
Time Complexity and Parallel Speedup of

Relational Queries to Solve Graph Problems

Carlos Ordonez1 and Predrag T. Tosic2

1 University of Houston, USA
2 Washington State University, USA

Abstract. Nowadays parallel DBMSs compete with graph Hadoop Big
Data systems to analyze large graphs. In this paper, we study the pro-
cessing and optimization of relational queries to solve fundamental graph
problems, giving a theoretical foundation on time complexity and paral-
lel processing. Specifically, we consider reachability, shortest paths from
a single vertex, weakly connected components, PageRank, transitive clo-
sure and all pairs shortest paths. We explain how graphs can be stored on
a relational database and then we show relational queries can be used to
efficiently analyze such graphs. We identify two complementary families
of algorithms: iteration of matrix-vector multiplication and iteration of
matrix-matrix multiplication. We show all problems can be solved with a
unified algorithm with an iteration of matrix multiplications. We present
intuitive theory results on cardinality estimation and time complexity
considering graph size, shape and density. Finally, we characterize par-
allel computational complexity and speedup per iteration, focusing on
joins and aggregations.

1 Introduction

Graph analytics remains one of the most computationally intensive task in big
data analytics. This is due to large graph size (going beyond memory limits),
graph structure (complex interconnectivity) and the potential existence of an
exponential number of patterns (e.g. paths, cycles, cliques). On the other hand,
graph problems are becoming more prevalent on every domain, there is a need
to query graphs and more graph-structured data sets are now stored on SQL en-
gines. There has also been recent interest in the Hadoop world revisiting recursive
queries with SPARQL [19]. In our opinion, even though query optimization is a
classical, well studied, topic optimization of relational queries on graphs needs
further research. We focus on the evaluation of relational queries which solve
a broad class of graph problems including reachability, shortest paths, network
flows, PageRank and connected components.

Previous research revisited relational query processing to analyze graphs on
parallel DBMSs [4, 12], showing a DBMS is faster than Hadoop “Big Data” sys-
tems like GraphX and showing a columnar DBMS is significantly faster than a
traditional row DBMS. These papers presented many experimental time perfor-
mance comparisons and scalability analyses showing the impact of optimizations

and efficiency of algorithms. In contrast, in this paper we focus on theoretical
issues. To that end, we unify two broad classes of graph algorithms, we study
relational query processing and we present important theory results character-
izing time complexity and parallel speedup. Given the foundational focus of this
paper and space limitations, we do not present experiments, but the reader can
find extensive experimental evaluation in [4, 12].

2 Definitions

2.1 Graphs from a Mathematical Perspective

Without loss of generality we consider directed graphs because undirected graphs
can be represented including two directed edges per vertex pair. Let G = (V, E)
be a directed graph with n = |V | vertices and m = |E| edges. G can contain
cycles (simple paths starting and ending at the same vertex) and cliques (hidden
complete subgraphs). We will show such graph patterns make graph algorithms
slower. From an algorithmic perspective, G is processed as an n × n adjacency
matrix E where E contains binary or real entries (i.e. each edge is present or
not, or it has a distance). Notice we overload E to make notation intuitive.
Then algorithms use matrix E as input in various computations based on an
iteration of matrix multiplication. In general, we assume G is a sparse graph,
where m = O(n). Some harder problems, not tackled in this paper, include the
traveling salesman problem (TSP) and clique detection. Detecting cliques with k
vertices when k is not constant is a harder problem, under the usual assumption
of computational complexity (P 6= NP), because there is an exponential search
space for cliques.

2.2 Graph Problems Solved with Matrices and Vectors

We study the solution of two complementary classes of problems: (1) Iterating
matrix-vector multiplication, where the solution is an n-vector S. For notational
convenience S is a column vector manipulated as a matrix n × 1. (2) Iterating
matrix-matrix multiplication, where the result is an n× n matrix R.

