
ETL-aware Materialized View Selection in
Semantic Data Stream Warehouses

Nabila Berkani
Ecole nationale Supérieure d’Informatique,

BP 68M, 16309, Oued-Smar, Alger, Algérie.
Email: n berkani@esi.dz

Ladje Bellatreche
LIAS/ISAE-ENSMA

Futuroscope, Poitiers, France
Email: bellatreche@ensma.fr

Carlos Ordonez
Department of Computer Science

University of Houston, USA.
Email: ordonez@central.uh.edu

Abstract—For 25 years, several companies spent a lot of efforts
and money in building warehouse (DW) applications for data
analytics purposes. This technology contributes to the success
stories of several companies. Nowadays, companies are looking
for real-time analytics for data issued from fresh data sources
and external resources as knowledge bases and linked open
data. The traditional life-cycle of designing DW applications
has to be revisited to meet this requirement. Note that this life-
cycle is composed of several well-connected phases. Integrating
this requirement will seriously impact all phases in charge
of data which are: ETL (Extract, Transform, Load) and the
physical design phase, in which physical optimization structures
are selected to speed up OLAP queries. In this paper, we
propose a Near Real Time Data Warehouse design (NRT DW)
dealing with semantic data sources, with a particular focus on
ETL and physical design phases. Firstly, we propose a dynamic
materialized view selection method based on a workload of
Sparql queries. Secondly, optimized algorithms are proposed to
orchestrate the ETL flows considering the selected materialized
views. Thirdly, an incremental view maintenance strategy re-
computing only the graphs that involve the updated data sources
is proposed. Finally, our findings are validated through an
intensive experimentation using a detailed cost model on a real
DBMS.

I. INTRODUCTION

The data warehouse (DW) and On-Line analysis have
become a mature technology. This maturity is characterized
by the presence of a well-known life cycle for designing
business applications and widely adopted by companies. It
includes the following phases [18]: (i) user requirement elici-
tation/validation, conceptual modeling, logical modeling, ETL
(Extract, Transform, Load), deployment, physical design and
exploitation. Each phase is associated to several features.
In software development, a feature is a component added
to the core body of software. Typically, features are added
incrementally, at various stages in the life-cycle, usually by
different developers [9].

It should be noticed that the phases of the DW life cycle
are strongly dependent – the outputs of a given phase are
the inputs of another one. To illustrate this point, let us
consider two important phases of this life-cycle: ETL and
physical design. ETL takes data from variety of sources,
cleans, transforms it according the DW format and finally
loads this data into the target warehouse [25]. It plays a crucial
role in designing a DW , because its quality strongly depends
on ETL (garbage in garbage out principle). The ETL process

is associated with different features incrementally added to
deal with new requirements of data sources, decision makers
and DW designers such as: (i) data quality [20], (ii) data
cleaning [2], (iii) polystore deployment [23], etc. Recently, the
ETL phase has been revisited in the context of the Connected
World (e.g. the case of Internet of Things and Linked Open
Data) under the name of data ingestion [22].

The physical design is a crucial phase for DW . It is
considered as the hinge point of the other phases and is the
one which also conveys the image of the operational DW to
its end-users. This is because it is usually associated to the
non-functional requirement satisfaction (e.g. query response
time, maintenance, energy consumption, etc.). During this
phase, several features are considered such as materialized
views, advanced indexes, data compression, data partitioning,
etc. Each feature corresponds to a complex process to select
its optimization structures. For instance, if the feature is
materialized views, then algorithms for selecting these views
are needed [4]. Usually, this selection is known as a NP-hard
[4]. Note that this phase assumes that the DW is already
deployed.

Note that the interaction among features (intra-phase feature
interaction) of the physical design has been highlighted in
[40]. This identification of this interaction contributes in
developing intelligent tools to speed up OLAP query pro-
cessing [40]. To illustrate this point, knowing that indexes
and materialized views are both redundant structures (they
duplicate data), compete for the same resource representing
storage space and maintenance overhead allows replacing a
materialized view by an index and vice versa for performance
issue and constraint satisfaction (e.g. the storage cost). This
interaction makes the problem of feature selection harder.
More precisely, let us assume that for a given workload, the
number of possible indexes and materialized views in NI and
NV respectively. The combined search space could be as large
as 2NI+NV . This is because different features could potentially
interact with one another. We say that a phase Pi ”strongly”
depends on a phase Pj (i 6= j) if a change in selection of Pj

often results in a change in that of Pi. Otherwise, we say Pi

”weakly” depends on Pj . DB2 Design Advisor of IBM has
been developed by considering this interaction [40].

