredictably influence the multi-
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agent interactions among the robots within a team, or indeed between the two robotic 

teams. Hence, the robotic soccer is an example of a closed cyber-physical system. 

This can be contrasted with, for example, ensembles of autonomous unmanned aer-

ial, underwater or ground vehicles used in a surveillance, search-and-rescue or other 

type of military or law-enforcement deployment [14, 16, 24]. The physical environ-

ments in which such autonomous vehicles operate are, in general, complex and un-

predictable; in particular, they often contain other goal-driven agents, possibly includ-

ing adversarial ones. Unlike with robotic soccer, the behavior of the adversarial and 

other deliberative and goal-oriented agents is typically not a priori known; likewise, 

possible impact of external agents and other aspects of the environment on “our” au-

tonomous vehicle agents also in general is not known to the designer of unmanned 

autonomous vehicles or the organization deploying those vehicles. The natural model-

ing framework for such ensembles of autonomous unmanned vehicles, therefore, is 

that of open (cyber-physical, multi-agent) systems. 

Traffic Systems. If one considers just the “core infrastructure” such as the signaling 

system (where it is known, for example, where the traffic lights and other components 

of a city’s traffic signaling system are located, and how all those components func-

tion), that would be an example of a closed cyber-physical system. However, when 

modeling and simulating such traffic systems, the “overall” traffic system is usually 

considered to also include vehicles, pedestrians and possibly other “agents” whose 

behaviors, in general, are not a priori known. While one may have a model of possible 

behaviors, and/or constraints on possible speeds of motion and other relevant aspects 

of those agents’ behaviors, in general, these vehicle and pedestrian agents are more 

complex and less predictable than say the traffic lights alone. So, in many traffic 

modeling contexts, the broader traffic system should be considered to be an open 

system. This is particularly significant when the new agents such as vehicles may 

unpredictably enter and/or leave the modeled system, thus also making such traffic 

system open also in the usual distributed computing sense. (We note that the first 

author’s original exposure to the world of agent-based modeling and multi-agent sys-

tems, back in the early 2000’s, was precisely in the context of defining and analyzing 

mathematical and computational models for fairly large-scale -- ranging from tens to 

hundreds of thousands of agents -- urban/metropolitan area traffic simulations [2].) 

Epidemics Propagation. Consider spreading of an epidemic, for example, a flu vi-

rus, in a community. Accurate models of epidemics propagation are important in pub-

lic health domain, as well as for designing the best response when faced with outbreak 

of massive epidemics or a biological warfare attack. Over the past 20+ years, the clas-

sical, continuous mathematics based models (specifically, those based on solving 

differential equations) have been increasingly being replaced by discrete, agent-based 

models. For a recent work on agent-based modeling of epidemics, that also provides a 

good survey of the state of the art and methodology, see, e.g., [28]. 

 Many agent-based models of epidemics propagation assume closed systems (for 

example, a town or city with a “fixed” population). More realistically, however, on 

practically any scale larger than that of an individual family, the population(s) that 

may be affected by the epidemics should be viewed as open systems, since new indi-

viduals may enter into the population, some of the existing members may leave it, etc. 
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Depending on the particular aspects of epidemics propagation one wishes to model, 

however, it may still be justifiable to “treat” the affected population as a closed multi-

agent system (with an understanding that, at non-trivial scales, this strictly speaking is 

hardly ever the case). Therefore, when modeling propagation of epidemics (or opin-

ions, political or social influences, etc.) in a population, sometimes it may be suitable 

to treat the population in question as a closed system, whereas in other scenarios it is 

of essence to explicitly take into account the intrinsically open nature of population 

dynamics problems in most practical scenarios and for all but the smallest of scales 

(cf. in terms of population sizes).  

3 Preliminaries and Definitions 

We formulate and then characterize some fundamental properties of asymptotic dy-
namics of open and closed distributed multi-agent systems in the formal setting of 
Boolean Networks and, as their prominent special case, Discrete Hopfield Networks [8, 
9]. We define those two classes of discrete dynamical systems next.  

