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Abstract. Due to the availability of larger main-memory capacities, we
are witnessing the presence of parallel memory-based database systems
offering increased performance unlike traditional databases. Data par-
titioning is a precondition for these databases because it significantly
improves the performance of certain queries (e.g. range queries). Parti-
tioning creates a problem of data skew. As a result, it can contribute
to the degradation of query performance. Garcia-Molina’s group [1] has
proposed an algorithm that offers a low ratio between the maximum and
minimum loads of nodes while exploiting information of the global load.
This information is stored in a data structure, called skip graphs, which
requires the exchange of (log p) messages between the p nodes. The goal
of our work is to reduce the number of these messages. To do this, we
propose a vector of approximate partition statistics (APV), where the
nodes and clients have an approximate view of the data distribution.
The key point of our proposal is the ”Approximate Partitioning Vector”
(APV), where, both nodes and clients have an approximate information
about the load distribution.
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1 Introduction

Range-partitioning maps tuples to partitions according to a partitioning key.
This scheme is the most common type of partitioning and is often used with
times (hour/minute). A key requirement in such systems is that the data has
to be uniformly partitioned on all nodes. This requirement is challenging en-
forcing when the input data is skewed. Data skew is a well-known concern in
range-partitioning where only few partitions (nodes) may be more loaded than
others. In that case, data migration approaches are an appealing solution. The
out-of-range data has to be moved from the over-loaded area to under-loaded
one in order to satisfy the storage balance requirement. Data movement must



be accompanied by a change in the partition statistics (partition boundaries,
neighbors loads, and the position of the most and least loaded node, etc.). All
nodes/clients of the system must be aware of these changes in order to decide
whether to call the balancing algorithm and address the right node. One of the
dominant measures that we want to optimize in such a situation is communica-
tion cost. The focus is on the solutions that reduce the cost of maintaining data
distribution information.

Ganesan et al.[1] proposed an on-line load-balancing algorithm on a linearly
ordered nodes. Their algorithm called AdjustLoad guarantees a low imbalance
ratio between the maximum and the minimum load among nodes. Although, the
AdjustLoad algorithm is easy to state, each balancing operation may require
global load information, that may be expensive in term of operations costs. Their
algorithm uses a data structure called skip graph [2] to maintain load informa-
tion and ensure efficient range queries. Each invoked balancing operation may
require global information with a cost of O(log n) messages. Moreover, a change
of partition boundaries between neighbors in load-balancing will necessitate a
change in the two skip graphs used.

In this paper, we improve the Ganesan et al. work [1] by reducing the cost
of maintaining partition statistics. We propose an on-line balancing technique
of range-partitioned data with approximate information. Our algorithm uses the
same primitive operations, NbrAdjust and Reorder as in Ganesan et al. The
primitive NbrAdjust transfers the surplus of data from the current node to one
of its neighbors. The primitive Reorder changes the nodes order to achieve the
storage balancing requirements. As a result, the partition boundaries change as
well as the data size of each partition. However, our algorithm is not based on
skip graphs to maintain partition statistics. The key point of our contribution
is the Approximate Partitioning Vector (APV), where, both nodes and clients
have approximate information on data distribution statistics. Each entry APV [i]
in this vector, is an estimate of partition boundaries and data size related to
node Ni. After a balancing operation, the participating nodes may change their
own boundaries. These nodes do not need to inform the other ones by these
changes. The clients use their APV to direct the queries. As a result, clients may
address the wrong node when their APV are outdated. Nevertheless, whenever
an interaction happens between two peers (node or client), they exchange their
APV in order to correct each other. Our solution outperforms the state-of-the-
art methods in terms of communication cost. There is no additional cost for
maintaining load statistic as in Ganesan et al.

This paper is organized as follows: in Section 2, we present the load-balancing
approach of Ganesan et al. We describe the system model in Section 3. In Section
4, we present our approach. We experimentally evaluate it in Section 5. Finally,
we discuss the related work in Section 6.
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2 Load-Balancing Solution of Ganesan et al. [1]

Ganesan et al.’s work is believed to be representative of the prior art. It sug-
gested an inspiring algorithm for reducing data skew. It guarantees a small im-
balance ratio σ between the largest load and the smallest one. This ratio is
always bounded by a small constant which is 4.24. The algorithm uses two oper-
ations: 1) NbrAdjut, where the node Ni transfers its surplus of data to one of
its neighbors (Ni+1 or Ni−1, 2) Reorder: the least loaded node (Nr) among all
the nodes transfers its entire content to one of its neighbors and change its logical
position to share data with the node performing the load-balancing algorithm.

In both operations, the over-loaded node requires non-local information (neigh-
bors loads, the position of the most and least loaded node). A given node at-
tempts to shed its load whenever its load increases by a factor δ. For some
constant c, Ganesan et al. define a sequence of thresholds Ti = cδi, for all i ≥ 1.
The node Ni attempts to trigger the AdjustLoad procedure whenever its load
L(Ni) is greater than its threshold Ti.