This complexity obliges researchers to tackle one phase
in isolation way and without really considering the other



ones, except the ETL phase. The particularity of this phase
is that it has a strong interaction with conceptual, logical,
deployment and physical phases. The first studies on ETL dealt
with sources considering their physical and deployment phases
[34], [28], [29], but without taking into account the process
of selecting optimization structures of the physical design
features. After that, ETL processes were focused on the logical
level of data sources. In this perspective, [38] proposed an
ETL workflow modeled as a graph, where its nodes represent
activities, record-sets, attributes, and its edges describe the
relationships between nodes defining ETL transformations.
A formal ETL logical model is given using LDL [27] as a
formal language for expressing the operational semantics of
ETL activities [36]. To make ETL processes more generic, a
couple of studies consider it at the conceptual level of sources
[37], [32], [16].

The interaction between phases (inter-phase interaction) has
to be considered for when designing DW from new types of
sources with high velocity. We believe that this interaction will
have the same impact on the quality of the DW design as the
intra-phase feature interaction did.

To illustrate this interaction, we consider the example of
semantic warehouses (SDW) that have emerged as an im-
portant demand for Linked Open Data [1], [35]. Note that
streams are appearing more and more often on the Web1.
The integration of new data, known as DW refreshment, is
traditionally performed in off-line way. This means that during
the update of data area with executed processes, OLAP users
and applications cannot access any data. In fact, the set of ETL
activities usually take place in a present loading time window
in order to avoid the overloading of operational OLTP (On-
line Transactional Processing) source systems with the extra
workload caused by these processes. Still, decision makers
are pushing for higher levels of freshness, since more and
more enterprises operate in a business time schedule of 24x7
[2]. Designing a real time DW impacts automatically different
phases of the life cycle, and more especially the phases that
are in charge of data such as ETL and physical design.

In this paper, we simultaneously select, maintain material-
ized views (a feature of the physical design phase) and develop
ETL tasks in the context of semantic DW from stream sources.

The rest of the paper is organized as follows: Section 2
overviews the main important studies related to the selection
of materialized views and ETL in semantic warehouses. This
section is concluded by a comparison with five relevant criteria
of these studies. Section 3 describes our real-time processes for
selecting materialized views and performing ETL processes.
Mathematical cost models are also given in Section 4 to
quantify the benefit our materializing or not a view. The
performance evaluation results are presented in Section 5.
Finally, Section 6 concludes the paper and discusses future
work.

1http://activitystrea.ms/

II. RELATED WORK

This section overviews the main important studies tackling
the ETL and the selection of materialized views in an isolated
way in the context of Semantic DW .

Contrary to traditional DW [15], little attention has been
paid to the problem of materialized view selection for semantic
databases and DW . [24] propose an RDF-3X engine system
which implements a solution that stores and builds indexes for
RDF triples. [11], [10] propose a system called RDFMatView,
inspired from traditional databases [12]. It allows RDF view
selection from triple table for a given SPARQL workload
and creates indexes using patterns of shared triples to speed
up queries. The authors of [13], [14] propose a cost-based
approach to select materialized views from a well-known
workload. They propose an algorithm to identify a set of
candidate views for materialization. They take in account im-
plicit triples entailment and supports query rewriting. In [21],
authors propose to select materialized views at the ontological
level using a rule-based approach hiding the implementation
aspects. In a second step, they use Directed Acyclic Graph
(DAG) to select views at the logical level based on a cost
model which considers the diverse storage layouts.

All these approaches have in common that they focus on
facilitating efficient processing of RDF queries and updates.
However, they consider a static workload which contradicts
the dynamic nature of the web. In fact, any change to the
workload should be reflected to the view selection as well.

The studies dealing with real time ETL considering opti-
mization structures concern mainly the traditional DW . The
work of [26] dealt with the problem of elimination of duplicate
data by the means of equality and similarity features. The
authors of [17] used a queue network, where an Active Data
Staging Area (ADSA) is built between the sources and the
DW . The ETL transformations are done by choosing the right
topology and communication methods. In [33], the authors
dealt with the ETL workflow optimization that includes a
module that automates the job allocation which allows content
enrichment using indexes defined on the table. [6] focused on
the speed arrival of stream data and the Inputs/Outputs. They
proposed some algorithms that manages disk and memory
access and uses MESH join operations in transformation phase
that is faster compared to other joins. In the same perspective,
[29] have proposed an algorithm that uses Semi-Streaming
Index Join (SSIJ) during join operations in dynamic nature,
it manages the memory and the incoming stream. To the best
of our knowledge, there are no works that have dealt with
Dynamic materialized view selection during Semantic ETL
process.