Definition 1: A Boolean Network (also called Boolean Network Automaton, or 
BNA) is a directed or undirected graph so that each node in the graph has a state, 0 or 
1; and each node periodically updates its state, as a function of the current states of 
(some or all of) its neighboring nodes (possibly, but not necessarily, including itself). 
A BNA dynamically evolves in discrete time steps. If the node vi has k neighbors de-
noted vi1, …, vik  (where this list may or may not include vi itself), then the next state of 
vi is determined by evaluating a Boolean-valued function fi(vi1, … vik) of k Boolean 
variables; fi is called the local update function or transition rule (for the node vi).  

Several comments are in order. First, in general, different nodes vi may use different 
local update functions fi. This applies to Discrete Hopfield Nets [4, 5, 8, 9], as well as 
many other classes of Boolean Networks including those originally introduced by S. 
Kauffman in the context of systems biology [6, 10], and also several related models 
proposed in the context of modeling large-scale distributed computing and other decen-
tralized cyber-physical infrastructures [2, 3, 11, 18]. Classical Cellular Automata (CA) 
can then be viewed as a special case of BNA, where all the nodes use the same local 
update rule fi [20]. (We note that the underlying graphs in BNA are almost always 
assumed to be finite, whereas Cellular Automata have been extensively studied in both 
finite and infinite settings.)   

The individual node updates can be done either synchronously in parallel, or se-
quentially, one at a time (and if so, either according to the fixed update ordering, or in a 
random order). While other communication models are worth considering [19, 21], the 
above three possibilities have been studied the most. In this paper, we will focus entire-
ly on the parallel, perfectly synchronous node updates. This means, the next state of the 
node vi is determined according to 

vi
t+1 

← fi(v
t
i1, …, v

t
ik)                                      (1) 

The tuple of all fi’s put together, F = (f1, …, fn), denotes the global map that acts on 

(global) configurations of a BNA. When all fi are the same, the notation in the litera-

ture is often abused so that no differentiation is made between the local transition 
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function, acting on a state of a single node, and the global map F, acting on entire 

configurations of a cellular or network automaton (that is, on all the nodes). In classi-

cal CA, all nodes update according to the same local update rule. In most other Bool-

ean Network models, different nodes in general update according to different rules.    

Definition 2: A Discrete Hopfield Network (DHN) is made of n binary-valued 

nodes. Associated to each pair of nodes (vi, vj) is (in general, real-valued) their 

weight, wij. The weight matrix of a DHN is defined as W = [wij]i,j=1..n. Each node also 

has a fixed real-valued threshold, hi. A node vi updates its state xi from time step t to 

step t + 1 according to a (binary-valued) linear threshold function of the form  

x
t+1

i ←  sgn(∑ wij ∙ x
t
 j ─ hi)                                (2)                                                                                                  

 

where the summation is over j = 1, …, n; the term hi is the threshold that the weighted 

sum needs to reach or exceed in order for the node’s state to update to +1; to break 

ties, we define sgn(0) = +1.  

The default notation in most of the literature on Hopfield networks is that the bina-

ry states of an individual node are {-1, +1}. In this paper, however, we adopt the 

Boolean values {0, 1} for the states of our nodes, in order to be able to discuss DHNs 

and our results about them in the broader context of Boolean Networks (see, e.g., [6, 

10, 19]) without the need for cumbersome “translations”. Furthermore, in most of the 

existing literature on DHNs (e.g., [5, 8, 9, 12, 13]), two additional assumptions are 

usually made, namely, that (i) the diagonal elements of weight matrix W are all zeros: 

wii = 0; and (ii) the weight matrix is symmetric, wij = wji for all pairs of nodes i, j. We 

will adopt (ii) throughout (we note, this does not affect the main results and insights 

from them discussed in the next section). As for (i), we will consider two possibilities 

on the nodes’ “memory” (of their own current state, as a part of the local transition 

rule): either wii = 0 for all nodes vi, or else wii = 1 for all vi. The main results in the 

next section hold under either the memoryless (wii = 0) or with memory (wii = 1) as-

sumption. Moreover, in the memory case, our results can be readily extended to more 

general weighing wii of how is a node’s state at time t+1 affected by its own state at 

time t; these variations will be discussed in an expanded, journal version but are left 

out of this paper due to space constraints.   