Ganesan et al. use two skip graphs. Skip graphs are circular linked lists [3], in
which every node has log(n) pointers. Routing between two nodes needs O(logn)
messages. The first skip graph is used to get neighbors loads (one message) and to
route range queries to the appropriate node. The second skip graph is used to get
the positions of the most and least loaded node in the system (O(logn) messages
for locality plus costs of updating the two skip graphs). The main disadvantage
of this work is the costly need to maintain the load-balancing information.

3 System Architecture

In this section, we define a simple abstraction of a parallel database and make
some assumptions:

– N = {N1, N2, . . . , Np}, a set of p nodes connected by a fast local area net-
work as in a Shared-Nothing architecture. We consider a relation (or a data
set) divided into p range-partitions on the basis of a key attribute, with
boundaries R0 ≤ R1 ≤ . . . ≤ Rp. The node Ni manages a range [Ri−1, Ri(.
We consider that the nodes are ordered by their ranges, this ordering defines
left and right relationships between them. The need to preserve the order
between the nodes requires a communication only between the neighboring
nodes. Note that the data is In-memory resident and it is organized row
wise. Each node Nj has its own Approximate partitioning vector APVnj .
An entry APVnj

[i] in this vector (for i different from j), is an estimate of
partition boundaries and data size related the node Ni. The entry APVnj

[j]
contains exact information about partition boundaries and data size of the
node Nj (each node has its exact local information).

– C = {C1, C2, . . . , Cm}, a set of m clients performing insert, delete or range
queries. Point queries can be considered as special case of range queries,
where upper and lower bounds are equal. The clients may join or leave the
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system at any time. Each client Cj has its own Approximate partitioning
vector APVcj . An entry APVcj [i] in this vector, is an estimate of partition
boundaries and data size related to the node Ni. Clients use their Approx-
imate partitioning vector APVc to find the right nodes for insert, delete or
search operations.

– We assume that each node Ni sets a local load threshold. When the load
goes outside this limit, the node performs a load-balancing operation with
its neighbors. This operation updates the partition boundaries of the partic-
ipating nodes. Our load-balancing algorithm is invoked on a node at which
the insert or delete is occurring or a node receiving data from its neighbors.
At this stage, we assume that no central site is used to direct queries. We
also ignore concurrency control issues and consider only the serial schedule
of inserts and deletes, interleaved with the executions of the load-balancing
algorithm.

4 Our Approach

The main feature of our approach is the APV concept, where each node or
client has an approximate knowledge about the partition statistics. Based on
this knowledge, the node performs a load-balancing whenever its load passes a
local threshold. It invokes the NbrAdjust procedure that transfers the out-
of-range data and its vector towards its neighbors if it is possible, otherwise, it
performs the Reorder procedure. The neighbor, after having received the data,
performs the load-balancing algorithm and eventually updates its vector. The
process is repeated at each node receiving the data until the whole system is
balanced.

4.1 Node/Client Approximate Partitioning Vector

Consider that the partition statistics of a node Nj are encoded in a vector
APVnj

[1, p]. Each element APVnj
[i] of this vector is a triplet, it stores an esti-

mate of the nodeNi information. Node information is mainly the upper boundary
(APVnj [i].Upper Bound), the local data size (APVnj [i].Load) and the last up-
dating time (APVnj [i].Last Update). The last field (APVnj [i].Last Update) is
used to indicate the time when the entry APVnj

[i] was last updated. Node vector
is updated in case of insert or delete queries, range queries and data migration
from the current node to one of its neighbors or vice versa.

The data stored in the nodes is manipulated through the insert, delete and
range queries sent by the clients. Consider that the partition statistics of a client
Cj are encoded in a vector APVcj [1,m], where each APVcj [i] stores the infor-
mation about the node Ni. Node information is essentially its upper boundary
(APVcj [i].Upper Bound), data size (APVcj [i].Load) and the last updating time
(APVcj [i].Last update). Inserting, deleting or searching for a tuple with a given
key k are performed as follows:

4



– The client sends the request to Ni so that: APVcj [i − 1].Upper Bound ≤
k ≤ APV cj [i].Upper Bound. The local APVcj vector is also included in the
same message.

– A node Ni checks whether the included key k fits its range, if so, it executes
the specified request (insert, delete or just point-search), updates eventually
its partition statistics and sends a positive acknowledge consisting of its
APVni to the client.

– If k is outside the node’s range, a vector adjustment message (VAM) in-
cluding a negative acknowledge and the current APVni

is sent to the client.
Another solution may be proposed where the node redirects the request to
the apropriate node, this solution may reduce the communication cost but
the client vector will be little updated.