A comparison including existing works and our proposal is
given in Table I based on five criteria:

1) the nature of the workload queries (NQW),
2) the data structure used to manipulate input queries (DS).
3) the reordering of queries depending on requirement

selection (RQ)
4) Type of Optimization structure used (OS)

http://activitystrea.ms/


5) The use of Materialized view results (UMVR).

III. DYNAMIC VIEWS SELECTION DURING SEMANTIC
ET L PROCESS

This section presents our approach that selects dynamically
RDF views during the ETL process. Before detailing it, we
present a motivating example that illustrates our proposal.

Given a set of RDF data sources constructed based on
the schema of Lehigh University Benchmark2(LUBM) and
integrated on a semantic DW deployed on an RDF Quad table
(Fig. 1-a), i.e. triple plus graph per row. The columns are G
for graph, P for predicate, S for subject and O for object.
Let us assume that a materialized view V is selected for this
DW (Fig. 1-d). The real-time execution of ETL transforma-
tions [30] such as extract, merge, join, aggregate, etc. uses
significantly this view. More concretely, let us consider the
SPARQL query (Fig. 1-b) generated by the join transformation
of ETL represented by an RDF graph (Fig. 1-c). Two scenarios
are possible to execute this query: (i) directly from the DW
this scenario is very costly in terms of disk accesses and the
join execution time and (ii) directly from the view V , which
savings these above costs, especially the selection of this view
is performed dynamically to reflect the real situation of the
DW .

A. Description of our Methodology

Our methodology, illustrated on Fig. 2, consists of three
main components: (1) the main memory and cache manage-
ment; (2) a dynamic materialized view selection and (3) a
stream ET L process.

1) The main memory and cache management: ensure the
management of the main memory and the cache which
are necessary to the execution of the ETL process.
This component is responsible of the memory usage
during the ET L process. The main idea is to use main
memory as primary storage for the ETL transformations
and materialized views, removing disk access as main
performance bottleneck. Let M be the quota of the
memory. It is then divided into four partitions, with a
variable size: (1) the buffer of inputs issued from sources
(BI), (2) the buffer of streams (BS), (3) the view cache
(V C) and the cache memory (CM ). Briefly, the scenario
is as follows: The BI receives extracted instances from
sources. The BS is similar to the traditional buffer of
query optimizers. It stores data from the warehouse to
speed up some ETL transformations to avoid unneces-
sary accesses to the DW . The V C represents the pool
of selected views that are managed dynamically in terms
of allocation and eviction of views. MC Memory cache
is the area where the transformations are performed.

2) The dynamic materialized view selection component:
identifies the most relevant materialized views that
matches with requirement and houses them in V C. Note
that V C contains a set of views dynamically selected

2http://swat.cse.lehigh.edu/projects/lubm/

during the ETL process. Views which are no longer used
are evicted from memory.

3) Stream ET L process component: starts by extracting
instances from RDF data sources and temporarily backs
up in the BI . The BI merges the instances that do not
requires data from DW to the execution of the ETL
process and load them in the DW . The BI houses in
the BS the remaining instances (instances requiring data
from the DW to the execution of the ETL process).
BS deals with retrieved instances (Triple/quad blocks)
from sources and data recovered from DW disk or V C,
needed for the execution of ETL process. Finally, ETL
operations are executed in CM .

B. Materialized view selection process
In this section, we propose a solution that evaluates

SPARQL queries in order to dynamically selects materialized
views. We formally introduce all necessary concepts for this
idea and describes the different steps, which are: (1) identi-
fying mappings between SPARQL queries, (2) capturing of
interaction among queries, (3) generation of views candidate
and (4) query scheduling.

a) Identifying mappings between SPARQL queries: Dur-
ing this step, the SPARQL queries are placed in a queue. To
reduce the search space of the problem of selecting semantic
materialized views, we identify similarities and equivalences
that may exist between queries. Firstly, we start by con-
sidering variables from the SPARQL queries in order to
identify query containment. A such strategy requires finding
mappings between elements. More concretely, it is done by the
identification of a pattern contained in another query pattern.
To do so, we develop an algorithm that finds all mappings
between each query and all patterns by enumerating all of
them. Afterward, identify the most frequently used mappings
and we select the relevant ones.

b) Capturing of interaction among queries: The process
of materializing views in traditional DWis usually guided by
the interaction between queries. To capture this interaction,
several data structures were proposed such as Multiple View
Processing Plan (MVPP) [39]. The MVPP is a directed acyclic
graph. The roots of this graph are the queries and the leaves
are the base relations, and the intermediate nodes are the
operations of selection, projection, join, or aggregation of
data. The structure of MVPP is constructed by unifying single
query processing plans of queries. Fig. 3 shows an example
of a MVPP constructed from the Star Schema Benchmark
(SSB) queries3. The nodes Lo, Pa, Sp and Da represent
respectively the table of SSB: Lineorder, Part, Supplier, and
Date. Several types of Intermediate nodes are distinguished:
join (Ji), aggregate (Aj), selection (Sk) and projection (Pl).
This structure has been used in our system SLEMAS [7] that
captures the interaction among very large number of queries
in the context of relational data warehouses. SLEMAS is
available at the forge of our laboratory4.