We study a variety of Boolean Network models and their asymptotic dynamics. 

Several of our main results are formulated in the DHN context [22]; some of our prior 

work was formulated in the context of two other types of Network or Graph Automata 

(possibly but not necessarily Boolean), called Sequential and Synchronous Dynamical 

Systems [2, 15]. Hopfield Networks were originally inspired by biology and especially 

computational neuroscience (in particular, they were introduced as a model of associa-

tive memory [8]). Subsequently, in addition to theoretical models in computational 

biology and neuroscience, Hopfield Networks (both discrete and continuous) were 

used for as a connectionist, self-organizing map model for “learning” and “searching 

for a solution”, i.e., as a powerful tool for various search and optimization problems in 

computer science, operations research and beyond [9].  

We note that some of the earliest Boolean Network models were also originally in-

troduced in the context of theoretical and systems biology, albeit not specifically neu-
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roscience. Indeed, the very name Boolean Networks comes from the seminal work in 

theoretical biology by S. Kauffman [10]. In contrast, Sequential and Synchronous Dy-

namical Systems (SDS and SyDS, resp.) were specifically introduced in the context of 

agent-based simulation of complex cyber-physical, socio-technical and engineering 

systems [3, 11, 15, 16, 17]. For clarity and space constraints reasons, we will not for-

mally introduce S(y)DS models here, but rather refer the reader to relevant references. 

We emphasize that our results in this paper apply to all of the above models (DHNs, 

SDSs and SyDSs), and indeed most other discrete-time Boolean (or other finite-

domain) Networks or BNA found in the existing literature. 

Since BNA and DHN are deterministic discrete-time dynamical systems, for any 

given current configuration C
t 
at time t, there is a unique next-step configuration C

t+1
. 

We can therefore define the BNA or DHN configuration or phase spaces, and also 

various types of global configurations (i.e., tuples capturing the states of all nodes in a 

network) of interest: 
Definition 3: A (global) configuration of a cellular or network automaton or a 

discrete Hopfield Network is a vector (x1, …, xn) ε {0,1}
n 

, where xi denotes the state of 
the i

th 
node. A global configuration can also be thought of as a function γ: V  {0,1}, 

where V denotes the set of nodes in the underlying graph of a CA, BNA or DHN. 

Definition 4: A fixed point (FP) is a configuration such that, once a  BNA or DHN 
reaches that configuration, it stays there forever. A cycle configuration (CC) is a global 
state that, once reached, will be revisited infinitely often with a fixed, finite temporal 
period of 2 or greater. A transient configuration (TC) is a global configuration that, 
once reached, is never going to be revisited again.  

Definition 5: Given two configurations C and C’ of a CA, BNA or DHN, if F(C) = 
C’ then C’ is the successor of C (and C is a predecessor of C’). That is, configuration 
C’ is reached from configuration C by a single application of the global map. 

If the dynamics of a BNA or DHN is deterministic (which we shall assume 
throughout this paper), then each configuration has a unique successor. However, a 
configuration may have 0, 1 or more predecessors. By the “pigeonhole principle”, it 
then follows that the global dynamics of a (deterministic) BNA or DHN is invertible iff 
each configuration has exactly one predecessor.  

Definition 6: A configuration with no predecessors is called Garden of Eden. 
Lastly, configuration A is an ancestor of configuration C, if starting from A, the 
dynamics reaches configuration C after finitely many time steps (equivalently, if there 
exists t ≥ 1 such that F

t
(A) = C).  