These two classes account for most common problems in graph analytics to
analyze social networks and the Internet. Some graph problems worth mention-
ing that do not fall into these categories are the traveling salesman problem
(TSP, which requires visiting every vertex) and clique detection/enumeration,
which requires exploring an even larger search space.

Iterating Matrix-Vector Multiplication

The core iteration is S1 = ET · S0, S2 = ET · S1, and so on, where S0 has a
different initialization depending on the graph algorithm. That is, each new so-
lution is fed back into the same matrix-vector multiplication (somewhat similar
to the Gauss-Seidel iterative method to solve linear equations). We would like

to point out that for notational convenience it is better to use matrix-vector
multiplication intead of vector-matrix multiplication, which would require us-
ing many transposition operators in equations. Representative problems include
single-source reachability, single-source shortest path, weakly connected com-
ponents and PageRank, among others. Single-source algorithms initialize the
desired vertex i entry in S to 1 (S[i] = 1) and all other entries to zero (S[j] = 0
when i 6= j). Weakly connected components initialize S[i] = i for i = 1 . . . n.
PageRank uses a transition matrix T with probabilities obtained from E, initial-
ized as Tij = Eji/outdegree(j), where outdegree(j) = ET ·ej (ej is the canonical
vector with 1 at j and zero elsewhere arriving from any vertex to i). Intuitively,
in single-source reachabilty and shortest path each iteration gets further ver-
tices reachable from chosen vertex i, starting with vertices reachable with one
edge. For weakly connected components each vertex in a component gets la-
beled with the minimum id of common neighbors. PageRank iterates a special
multiplication form SI+1 = T · SI until probabilities of random walks stabilize
following a Markov Chain process [7]. Although not central to graph analytics,
it is noteworthy Topological Sort can also be expressed with this iteration.

Iterating Matrix-Matrix Multiplication

The basic iteration is to multiply E by itself: E ·E, E ·E ·E, and so on, which can
be expressed as Rj = Rj−1 · E, where R0 = E. Intuitively, we generalize single
source reachability to any vertex to a broader reachability from any vertex to any
vertex. An important observation is that for directed graphs multiplication is not
commutative, because E ·E 6= E ·ET . Only for undirected graphs E ·E = E ·ET

because E is symmetric. When E is binary we can treat each vector-vector
multiplication as boolean vectors or as real vectors. For each boolean vector
dimension pair we compute a logical AND, then we compute a logical OR across
all of them. For real vectors the power matrix Ek (E multiplied by itself k times)
counts the number of paths of length k between each pair of vertices, and it is
defined as: Ek = Πk

i=1E (i is a local variable here, not to be confused with vertex
id i used in queries). Considering E a boolean matrix the transitive closure G+

edge set is E+ = E ∨E2 ∨ . . .∨En. On the other hand, if E is treated as a real
matrix, this iterative multiplication algorithm has these operator changes: scalar
multiplication becomes scalar addition and the sum() aggregation becomes min()
or max() aggregations (resulting in the shortest or longest path).

2.3 Graphs Stored and Processed in a Relational Database

To make exposition more intuitive, we prefer to use the term “table” instead of
“relation”, to make the connection with SQL explicit. G is stored in table E as
a list of edges, which is an efficient storage mechanism for sparse graphs. Let
E be stored as a table with schema E(i, j, v) with primary key (i, j), where v
represents a numeric value (e.g. distance, weight). If there is no edge between
two vertices or v is zero then the edge is not stored. Table E is the input for
relational queries using columns i and j to compute joins, as explained below.

3 Query Processing to Solve Graph Problems

3.1 Iterating a Query Evaluating Matrix-Vector Multiplication

Solution vector S is stored on table S(i, v), where v stores some value v >
0. Value v can be a binary flag, the shortest path length, vertex id, or page
probability value, depending on the algorithm. From an algorithmic perspective
all problems can be solved by a unified matrix-vector multiplication algorithm,
under a semiring, exchanging mathematical operations. We use |S0| to denote the
initial number of rows in table S. |S0| depends on the algorithm, which impacts
query processing time. For reachability and single-source shortest path |S0| = 1
(because only the ith entry is present in table S, with 1 and ∞ respectively),
whereas for weakly connected components and PageRank |S0| = n (with vertex
ids and probabilities of random walks respectively).