3https://www.cs.umb.edu/∼poneil/StarSchemaB.PDF
4https://forge.lias-lab.fr/projects/bigqueries

https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://forge.lias-lab.fr/projects/bigqueries


XXXXXXXXCriteria
Work Neumann and al[24] Castillo and al[10] Goasdoue and al[14] Bery and al[21] Our Proposal

NQW Static Static Static Static Dynamic
DS Triples Triples multigraph DAG Hyper-graph
RQ No No No No Yes
OS MV on Indexes Indexes Static views Static MV Dynamic views
UMVR No No No No ETL Process

Table I. Comparison of RDF Materialized View Selection approaches

Figure 1. A Motivating Example

This MVPP has been revisited in the context of SPARQL
queries [19] to generate a graph structure called, unified query
plan (UQP). This motivates us to adapt our SLEMAS system
to SPARQL queries.

This adaptation is performed as follows: (i) transforming
the UQP to a hypergraph; (ii) partitions this hypergraph
into several components. This partitioning is performed using
HMETIS tool5. Each component contains a query plan that
shared at least one join node. The first join node, called pivot
node is shared by all queries of its component. The pivot has
a direct impact on the other nodes of its component. (iii) After
the partitioning process of the hypergraph into several small
sub-hypergraps, the generation of UQP becomes a simple
transformation of each sub-hypergraph into an oriented graph
and (iv) finally, we merge the resulting graphs. Fig. 4 describes
an example of query interactions applied to the 14 LUBM
queries. The hyper-graph is created and partitioned according
to the existing interactions among queries. Each partition is
transformed to an acyclic directed graph. The result obtained
is a unified query plan having as leaf nodes the form of
quads < g, s, o, p >. The root node represents the final query
result and the intermediate nodes are the SPARQL algebra
operators (such as join, filter, etc.) and solution modifiers (such
as projection, distinct, limit, or order by).

c) Materialized Views candidates: Materializing all
nodes of the global plan is not feasible [8]. To decide which
nodes have to be materialized, we need to evaluate their impact

5http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

on overall query processing. This decision is performed using
a cost model that estimates the query processing. It defines a
benefit function returning a value between 0 and 1. The cost
function is given as follows:

benefit(V ) = costWO(q, V ) − costWV (q, V ) −
costMat(V ), where:

• CostWO(q): the processing cost of the query q without
view(s).

• CostWV (q, V ): the query processing cost of query q
using the materialized view V .

• CostMat(V ): the maintenance cost of the view V .
• Size(V ): the cost needed to store the view V .

Instead of treating the whole search space including all can-
didates as in the usual approaches for materializing views, we
adopt the divide-conquer approach [7], where the search space
is divided into several sub search spaces, each one corresponds
to a connected component of the global graph.

d) Query re-ordering and materialization: The ordering
of queries is done in order to avoid view dropping. All
materialized views should optimize the maximum of queries
before theirs dropping, following these steps: (1) Identify all
nodes having maximal benefit; (2) An ordering is applied
based on their benefit; (3) The benefit identified is propagated
to the queries of those nodes. At this stage, each query will
have a weight representing the sum of the benefit of its nodes.
(4) the ordering of queries is done based on these weights and
a decision is taken on materializing or de-materializing views.



Figure 2. Our general solution : NRT DW architecture.
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Figure 3. Example of a MVPP.

Figure 4. Example of query interactions using the 14 SPARQL
Queries of LUBM.

C. Near Real Time Semantic Data Warehouse

In this section, we describe the different phases of the
proposed real time ETL process for Semantic DW . We
consider as starting point some RDF graphs defining data
sources and views selected dynamically. The main goal is then
to define an appropriate set of rules, determining how the flow
of ETL operations from sources to the target DW nodes can
be executed (Fig. 5). Essentially, each rule is responsible for
executing an operator in the ETL process. The obtained RDF

graph represents the DW resulting from the integration of data
sources.