In particular, a predecessor is a special type of an ancestor. Further, “fixed points” 
are the only type of configurations such that each is its own predecessor. Similarly, 
each cycle configuration is its own ancestor. In contrast, due to determinism, a TC can 
never be its own ancestor. 

A BNA is called dense if the underlying graph on which it is defined is dense. Sim-

ilarly, a DHN is dense if its weight matrix W is dense, i.e., if W contains many non-

zero entries [22, 23]. The natural interpretation of a zero weight wij = 0 in a DHN is 

that the corresponding nodes i and j do not directly affect each other. (That is, change 

of state of the i
th

 node does not immediately affect the state of the j
th

 node, and vice 
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versa; of course, they can still indirectly affect each other, via connected paths in the 

underlying graph whose edge weight products are nonzero).  In contrast, we say that a 

BNA is sparse if the underlying network topology (that is, the graph structure) is 

sparse -- which, for us, will mean that |E| = O(|V|). That is, for our purposes, sparse-

ness means O(1) neighbors per node (alternatively, only O(1) non-zero weights per 

row of the weight matrix W), on average; that is, the total number of edges in the 

underlying graph (equivalently, the total number of non-zero entries in W) is of the 

order O(n) where n is the number of nodes.  

Further, we call a Boolean Network or a Hopfield Network uniformly sparse if 

every node is required to have only O(1) neighbors (that is, every row/column in W 

has only O(1) non-zero entries). So, for example, a star or a wheel graph on n nodes 

would be sparse (the average node degree being O(1) in each case), but neither of 

those types of networks would be uniformly sparse, as the center of a star or a wheel 

has Θ(n) neighbors.  

What is the relationship between configuration space properties of a formal BNA, 

DHN or CA model, and behaviors of real-world cyber-physical and multi-agent sys-

tems? Consider, for instance, Gardens of Eden (GEs): these configurations can only 

occur as initial states of the system. Hence, if one can show that all undesirable or 

dangerous configurations of, for example, a real-world cyber-secure system are GEs, 

then, as long as one can ensure that the system does not start in one of those danger-

ous states, it is safe to assert that the system will never reach any of those “bad” 

states. Similarly, knowing that all configurations, or more commonly in practice all 

members of an appropriately defined subset of global configurations satisfying certain 

pre-specified properties, are actually all recurrent states, would imply that certain 

fairness and liveness properties for that (sub)set of configurations must hold.  

Reachability properties (whether certain types of configurations are reachable from 

a subset of initial configurations of interest) have been connected to fairness in the 

distributed computing sense. What is also often of interest, is the speed of conver-

gence of a system to its stationary behavior (be it of a temporal cycle or fixed point 

variety); that speed or rate of convergence can be formally related to the depth of “the 

basin of attraction” of a fixed point of temporal cycle in question, thus establishing a 

formal connection between the system dynamics and the distributed computing per-

spectives. Likewise, enumerating exactly or approximately all “initial states” leading 

to a given FP or temporal cycle captures the overall size of the basin of attraction.  

Last but not least, being able to enumerate the total number of (non-trivial) tem-

poral cycles and stable (“fixed point”) configurations of a deterministically behaving 

system is in essence equivalent to knowing in how many ways that system can evolve, 

for all possible initial configurations. It has been known since the 1990s that certain 

types of DHNs and CA cannot have non-trivial temporal cycles, implying that the 

only recurrent states are fixed points. For such systems, enumerating the FPs is there-

fore synonymous with determining the total number of possible asymptotic behaviors.  
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4 Configuration Space Properties and Asymptotic Dynamics of 

Open and Closed Cyber-Physical and Holonic MAS 

We now summarize some of the key insights about several fundamental problems 
about Discrete Hopfield Networks and other types of Boolean Network Automata. 
Most of these results describe the worst-case computational complexity of determining 
key configuration space properties of various classes of such networks. Examples of 
such configuration space properties include: i) determining the existence of fundamen-
tal types of configurations such as stable or fixed-point states (FPs), Cycle Configura-
tions (CCs) or Gardens of Eden (GEs); ii) determining the exact or approximate num-
ber of fundamental types of configurations such as FPs, CCs or GEs; iii) answering 
questions about reachability of FPs or of a particular configuration, from a specific 
initial state or a set of initial states; iv) answering questions about whether a given 
DHN’s or other BNA’s dynamics is invertible. These and related questions about 
CFSM and BNA dynamics have been studied (by one of the authors as well as other 
researchers) since at least 2001; we summarize and interpret some of the main results, 
applied to closed cyber-physical and multi-agent systems, in the next subsection.  