– If a client receives a positive acknowledgment from the node, it just updates
its vector if it was outdated. Else, if it receives an adjustment message,
it updates its vector and repeats the operation until receiving a positive
acknowledgment.

4.2 Data Load-Balancing Algorithm

Our load-balancing algorithm uses the two universal load-balancing primitives,
Reorder and NbrAdjust as in Ganesan et al.’s work. However, we use the
APV concept to maintain the global load information instead of using the skip
graphs. Our algorithm, that we call DataLoadBalancing, is presented bellow
(Algorithm 1). A node Ni executes the load-balancing algorithm whenever its
load increases beyond a threshold Ti. The algorithm uses its partitioning vector
to check if data can be shared with the lightly loaded neighbors. If the load
of one of its neighbors is less than half of Ni’s load, then Ni performs the
primitive NbrAdjust to average out the load with it. Else, Ni attempts to
perform Reorder with the least loaded node in the system. Note that one
can avoid the additional launch of the load-balancing algorithm by raising the
threshold or more precisely by increasing the factor δ.

5 Experimental Evaluation

In this Section, we present results from our simulation of our approach on a
network of 8 nodes and 2 clients. Processing node software and client software
were executed on machines with Intel(R) Core(TM) i7-5500U CPU@2.40GHz
and 8GiB of RAM. Both nodes and clients were connected through a Gigabit
Ethernet network. Algorithms are implemented in C language using the Message
Passing Library (Open MPI). In the experiments, we present the algorithm for
the insert-only case. This case is simpler to analyze and provides general ideas
on how to deal with the general case. It is also of practical interest because in
many applications, as in a file sharing, deletions rarely occur. In order to evaluate
the new approach in heavy skewed environment, the system is studied under a
simulation model that we call HOTSPOT . All insert operations are directed to a
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Algorithm 1: DataLoadBalancing (Ni, APVni
)

1 Let Nj be the lightly loaded neighbor of Ni (Ni+1 or Ni−1);
2 if (APVni [i].Load/2 ≥ APVni [j].Load) then
3 //The nod will call the NbrAdjust procedure;
4 Send the (APVni [i].Load−APVni [j].Load)/2 tuples to Nj ;
5 Update Ni’s vector

(APVni [i].Load,APVni [j].Load,APVni [i].Upper Bound);
6 //Re-call the load-balancing procedure again in Ni and Nj ;
7 DataLoadBalancing (Ni, APVni [i]);
8 DataLoadBalancing (Nj , APVni [j]);

9 else
10 //The nod will call the Reorder procedure;
11 Find Nr so that: ∀k ∈ [1, p], APVni [k].Load ≥ APVni [r].Load;
12 if (APVni [i].Load/4 ≥ APVni [r].Load) then
13 //Nr is going to change its location to be a Ni’s neighbor ;
14 Let Nj be the lightly loaded node between Nr+1 and Nr−1, the two

neighbors of Nr;
15 Send APVni [r].Load tuples to Nj ;
16 Nj changes its position to be Ni’s neighbor;
17 Send APVni [i].Load/2 to Nr;
18 Update Ni’s vector (APVni [i].Load,APVni [r].Load,Ni, Nj , and Nr

upper bounds);
19 DataLoadBalancing (Ni, APVni);
20 Rename nodes appropriately after the Reorder;

21 else
22 The system is balanced;
23 end

24 end

single hot node. We use a sequence of 5∗104 frequent insert operations. The basic
performance factors of our load-balancing mechanism are the imbalance ratio,
the number of client addressing errors, data movement cost and the number of
invocation of DataLoadBalancing algorithm.

5.1 Imbalance Ratio

We measure the imbalance ratio as the ratio between the largest and small-
est load after each insert operation. As the system’s thresholds are an infinite,
increasing geometric sequence, as in Ganesan et al.’s work, we measure the im-
balance ratio with three values of the factor δ, (δ = φ, δ = 2, δ = 4). φ is the
golden ratio, φ = (

√
5 + 1)/2 = 1.62. Figure 1 shows the imbalance ratios (Y-

axis) against the number of insert operations (X-axis). When δ = 1.62, the curve
shows that the imbalance ratio is always bounded by a constant 6 and it con-
verges to 1.8 after 2 ∗ 104 operations unlike the imbalance ratio of Ganesan et
al., that is bounded by 4.24 and converges towards 3.3. The spikes in the curve
mean that an invocation of DataLoadBalancing algorithm has been lunched.
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However, the results of the 3rd experiment δ = 4 are different from the previous
ones, the ratio values are larger and converge towards 5.

Fig. 1. The imbalance ratio when δ = φ = 1.62, δ = 2, and δ = 4.

Table 1. Comparison between the AdjustLoad algorithm of Ganesan et al., and our
load DataLoadBalancing algorithm.