Then the iteration S ← ET · S translates into relational queries as S ←
E 1E.i=S.i S. For reachability and single-source shortest path |S0| = 1, whereas
for weakly connected components and PageRank |S0| = n. Therefore, initial-
ization divides time complexity into two complexity classes. Since the iteration
has a linear right recursion the query plan is a right-deep tree with E on the
left child, SI−1 on the right child and SI as the parent node. In general, an
aggregation is computed at each iteration resulting in this generalized query:

SI ← πi:f(E.v•S.v)(E 1E.i=S.i SI−1),

where f() is an aggregation (sum(),min(),max()) and • is a scalar operation
(addition +, multiplication *). Notice we use π as a general projection opera-
tor, capable of computing aggregations. Since • is commutative, associative and
has an identity element (0 for +, 1 for *), and f() is distributive over • both
operators together acting on numbers (real, integer) represent a semiring. Such
algebraic property allows solving all problems with the same template algorithm,
by exchanging mathematical operators.

3.2 Iterating a Query Evaluating Matrix-Matrix Multiplication

We define R as a generalized recursive view which allows solving a broad class
of problems. Let R be the result table returned by a linearly recursive query,
with schema R(d, i, j, p, v) and primary key (d, i, j), where d represents maximum
number of edges in path, i and j identify an edge at a specific length (recursion
depth), p and v are computed with aggregations. In this paper, p counts the
number of paths and v is an aggregated numeric value (recursively computed,
e.g. shortest distance). We assume a recursion depth threshold k is specified to
make the problem tractable and to derive O() bounds.

In general, the Seminaive algorithm is presented in the context of First Order
Logic (FOL) and Datalog [1]. Here we revisit the Seminäıve algorithm [2, 3],
with relational queries, using as input E, defined in Section 2. At a high level,
we initialize R0 ← E and the basic iteration of Seminaive is RI ← RI−1 1 E,

which is a linear recursion on RI . That is, it stops when ∆ = RI 1 E = ∅. Then
Seminaive produces a sequence of partial tables R1, R2, . . . , Rk and the result
R is the incremental union of all partial results: R =

⋃
j Rj . Seminaive stops

when R reaches a fixpoint, meaning no more edges were added [1]. This means
RI = ∅ or R is a complete graph. The join condition and required projection to
make tables union-compatible are explained below. We emphasize that we use
the most efficient version of Seminäıve algorithm [1] because we assume linear
recursion (i.e., we only need ∆ to stop). Since the number of iterations and
time complexity required by Seminaive heavily depend on G structure we bound
recursion with k s.t. k � n (assuming G is sparse and n is large).

We now explain relational queries in more technical detail. Because recursion
is linear and we have a bound k it can be transformed into an iteration of k− 1
joins. The initialization step produces R1 = E and the recursive steps produce
R2 = R1 1R1.j=E.i E = E 1 E, R3 = R2 1R2.j=E.i E = E 1 E 1 E, and
so on. The general form of a recursive join is Rd+1 = Rd 1Rd.j=E.i E, where
the join condition Rd.j = E.i creates a new edge between a source vertex and
a destination vertex when they are connected by an intermediate vertex. Notice
that at each recursive step a projection (π) is required to make the k partial
tables union-compatible. We use Rk to represent the output table obtained by
running the full iteration of k−1 joins on E, where E appears k times. The final
result table is the union of all partial results: R = R1 ∪R2 ∪ . . .∪Rk. The query
plan is a deep tree with k − 1 levels, k leaves (E) and k − 1 internal nodes (1).