4.1 Dynamics and Configuration Spaces of Boolean Networks Modeling 

Closed Distributed Multi-Agent Systems 

All models of BNA, DHNs and CFSMs we have been studying are deterministic, 
implying that, regardless of the details of the local update rules, the “underlying 
topology” (that is, the graph structure), and the particular choice of starting 
configuration, asymptotically the system will either eventually reach a fixed point or a 
temporal cycle of length 2 or greater. But can we in general tell which of these two 
ultimate outcomes will take place? It turns out, differentiating between these scenarios 
is in general computationally intractable: 

Theorem 1: Determining whether an arbitrary Boolean Network or Boolean-valued 
CFSM, starting from an arbitrary initial configuration, will eventually evolve to a FP or 
a non-trivial temporal cycle is in general PSPACE-complete.  

More generally, most non-trivial Reachability problems for the sufficiently general 
classes of BNA (such as the aforementioned SDSs and SyDSs, and other similar 
classes of Boolean-valued, as well as more general, CFSMs), for sufficiently general 
local update rules and underlying graphs, are in the worst-case PSPACE-complete. 
The original motivation, formulations and proofs of these reachability results, in the 
context of (Boolean-valued) Sequential and Synchronous Dynamical Systems as two 
special subclasses of BNA, can be found in [3] and references there.  

Corollary 1: Determining the “ultimate destiny” of a deterministic closed discrete 
dynamical multi-agent system in which each agent is a 2-state FSM (in terms of differ-
entiating whether that destiny will be stability or oscillation with a fixed periodicity) is 
PSPACE-complete. 

Moreover, even answering the basic questions about the existence of FPs and other 
fundamental types of configurations is, in the worst case, computationally intractable, 
although these existence problems lie much lower in the computational complexity 
hierarchy than the related reachability problems: 
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Theorem 2: Given the description of an arbitrary BNA or CFSM, determining 
whether it has any FP configurations is NP-complete. Similarly, in general, 
determining if a BNA or CFSM has any non-trivial temporal cycles is NP-hard. 

Analogous results hold about the fundamental problems about the BNA inverse 
dynamics – that is, about hardness of characterizing dynamical behavior when the 
direction of time is reversed, as summarized in the next theorem: 

Theorem 3: Given the description of an arbitrary BNA or Boolean-valued CFSM, 
determining whether it has any TC or GE configurations is NP-complete. Given such a 
BNA or CFSM and an arbitrary configuration, determining whether that configuration 
is a GE is coNP-complete. 

For proofs of the original formulations of results summarized in Theorems 2-3, see 
[2] and references therein. Note that in the first part of Theorem 3, the problems about 
(arbitrary) Transient Configurations (TCs) on one hand, and Gardens of Eden (GEs) 
on the other, are fundamentally equivalent: a BNA or CFSM or DHN has a TC if and 
only if it has a GE [2]. On the other hand, validating whether a configuration is a GE is 
readily seen to be in class coNP (since the complementary problem, viz. whether a 
given configuration has a predecessor, is clearly in NP), whereas determining whether 
a given configuration is an a TC (but not necessarily GE) is less obvious; however, this 
problem is certainly coNP-hard in the worst-case.  