Our ETL process uses 10 generic conceptual ETL operators
defined in [30]. We have overloaded them to consider the
characteristics of RDF graphs. We redefined their signatures
in order to satisfy our requirement, which is manipulating
the RDF data structure. The data sources and target DW are
represented by the RDF graph (G), where the nodes (N ), edges
(E) and labels (L) represents respectively classes, instances
and data properties, object properties and DL constructors.

Figure 5. An example of ETL flow generated using the stream ETL
algorithm.

We consider three phases, namely: (1) Pre-processing phase
which deals with transformations that do not require DW
instances; (2) Stream phase that applies transformations re-
quiring instances stored in materialized views; and (3) Off-
line phase which manages transformations requiring DW
instances, available only in the disk. The maintenance of the
selected views is also performed in this phase.

Pre-processing phase. During this phase, our algorithm
starts by extracting instances in the format of RDF graphs
(quad-sets) from the data sources participating in the in-
tegration process. These data are moved to the BI for a



pre-processing. Extracted instances that do not require DW
instances for ETL transformations are moved to memory
cache zone for transformations and loading in the DW . The
remaining instances are moved to BS for an on-line processing.
The ETL operators concerned by this processing are: retrieve,
extract, convert, merge, filter, Delete Duplicate (DD) and
Store.

Algorithm 1 Pre-processing ETL Algorithm
Input: Si: Data sources (Semantic and Graph structure), DW
: schema + instances (RDF Graph structure).
Output: DW as RDF graph.

1: c := 0;
2: for Each Si do
3: read stream graphs;
4: gSi

:=ExtractGraph(Si);
5: Put gSi

in InputBuffer;
6: for Each graph g ∈ InputBuffer do
7: if data does not need DW instances then
8: Merge operations and output in GETL;
9: Clean and Store instances in DW;

10: else
11: if (END OF STREAM is true) then
12: Move subgraph to StreamBuffer zone;
13: Increment counter c with number of stream sub-

graph;
14: else
15: Go To Stream ETL Algorithm ;
16: end if
17: end if
18: end for
19: Remove graph g from cache InputBuffer;
20: end for

Streaming phase (Online phase). In this phase, the algorithm
processes the existing RDF graphs (quad-sets) in the BS.
It waits for a minimum of graphs threshold to accumulate
(until to receives the message END OF STREAM). Then, it
applies the transformation operations that requires instances
from the DW . Indeed, the algorithm checks the availability
of the instances precomputed in views already materialized;
ie join and aggregation operations precomputed through the
materialized view dynamically selected. Otherwise, it moves to
offline phase where required instances will be extracted from
the disk and then computed. The ETL operators concerned by
this processing are: Union, Join, Aggregate, Store.

Offline phase. In this phase, the algorithm deal with existing
RDF sub-graphs (quad-sets) located in Memory Cache. The
concerned transformations involve expensive joins between
the newly arrived instances and some warehouse data (not
available in views). So, it selects instances required from disk.
Then, it applies the transformation operations. Finally, the
materialized view component is refreshed in order to select
and/or evict new materialized views.

Algorithm 2 Stream ETL Algorithm
Input: Stream Buffer zone, DW (schema and instances),
number of stream sub-graph, value limit (max memory size
of stream buffer).
Output: DWas RDF graph.

1: c:=number of stream sub-graph;
2: if c reach value limit then
3: Send End of stream =false;
4: else
5: for Each graph gi in StreamBuffer do
6: check the availability of instances required in MV;
7: if Materialized view available then
8: Apply ETL transformations (join, aggregate,

Union);
9: Output the GETL after apply ETL operator;

10: Clean and Store instances in DW;
11: Remove graph g from cache StreamBuffer;
12: else
13: Move subgraphs to in-Memory zone;
14: Go to Offline Phase Algorithm;
15: end if
16: end for
17: end if

Algorithm 3 Offline ETL Algorithm
Input: in-Memory zone, DW (schema and instances).
Output: DWas RDF graph.

1: for Each graph gi in in-MemoryCache do
2: Read required blocks from disk
3: Apply ETL transformations (join, aggregate, Union)
4: Output the GETL after apply ETL operator;
5: Clean and Store instances in DW;
6: Remove graph g from cache in-MemoryCache;
7: end for
8: Refresh Materialized view selection (selects/evicts);

D. Incremental Maintenance of RDF Materialized views

We distinguish two types of views updates, depending on
whether the initial DW is empty. Either perform a full mate-
rialization of RDF graphs by running the ETL process during
the creation of DW or carry out an incremental materialization
gradually as the data sources evolution.