Rd+1 ← π
d,i,j,f(p),g(v)

(Rd 1Rd.j=E.i E), (1)

where f() and g() represent SQL aggregations (e.g. sum, count, max). To
make notation from Equation 1 more intuitive we do not show either π or the
join condition between R and E: Rd+1 = Rd 1 E.

Proposition Transitive closure can be solved with matrix multiplication.
Therefore, it can be solved with a unified algorithm. Let G+ = (V, E+) be the
transitive closure graph and let E have binary entries and b(E) = F be a matrix
function that transforms the E matrix to binary form: Fij = 1 when Eij > 1 and
Fij = 0 otherwise. Then E+ = b(E +E2 + . . .+Ek) = E∨b(E2) . . .∨b(Ek). The
2nd expression is evaluated more efficiently with bit operators: ∧ (and) instead
of *, ∨ (or) instead of + (i.e. like Warshall’s algorithm [2]).
Proposition If |E| = 1 or |E| = n(n− 1) then G = G+.
Proof: If |E| = 1 then E2 = 0 so E+ = E. For the second case E2 = E.
Therefore, in both cases E+ = b(E + E) = E.

This proposition touches two extreme cases and it is important because it
exhibits the optimal cases for Seminäıve, when it stops after just one iteration.

3.3 Time Complexity

Matrix-Vector Multiplication

Time to join E with S for a sparse graph is O(n log(n)), where |E| = Θ(n).
By a similar reasoning, time to compute the aggregation is the same. On the

other hand, time complexity can reach O(n2 log(n)) with a very dense graph
(i.e. similar to a complete graph, or having large cliques). Therefore, time com-
plexity for each matrix-vector multiplication is O(n log(n)) for a sparse graph
and O(n2 log(n)) for a very dense graph.

Matrix-Matrix Multiplication

We now analyze time complexity iterating matrix-matrix multiplication consid-
ering different graphs of different structure and connectivity.

We focus on analyzing space and time complexity for the most challenging
case: the join in iterative matrix-matrix multiplication. By a similar reasoning,
O() to compute the sum() aggregation is the same. We start with space complex-
ity. Cardinality estimation is one of the hardest and most well-known problems
in query processing [6]. We explore time complexity and query evaluation cost
based on G characteristics. The goal is to understand how shape, density and
connectivity impact O() and cardinality of each partial result table.

Our first goal is to understand |R2| = |E 1 E|. That is, the result of the first
iteration of Seminaive. A major assumption is that G is connected. Otherwise,
our analysis can be generalized to each connected component (subgraph) and the
global time/cost is the sum of individual times/costs. We start with a minimally
connected graph, which intuitively captures the best complexity case.
Lemma: Let G be a tree. Then |E 1 E| = Θ(n).
Proof: Since G is a tree m = n − 1. The main idea is that the best case is a
balanced tree and the worst case is a list (chain). Without loss of generality
assume G is a balanced binary tree and n is a power of 2. Then the number
of paths of length 2 needs to exclude the leaves: n/2. Then the parents of the
leaves are paths of length 1 and therefore should be excluded as well. Therefore,
|E 1 E| = n/2− n/4 = Θ(n). For the upper bound, assume G is a list, where
each vertex (except the last one) has only one outcoming edge and no cycles.
The number of paths of length 2 needs to exclude the last 2 vertices. Therefore,
|E 1 E| = n− 2 = Θ(n).
Lemma: Let G be a complete graph without self-loops. Then |E 1 E| = O(n3)
Proof: Intuitively, we need to count the number of paths of length 2. There
are n(n − 1) pairs of vertices (i, j), i, j ∈ 1 . . . n Notice that since G is directed
(i, j) 6= (j, i). For each pair (i, j) there are n − 2 paths of length 2. Therefore,
|E 1 E| = n(n− 1)(n− 2) = O(n3).