Procedure Largest load
(Tuples)

Mean load
(Tuples)

Imbalance ra-
tio

Query perfor-
mance

AdjustLoad 1885 781 2.41 21%
DataLoadBalancing 1492 781 1.91 0
AdjustLoad 2102 1048 2.02 27%
DataLoadBalancing 1568 1048 1.49 0

Simulations were run comparing performance of our load-balancing algorithm
and the AdjustLoad procedure of Ganesan et al.[1]. The data from Table 1
represents the comparative load-balancing results of the two procedures. The
comparison parameter is the imbalance ratio which is measured here as the ratio
between the largest load and the system average load.

When the performance of the system is measured by query response time,
it is proportional to the largest node load. The worst-case relative performance
of the DataLoadBalancing algorithm versus the AdjustLoad procedure is
the ratio of the highest load-balance ratios obtained for the two algorithms, or
1.0-(1.91/2.41)=0.21. One can expect to reduce query response time up to 28%
as compared to a system using the AdjustLoad.

5.2 Client Adjustment Messages

After a balancing operation, two nodes at least change their partition boundaries
due to the data migration, which leads to changing the partitioning vectors of

7



these two nodes. The client with an outdated vector can address a wrong node
that has changed its boundaries. In our set of experiments, we were interested
in determining how efficiently a client obtains a true view about the nodes. We
measure the number of times the client sends a query to a wrong node and hence
makes an addressing error and receives a vector adjustment message (VAM). The
results showed in figure 2 present a rapid increase of addressing errors number
in the growing phase (from 1 to 1000 insert operations). This comes back to the
fact that there is a frequent invocation of the balancing algorithm, and therefore
a frequent change of the partition boundaries.

Fig. 2. The number of addressing errors (δ = φ = 1.62, δ = 2, and δ = 4)

5.3 Performance Analysis

For balancing loads among nodes, we are also concerned with the minimization of
the movement cost as much as possible. After measuring the imbalance ratio and
the client vector adjustment, we next measure the data movement cost. 3(a) plots
the cumulative number of tuples migrated by our algorithm (Y-axis) against the
number of insert operations (X-axis) during a run with δ = 1.62, δ = 2. We
observe that in the growing phase, the number of migrated tuples for different
δ values is rising, this is because keeping the system tightly balanced causes a
larger number of re-balancing operations. Figure 3(b) plots the data movement
cost when δ = 4.

Figure 4 illustrates the number of invocations of our load-balancing algorithm
(Y-axis) against the number of insert operations (X-axis) during a run. The
observation we make is that the number of invocations of the algorithm increases
for the three values of δ during the growing phase. The number of algorithm
invocations presented was measured when δ = 1.62, δ = 2 and δ = 4. We
observe that the number of invocations is relatively small when δ = 1.62. This
comes back to the fact that we are supporting some imbalance situations.
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Fig. 3. (a): Data movement cost when δ = φ = 1.62, δ = 2. (b): Data movement cost
when δ = 4

Fig. 4. Number of DataLoadBalancing invocations when δ = 1.62, δ = 2 and δ = 4.

6 Related Work

In this section, we describe the current researches that relate to ours achieved
load-balancing method while supporting range queries.

Peer-To-Peer network: in P2P networks, a number of recent load-balancing
approaches have been proposed [4–8]. Structured P2P networks are an efficient
tool for storage and location of data since there is no central server which could
become a bottleneck. Many researches have been proposed on search methods
in Structured P2P networks.

A concurrent work to Ganesan et al.’s work is presented by Karger and Ruhl
[9]. The load-balancing algorithm is randomized, it offers a high bound on the
imbalance ratio (more than 128). In [6], the team Jakarin et al. has also improved
the work of Ganesan et al. However, Jakarin et al. use the skip graphs just like
Ganesan et al.’s work. The main drawback is the costly maintenance of these
data structures.

Parallel/Distributed databases: a load-balance operation in a parallel
database is performed as a transaction. Work in [10] propose a multi-reorder
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operation that finds a sequence of multiple adjacent nodes that have a small
average load of any such sequence. This technique uses partition statistics which
include an estimate of the number of tuples stored on each node for every relation
in the database. Based on this information the system skew is calculated. The
problem that could be noted is the cost of maintaining partition statistics.

7 Conclusion

The present paper relates to load-balancing in parallel database systems. We
proposed an effective on-line data load-balancing algorithm that deals with the
problem of skewed data. Our experimental results that we set in our labora-
tory show that our approach does not need extra cost of maintaining partition
statistics as opposed to the cost of efficient solutions from the state-of-art. Our
procedure needs a very low overhead (or almost no cost) to locate the data even
in the presence of high degree of skew. Although our proposal was presented in
the context of balancing storage load, it can be generalized to balance execu-
tion load, all that is required is an ability to partition load evenly across two
machines.
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