Our system performs the maintenance of materialization
incrementally. The process can be divided into four main steps:
(i) Identify the updated RDF graphs (quad-sets) from sources
using change data capture techniques; (ii) Load updated quad-
sets into the staging area which is stored in the main memory
component, specifically in the buffer of inputs (BI); (iii) apply
the transformations needed in order to derive new quad-sets
depending on DW schema (the execution of the previously
described ETL process); and finally (iv) add all the new
derived quad-sets into the materialized views, making them



available for querying.
The identification of updated quads using Change data

capture, involves the generation of a set of rules required
for the process of maintenance views. It depends on the
identification of the set of all relations R in sources S that
are relevant to materialized views. A relation R is relevant
to a materialized view (MV ), if any of these three rules are
generated: (i) R is triggered by deletions of quads on S; (ii) R
is triggered by insertions of quads on S (iii) R is triggered by
updates of quads on S. An update is treated as a deletion
followed by an insertion. The following is an example of
Oracle trigger implemented in each data source participating
in the integration process.

Create or replace
TRIGGER Updates_On_Sources(S(i))
BEFORE INSERT OR
UPDATE ON university_rdf_data
BEGIN
Identify and extract the set of quads
from sources
U:= INSERT_ON_Source(S(i), new_quads);
Updates the API to be executed on MV
Apply_Updates_On_Views(MV, U);
END;

IV. COST MODEL

In this section, we derive the general formula for calculating
the cost of our ETL solution. The main objective is to evaluate
the memory usage and processing costs. This is possible by
interrelate the key parameters of the ETL Algorithm: input
size n, ETL cost to process n quads and available memory M.
Table II describes the notation used.

Generally, the streaming ETL process requires that the effect
of a stream graphs is visible in the DW store (output) before a
given time limit. This time limit is associated with each stream
graph in the form of a deadline. In addition, the whole process
has to meet the deadline of its time window for completing
the integration of data sources with minimum cost process
and memory. We assume that the deadline and time window
are given as part of the technical specifications for the ETL
design. It includes also the expectations about the size of the
input RDF quads.

Let d and w be respectively the deadline for each stream
RDF quad and the time window for the execution of the whole
ETL process. The time to run the ETL process for n quads
must be less than the time window w, knowing that each
quad must meet the deadline d to be visible in the DW .
Consequently, the objective function for ETL optimization is
to satisfy the following constraints:

Time(ETL(n, t)) ≤ w/∀t ∈ DW : time(ETL(t)) ≤ d
....(1)

Memory cost. As we said before the memory is divided into
four components. We assume that the total memory allocated
(M ) is used for the execution of the ETL Algorithm. The

memory for each component of the proposed solution can be
calculated as follows:

• Memory reserved for the waiting queue (Buffers of Inputs
and Streams) = Binput + Bstream.

• Memory for the basic ETL Transformations (e.g., merge,
union, convert)= α × Cmem.

• Memory for the join and aggregation ETL transforma-
tions = (1-α) (Cmem).

• Memory for the materialized views selected = Cmv .
The total memory used by the proposed solution is com-

puted as follows:

M= Binput + Bstream + α Cmem + (1-α) Cmem + Cmv ....
(2)

Processing cost. Here, we first calculate the processing time
cost for each RDF triple/quad separately, then we calculate the
processing cost of the proposed ETL Algorithm for n quad-
sets. The total processing time cost of the proposed algorithm:

CostETL = (ndisk×CI/O)+CMV +n(CI/O +CDel+CS).

The algorithm processes n stream quads. On this basis, the
service rate µ can be calculated by dividing n by the cost of
ETL Algorithm. With the high arrival stream quad-sets n and
limited memory the algorithm tries to achieve a high service
rate. The service rate calculation formula is given as follows:
mu = n

CostETL
.

Parameter name Symbol
Service rate µ
Total allocated memory (bytes) M
Buffer of Inputs (bytes) Binput

Buffer of Streams (bytes) Bstream

Memory Cache (bytes) Cmem

Materialized View Cache (bytes) Cmv

Size of disk instances (triple/quad) (bytes) Sinstance

Memory weight for Basic ETL operations α
Memory weight for Join&Aggregation operations 1− α
Number of Input from disk ndisk

Cost to read one bloc from disk into the Memory CI/O

Cost to remove one triple/quad from the Memory CDel

Cost to read one stream quad from source CS

Cost to handle one ETL transformation CT

Table II. Notations used in cost estimation

V. EXPERIMENTAL STUDY

In this section, we show the results of our experiments. We
first conduct an experimental study to analyze the effectiveness
of the optimization approach proposed. Then, we evaluate
the loading and query performance in comparison with our
previous work [5].