The previous result makes clear a complete graph is the worst case for 1.
Notice that if we make G cyclic by adding one edge so that m = n O() remains
the same. Therefore, we propose the following result to characterize O():
Proposition: Let H be a subgraph of G such that H is a complete subgraph
(i.e. a clique). Let K be the number of vertices of H . By the previous lemma
time is O(K2). Then the most important issue is K being independent from n,
which leads to three cases: (1) If K = Θ(1) then H does not impact time. (2) if
K = Θ(f(n)) and f(n) = o(n) then time is better than Θ(n3). Prominent cases
are f(n) =

√
n or f(n) = log(n). (3) If K = Θ(n) then time is Θ(n3). This result

highlights cliques are the most important pattern impacting processing time.

Our ultimate goal is to understand |Rk|, where Rk = E 1 E 1 . . . 1 E, multi-
plying E k times as k → n. Notice that computing Ek is harder than G+ because
Seminaive can stop sooner to find G+ (e.g. if G is complete). Our first time com-
plexity result shows a list is the worst case for connected G. As explained above,
the improved Seminaive algorithm computes the union of partial results at the
end of the k iterations. Therefore, it would need n− 1 iterations. On the other
hand, if we computed G+ after every iteration we can stop at k = n/2 = Θ(n).
In short, if G is a “chain” the number of iterations is Θ(n). Therefore, we con-
jecture that the second aspect impacting time of Seminaive is the diameter κ
of G (i.e., it stops in time O(κ)). To conclude this section, we stress that the
most important aspect is detecting if the graphs behind E2, E3, . . . , Ek become
denser as the k iterations move forward. In fact, |Rk| can grow exponentially as
k grows. Therefore, if Ek is dense duplicate elimination is mandatory, which is
an optimization studied in the next section.

To simplify analysis, we assume a worst case |Rd| = O(m), which holds at low
k values and it is a reasonable assumption on graphs with skewed vertex degree
distribution (e.g. containing cliques). Then time complexity for the join operator
can range from O(m) to O(m2) per iteration. Since Rd is a temporary table we
assume it is not indexed. On the other hand, since E is an input table and it is
continuously used, we assume it is either sorted by the join column or indexed.
During evaluation, Rd is sorted in some specific order depending on the join
algorithm. At a high level, these are the most important join algorithms, from
slowest to fastest: (1) nested loop join, whose worst time complexity is O(m2),
but which can generally be reduced to O(m · log(m)) if Rd or E are sorted
by the join column. (2) sort-merge join, whose worst case time complexity is
O(m · log(m)), assuming either table Rd or E is sorted. (3) hash join, whose
worst case time complexity can be O(m2) with skewed collisions, but which on
average is O(m) assuming selective keys and uniform key value distribution,
which heavily depends on G structure and density. That is, it is not useful in
dense graphs because many edges are hashed to the same bucket. (4) Finally,
merge join is the most efficient algorithm, which basically skips the sorting phase
and requires only scanning both tables. This is a remarkably fast algorithm, with
time complexity O(m), but which assumes both tables are sorted.

3.4 Parallel Processing

We assume there are P processors (nodes in a parallel cluster) in a distributed
memory (shared-nothing) architecture, where processors communicate with each
other via message passing. We consider both classes of graph algorithms intro-
duced above. Recall n = |V |.

Parallel Matrix-Vector Multiplication

For matrix-vector multiplication the main issue is to partition E and S so that
joins can be locally computed. There are two solutions: (1) Since |S| = Θ(1)
or |S| = Θ(n) then S can be replicated across all nodes at low cost and in

some cases it may be updated in RAM. (2) S can be partitioned by the vertex
column to compute the join with E: E.j and S is simply partitioned by S.i.
We cannot guarantee an even distribution for E, but for S we actually can.
Therefore, speedup will depend only on skewed degree vertices being in a subset
of the nodes. Assuming n � P , having s high degree vertices and s > P it
is reasonable to assume such s vertices can be evenly distributed across the P
nodes. For either solution, once the join result is ready the sum aggregation
required by matrix-vector multiplication is computed locally with a local sort
(perhaps with hashing in a best case), but without a parallel sort, resulting in
optimal speedup going from O(n/P log(n/P)) (sparse) to O(n2/P log(n/P))
(dense).