There are, however, important subclasses of both local update rules and underlying 
graphs, for which the fundamental problems about FPs, CCs, TCs and GEs are actually 
computationally tractable. In particular, if all nodes of a BNA or a CFSM update ac-
cording to monotone Boolean-valued update rules, then the existence of fixed points is 
guaranteed: 

Theorem 4: If every local update rule in a BNA or CFSM is a monotone Boolean-
valued function, then the problem of FP existence is computationally easy: such a 
BNA or CFSM is guaranteed to have at least one FP. 

Corollary 2: Discrete Hopfield Networks all of whose edge weights are non-
negative are guaranteed to have FPs. 

Computational problems about BNA and CFSM configuration spaces that we have 
investigated in greatest detail pertain to the computational complexity of counting. 
That counting all FPs or all CCs or all GEs of an arbitrary Boolean Network would 
turn out #P-hard, is to be expected. What is more interesting, however, is that this 
hardness of counting remains to hold even for severely restricted classed of BNs and 
CFSMs, with restrictions applying simultaneously to both the graph structures and the 
local update rules. In particular, we have the following results: 

Theorem 5: Exactly enumerating all FPs of a Boolean Network Automaton (such 
as Boolean-valued SDSs, SyDSs and DHNs) is #P-complete, even when all local node 
update rules are symmetric Boolean functions, and the underlying graph is sparse (as 
in, sparse on average, or even uniformly). 

Theorem 6: Exactly enumerating all FPs of a BNA (such as SDSs, SyDSs and 
DHNs) is #P-complete, even when all local node update rules are monotone functions, 
and the underlying graph is sparse (on average or uniformly). 
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For details on various types of BNA with symmetric and/or monotone update rules, 
and various classes of either sparse-on-average or uniformly sparse underlying network 
topologies, we refer the reader to [15, 18, 20]. Among the sparse-on-average graphs, 
we particularly focus on the star and wheel graphs, cf. because of their implications to 
open systems, that is, BNA embedded in and interacting with an external environment. 

Theorem 7: The following enumeration problems are all #P-complete, even when 
the underlying graphs of a BNA or DHN are restricted to star-graphs (or wheel-
graphs), and all local update rules are monotone Boolean functions: 

 Determining the exact number of all FPs; 

 Determining the exact number of all TCs; 

 Determining the exact number of only those TCs that are Gardens-of-Eden; 

 Determining the total number of predecessors of an arbitrary configuration. 

Detailed discussion and full formal proof of Theorem 7 can be found in [18]. Those 
results have been further refined and strengthened in [20]. 

4.2 Dynamics of Boolean Networks Modeling Open Multi-Agent Systems 

To the extent that cyber-physical systems, multi-agent systems and other decentralized 
infrastructures can be adequately modeled by these BN and CFSM models, all results 
in the previous subsection pertain to closed such systems or infrastructures: the ones 
whose behavior isn’t affected by anything other than the individual behaviors of agents 
themselves (i.e., individual nodes’ local update rules) and the interaction patterns (i.e., 
how are these agents interconnected with each other). In contrast, an open system is 
one in which there’s an environment, external to the agents, that in general may also 
impact the agents’ behaviors. From a control theory standpoint, this openness of the 
system, i.e., a potential impact of an external environment on the agents and their indi-
vidual and collective dynamics, can be modeled by adding to a BN or CFSM an addi-
tional, “environment node” that (in general) is connected to, and therefore may influ-
ence, the behavior of all (individual) agent nodes. Assuming “everything else [being] 
equal”, all hardness results about the closed dynamical multi-agent systems in the pre-
vious subsection imply similar hardness results for open multi-agent systems. In par-
ticular, we have the following results: 

Theorem 8: Determining whether an open deterministic multi-agent system will 
eventually reach stability or non-trivial oscillatory behavior is, in general, PSPACE-
hard. Moreover, this problem is PSPACE-complete if the external control (the “envi-
ronment node”) is behaving according to a deterministic, Boolean-valued function. 

Theorem 9: Computational problems of deciding whether an open deterministic 
multi-agent system’s dynamics has any FPs, any unreachable (GE) configurations, or 
any transient configurations, are in general NP-hard. If the environment’s behavior is 
known and can be represented as a deterministic Boolean-valued function, these prob-
lems are in the class, NP and are therefore NP-complete in the worst-case. 