A. Platform and data layout.

We use Oracle Semantic Database 12c release 2 as the
database back-end. For efficiency, we implemented a B-tree
indexes on quad Table and SPARQL query hints. The storage
of data ix done on quad table, using a distinct integer for each
distinct URI or literal value. In order to enhance the efficiency
of frequently queries, we have indexed the quad table on s, p,
o, g, and all two and three column combinations.



Moreover, some PL/SQL APIs were invoked after the
integration of each data source (load of instances). The API
SEM PERF.GATHER STATS allow collecting statistics for
data sources and the API SEM APIS.ANALYZE MODEL for
DW models in the semantic network graph. The memory SGA
and PGA are also increased to 2GB.

In addition, Oracle has incorporated a reasoner engine
defined based on TrOWL and Pellet reasoners. Oracle pro-
vides full support for native inference in the database for
RDFS, RDFS++, OWLPRIME, OWL2RL, etc. It uses forward
chaining to do the inference. It compiles entailment rules
directly to SQL and uses Oracle’s native cost-based SQL
optimizer to choose an efficient execution plan for each rule.
The following is an example of user defined rules applied,
they are saved as records in tables. (a) Co-author rule: Pub-
licationAuthorOf(?A1, ?P) ∧ PublicationAuthorOf(?A2, ?P)
→ CoAuthor(?A1, ?A2) and (b) the validation of Co-author
: publicationAuthorOf(?A1, ?P) ∧ publicationAuthorOf(?A2,
?P) ∧ notEqual(?A1, ?A2) → CoAuthor(?A1, ?A2)

Data and workload. Our experiments are based on YAGO
KB, version 3.0.2, having an architecture classified on themes.
Each theme is a set of facts. A fact is an RDF graph.
YAGO has defined the context relation between individuals
[31] which we used to extract the set of themes related to
our context study (university domain). The resulting contextual
YAGO KB contains around 5,9 x 106 quads. From this set,
we have generated five data-sets, representing data sources
(SDB), equivalent to our previous work [5] in order to make
a comparison. The five SDBs and the DW schema have
been deployed using Oracle DBMS. Oracle offers different
format for data loading such as: RDF/XML, N-TRIPLES, N-
QUADS, TriG and Turtle. We choose N-QUADS format to
load instances using Oracle SQL*Loader.

The LUBM benchmark is an ontology for the university
domain. It offers fourteen extensional queries representing a
variety of properties. We have added 6 more queries inspired
from [3] defining analytical SPARQL queries (using count,
avg, sum, Group By, etc.) and computing number of courses
offered by departments, number of courses taught by profes-
sors in each department, number of graduate courses in each
department, etc.

Hardware. Our evaluations were performed on a laptop
computer (HP Elite-Book 840 G2) with an Intel(R) CoreTM
i5-5200U CPU 2.20 GHZ and 8 GB of RAM and a 500 GB
hard disk. We use Windows10 64 bits. We use Oracle Database
12c release 2 that offers RDF Semantic Graph features of
Oracle Spatial and Graph. Cytoscape6 is used for visualization.

Now, we report the results of our experiments: (i) a valida-
tion of the dynamic materialized view selection method; (ii)
an analysis of the performance of the ETL process; and (iii)
a comparison between our proposal and the work of [5].

B. Validation of the dynamic MV method.
In order to evaluate the efficiency of our algorithm for

selecting materialized views, we first check the scalability of

6http://www.cytoscape.org/

Figure 6. Execution time(s) of
some LUBM queries
over raw data and
views.

Figure 7. Materialization time
vs. Quad size.

the approach. We create larger RDF graphs such that the size
of materialized views would be multiplied by a factor of 1
to 5, with respect to the different steps explained above. The
corresponding materialization time is shown in Fig. 6 which
demonstrates a linear scale-up w.r.t. the data size.

Moreover, we have run the fourteen queries of the LUBM
bench on the DW before and after the execution of the mate-
rialized view selection algorithm. Fig. 7 describes the runtime
of some queries over raw data and views, for different sizes of
the DW . It shows the performance of queries over materialized
views that becomes more evident with the growth in the
volume of data, due to the dynamic selection of the appropriate
views. Moreover, evaluating queries using materialized views
is on average 4 times faster than raw data. This finding can
be explained by the availability of partial results from these
materialized views.

C. Performance of the ETL process.

In this experiment, we evaluate the ETL algorithm which
considers the different possible cases namely: preprocessing,
streaming and off-line. For each phase, we evaluate the re-
sponse time of the ETL process with and without memory
cache. Note that a memory cache is allocated for the prepro-
cessing phase (buffer cache) and for the stream phase (Stream
cache and materialized view cache). Fig. 8 depicts the results
obtained. The dynamic selection of materialized views greatly



Figure 8. Query response time before and after MV selection (with
cache and without cache).