Parallel Matrix-Matrix Multiplication

For matrix-matrix multiplication the main issue is how to partition E to make
multiplication faster, considering that the join operation accesses E in a differ-
ent order from the previous iteration. If E is dense with m = O(n2) a partition
by squared blocks is trivial if n � P , but large graphs are rarely dense. That
is, E is generally sparse. Then for sparse graphs there are two major solutions:
(1) partitioning edges by one vertex; (2) partitioning edges by their two ver-
tices. Partitioning by vertex (i or j) will suffer when V degrees distribution is
skewed: a few processors will contain most of the edges: parallel speedup will
have a bottleneck. Hash-partitioning edges by both of their vertices can provide
an even distribution, but in general the neighbors of a vertex will be assigned to
a different processor, resulting in expensive data transfer during query process-
ing. Therefore, this solution is detrimental to joins. The relative merits of each
solution will depend on P , skewed degree distribution and network speed. On
the other hand, the aggregation of the join result will require sorting in parallel
by i, j, which can range from O(n/P log(n/P))) (sparse) to O(n3/P log(n3/P))
(dense) assuming merge sort can evenly partition E 1 E (a reasonable assump-
tion for large n).

Notice the lower bounds match if |S| = |E| = Θ(n), but the upper bound for
matrix-matrix multiplication has a much higher time complexity than matrix-
vector multiplication when |E| = Θ(n2).

4 Related Work

Research on analyzing graphs with relational queries has received little attention,
compared to Big Data graph analytic systems (e.g. GraphX, Giraph, Neo4j). Im-
portant works include [11, 9, 12]. Reference [11] establishes a connection between
graph analytics and SQL and justifies recursive queries, a classical problem,
deserves to be revisited. Reference [9] shows a columnar DBMS is faster than
graph analytic systems to compute some graph problems including reachability
and PageRank. On the other hand, [12] compares different DBMS storage mech-
anisms to compute transitive closure and all-pairs shortest paths. This work

shows columnar DBMSs have a performance advantage over rows and arrays.
Neither work attempts to lay a theoretical foundation on the time and space
complexity of relational queries to solve graph problems.

Being a classical topic in CS theory, research on recursive queries is extensive,
especially with the Datalog language (which subsumes SQL) [1, 3, 8, 16, 13, 15,
14, 20, 18]. Comparatively, adapting such algorithms and optimizations to rela-
tional databases has received less attention [5, 10, 17]. Fundamental algorithms
to evaluate recursive queries include Seminäıve [3] (the main algorithm used by
us, linear number of iterations) and Logarithmic [17] (useful when most paths
are long, logarithmic number of iterations). The Seminäıve algorithm solves the
most general class of recursive queries, which eventually reach a fixpoint [2,
3]. Both algorithms iterate joining the input table with itself until no rows are
added to the global result table (i.e., the iteration reaches a fixpoint). There is
an independent line of research on adapting graph algorithms to compute tran-
sitive closure problem in a database system [2, 8]. The Direct algorithm [2] is an
outstanding solution using in-place updates and bit operations in main memory
instead of creating intermediate results on disk. Unfortunately, the Direct algo-
rithm is incompatible with SQL query processing mechanisms and therefore has
not made its way into relational DBMSs like Seminäıve.

5 Conclusions

We studied the evaluation of relational queries solving many fundamental graph
problems iterating two forms of matrix multiplications: matrix-vector multipli-
cation and matrix-matrix multiplication. Without loss of generality we focused
on directed graphs. We studied two major aspects: (1) time and space complex-
ity, considering basic relational operators (select, project, join) and (2) parallel
processing, analyzing speedup and issues with unbalanced data partitioning.
Parallel processing requires two major steps at each iteration: a parallel join
and a parallel group-by agregation. Our results highlight a relational join is the
most demanding operator, followed by group-by aggregations, expressed as an
extended projection operator. Time complexity per iteration is best when the
graph is sparse and its shape resembles a balanced tree and it is worst when
the input graph is very dense (i.e. m = O(n2)) or when intermediate tables
gradually approximate complete subgraphs (i.e. subgraphs embedded in G be-
come denser after each iteration). Parallel speedup is heavily impacted by a few
vertices having a skewed degree distribution.