Arguably the most interesting consequences of previous complexity hardness results 
“translated” from closed to open discrete dynamical systems, are those in the context 
of counting. That is, complexity of counting FPs and other types of configurations in 
closed discrete dynamical systems, as established in [17, 18, 20], have direct implica-
tions for the open distributed multi-agent systems, even those have very restricted 
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agent interaction patterns, such as when the underlying graph is a simple path or ring 
(i.e., cycle in the graph-theoretic sense). Concretely, the following results hold: 

Theorem 10: The following counting problems are all #P-complete, even when the 
underlying topologies of a discrete dynamical system are restricted to simple paths and 
rings, all agents behave according to monotone Boolean update rules, and additionally, 
the environment is known to dynamically evolve according to a monotone Boolean 
function (that, in general, may depend on current states of all individual agents): 

 Determining the exact number of all FPs; 

 Determining the exact number of all TCs; 

 Determining the exact number of only those TCs that are Gardens-of-Eden; 

 Determining the total number of predecessors of an arbitrary configuration. 
 

These results are immediate consequences of Theorem 7, when the center of the 
wheel graph corresponds to the external control (that is, the environment), whereas the 
peripheral nodes correspond to the agents interconnected with each other into a ring (or 
path), and so that each agent locally updates according to a monotone Boolean-valued 
function. The only allowable inputs to each agent’s local update rule are the states of 
the neighboring nodes, possibly the current state of the node in question itself, and the 
“environment node”.  

5 Conclusions 

In summary, it follows from our results that characterizing most non-trivial properties 
about possible dynamics of open distributed multi-agent systems is computationally 
intractable, even for the simplest interaction patterns among the agents, as well as very 
simple, deterministic local behaviors of individual agents. While intractability holds 
for many closed systems, as well, in case of the open systems it appears hard to find a 
non-trivial such system so that its dynamics is tractable, even under considerable re-
strictions on how can the “environment” influence the agents. The only such systems 
for which tractability of dynamics has be proven to hold are the CA with restricted 
types of update rules (such as the simple threshold functions); importantly, in classical 
(finite) CA, all nodes update according to the same rule. It turns out that adding even a 
rather modest amount of heterogeneity to local agent interactions (such as, considering 
BNA whose nodes use two different update rules from the same restricted class of 
Boolean-valued functions), essentially immediately results in systems whose asymptot-
ic dynamics are in general computationally intractable (see [23] for details). 
     Moreover, our recent research, and in particular results on the computational com-
plexity of counting fixed points of Discrete Hopfield Networks and related Boolean 
Network models (see, e.g., [22]), immediately imply that determining the exact or even 
approximate number of possible asymptotic behaviors of complex networks abstract-
ing various multi-agent, holonic and cyber-physical systems, is in general intractable 
even when the individual agent behaviors and their interactions are severely restricted 
– including the allowable models of the environment and its impact on the agents. We 
suspect most of other fundamental questions about dynamics of open distributed sys-
tems are also intractable in the worst-case, likely including some interesting scenarios 
where those questions are tractable for closed systems.  
     In particular, we have some evidence to believe that the restricted classes of under-
lying network topologies studied in [18] provide a good candidate starting point for 
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identifying some of the scenarios that are likely to exhibit a stark contrast in the behav-
ioral complexity between closed and open systems. The networks studied in that paper 
include star and wheel graphs, as well as other types of network topologies that are 
sparse-on-average, and based on bipartite and/or planar graphs. Validating this intui-
tion for the non-trivial classes of Boolean Network models whose dynamics in the 
closed system case are actually tractable (for some examples of closed systems whose 
practically all interesting aspects of dynamics can be characterized computationally 
efficiently, see e.g. [19, 21]), yet becomes unpredictable in the open system setting 
even under very restricted models of the “external environment”, is the subject of our 
ongoing and future work. 
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