Figure 9. Cost validation.

improves the response time of ETL process. The use of the
cache as well. Indeed, the recently accessed streaming data
and materialized views selected are cached in the memory
respectively in Stream buffer and materialized view cache. The
use of off-line phase shows less performance caused by an
extra inputs-outputs (I/O) operations from disk-based access.

a) Cost validation: In order to validate our results, we
have compared between our mathematical cost models and the
real measures. Fig. 9 presents the comparisons of both costs
for the proposed ETL algorithm. This Figure shows that the
predicted cost closely matches the measured one. This finding
demonstrates the quality of our proposed cost models.

b) Inference performance: We evaluate inference perfor-
mance using OWLPrime fragment and user defined rules. We
used reasoner mechanism to infer instances from integrated
data. Table III shows results obtained. It clearly demonstrates
that number of quad inferred is important when it comes to
use contextual KB instances. It includes a new dimension and
thus allows more graph analysis.

Criteria Inference Results
Integrated instances 5,4 x 106
Inferred instances 34K
Time inference(minutes) 5,4

Table III. Inference performance : Time and number of Quads.

D. Comparison between our proposal and the previous work
[5].

Our experiments demonstrate the feasibility of our ap-
proach, based on the standard RDF. We showed a scalable
performance during materialized view creation and integration
of data sources. Fig. 10 demonstrates a comparison between
the two approaches on the basis of time(s) performance of
instances loaded in DW per concept. It clearly indicates that
our proposal based on dynamic materialized view selection
outperforms the [5] approach.

On the other hand, we have studied the ETL Algorithm and
we were interested on the time complexity. The algorithm is
implemented based on the graph theory, where nodes represent
concepts and edges roles definitions. We have examined the
number of iterations of our algorithm to generate the ETL
graph (semantic DW populated) and we have compared it with
the state of the art [5]. The algorithms are based on concepts
searches (Tbox for intentional mappings) and not instances
(Abox for extensional mappings). The time complexity is
O(n) for both algorithms, where n represents the number of
involved nodes (concepts). This depends on the resolving of
constraints defined on data sources, which are at least O(m),
where m is the number of involved schemes. Fig. 11 describes
the number of iterations per concepts involved in the DW
schema. It indicates a polynomial time. This finding proves
the feasibility and efficiency of our approach and shows better
results in terms of reduced number of iterations thanks to the
dynamic selection of materialized views. This is explained by
the decrease in the number of joins and aggregations.

Table IV demonstrates a comparison between the fast ap-
proach for selecting materialized views for integration and off-
line integration done from scratch. On the basis of some crite-
ria identified during the experiment, the results clearly indicate
the interest to move towards the selection of materialized views
during the ETL process to enhance the integration time. Note
that time is given in minutes.

Criteria Offline [5] Our Proposal
Optimized Structure No Dynamic views
Memory/Disk Usage Disk Memory
Data type RDF N-Triples RDF N-Quads
Deadline ≥ 5 ≤ 1
Data Loading from scratch Incremental
Query execution time 4 × n n
Overall Integration Time 3,2 1,1

Table IV. Comparison between Our proposal and previous work.

Our experiments demonstrate the feasibility of the dy-
namic selection of materialized views during the ETL process,
which exploits standard RDF functionalities offered by Oracle
such as: quad storage, graph definition and reasoning. We
showed scalable performance when loading and integrating
data sources. We proved that semantic DW is enriched with
concepts and instances deducted from KB using inference
mechanism. This will give more possibility for query answer-
ing and data analysis.



Figure 10. Evaluation time(s) of Quads loaded in SDW per concept.

Figure 11. Complexity of the ETL Algorithm.

VI. CONCLUSION

In this paper, we highlight the importance of studying
the interaction among phases of the life-cycle for designing
advanced data warehouse applications. Serious research stud-
ies accompanied by database tools have shown the role of
capturing interaction between features of some phases (we
can cite the example of physical design in optimizing OLAP
queries). We generalize this interaction between phases; where
we considered two of them: ETL and physical design in
the context of near time semantic data warehouse design.
We have proposed a new approach for selecting materialized
views that dynamically identifies relevant SPARQL queries
to speed-up the execution of the ET L process that supports
very fast streams and exploits the available memory. The use
of views minimizes the graph comparison against the RDF
quads set. At runtime, ET L transformations are analyzed to
see whether they can be executed using the allocated memory
and the selected materialized views. Experiments have shown
the benefit of coupling materialized view selection and ETL
processes.

Currently, we are working on the scalability of our approach
by considering very large datasets and considering other non-
functional requirements.

REFERENCES
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