There are many open research issues, bridging theory and systems research.
It is necessary to study graphs that have embedded cliques (complete subgraphs)
in more depth. We need to study cardinality estimation of intermediate query
results considering the graph is a union of subgraphs of diverse structure and
density. Assuming the input graph is sparse but its transitive closure at some
recursion depth is dense we need to characterize more precisely when a hash
join or a sort-merge join is preferable. Finally, we aim to study harder graph

problems requiring non-linear recursion (i.e. clique detection), which can help us
identify SQL extensions to make it as powerful as Datalog.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases : The Logical Level.
Pearson Education POD, facsimile edition, 1994.

2. R. Agrawal, S. Dar, and H.V Jagadish. Direct and transitive closure algorithms:
Design and performance evaluation. ACM TODS, 15(3):427–458, 1990.

3. F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In Proc. ACM SIGMOD Conference, pages 16–52, 1986.

4. W. Cabrera and C. Ordonez. Scalable parallel graph algorithms with matrix-
vector multiplication evaluated with queries. Distributed and Parallel Databases,
35(3-4):335–362, 2017.

5. S. Dar and R. Agrawal. Extending SQL with generalized transitive closure. IEEE
Trans. Knowl. Eng., 5(5):799–812, 1993.

6. H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The Complete
Book. Prentice Hall, 1st edition, 2001.

7. T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning.
Springer, New York, 1st edition, 2001.

8. Y.E. Ioannidis, R. Ramakrishnan, and L. Winger. Transitive closure algorithms
based on graph traversal. ACM TODS, 18(3):512–576, 1993.

9. A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker. Ver-
texica: Your relational friend for graph analytics! Proc. VLDB Endow., 7(13):1669–
1672, 2014.

10. I.S. Mumick, S.J. Finkelstein, H. Pirahesh, and R. Ramakrishnan. Magic condi-
tions. ACM TODS, 21(1):107–155, 1996.

11. C. Ordonez. Optimization of linear recursive queries in SQL. IEEE Transactions
on Knowledge and Data Engineering (TKDE), 22(2):264–277, 2010.

12. C. Ordonez, W. Cabrera, and A. Gurram. Comparing columnar, row and array
dbmss to process recursive queries on graphs. Information Systems, 63:66–79, 2017.

13. R. Ramakrishnan, D. Srivastava, S. Sudarshan, and P. Seshadri. Implementation of
the CORAL deductive database system. In Proc. ACM SIGMOD, pages 167–176,
1993.

14. S. Sippu and E.S. Soininen. An analysis of magic sets and related optimization
strategies for logic queries. J. ACM, 43(6):1046–1088, 1996.

15. S.Sakr, S.Elnikety, and Y.He. Hybrid query execution engine for large attributed
graphs. Inf. Syst., 41:45–73, 2014.

16. J.D. Ullman. Implementation of logical query languages for databases. ACM Trans.
Database Syst., 10(3):289–321, 1985.

17. P. Valduriez and H. Boral. Evaluation of recursive queries using join indices. In
Expert Database Systems, pages 271–293, 1986.

18. M.Y. Vardi. Decidability and undecidability results for boundedness of linear
recursive queries. In ACM PODS Conference, pages 341–351, 1988.

19. N. Yakovets, P. Godfrey, and J. Gryz. Evaluation of SPARQL property paths via
recursive SQL. In Proc. AMW, 2013.

20. C. Youn, H. Kim, L.J. Henschen, and J. Han. Classification and compilation of
linear recursive queries in deductive databases. IEEE TKDE, 4(1):52–67, 1992.

