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Abstract—Within big data analytics, graph problems are as
important as machine learning. There exist many algorithms to
analyze large graphs but they are limited by main memory. On
the other hand, a lot of data stored on DBMSs that needs to be
analyzed as graphs. Moreover, DBMSs can work in parallel and
they do not have RAM limitations. In this paper, we propose
several algorithms that produce metrics and show properties
of the graph as well as help us to understand the graph
structure specifically diameter and betweenness centrality and k-
betweenness centrality. This work is a big step beyond transitive
closure and recursive queries. We propose optimized SQL queries
that work on a large graph stored in relational form as triples
can compute these in a more flexible and efficient manner. We
study how to optimize such SQL queries combining demanding
joins and aggregations that remove main memory limitation and
also they can work in parallel. Finally, we provide an experi-
mental evaluation to understand accuracy and performance in
a columnar DBMS. We compare our algorithms with popular
platforms including Python and Spark. We experimentally show
our SQL algorithms are accurate and efficient.

Index Terms—Graph Metrics, SQL Queries, Betweenness Cen-
trality, Query Optimization,Columnar DBMS

I. INTRODUCTION

Graph analytics remains one of the most computationally
intensive tasks in big data analytics. The main reason is due
to the large graph size, structure of the graph and patterns
presented in the graph. Large-scale graphs have been widely
applied in many emerging areas. Typical graph examples can
be social networks, road connecting cities, telecommunication,
flights linking airports and so on. On the other hand, rela-
tional databases remain the most common technology to store
transactional and analytical databases, due to optimized I/O,
robustness and security control. A lot of data stored on DBMSs
(database management system) can be potentially analyzed as
graphs [14]. Even the data is not in DBMS, it is fast to load a
large data set into the DBMS. Also, it has been established that
columnar DBMS perform better than GraphX or array DBMS
for certain kind of graph queries [3], [7]. However, processing
large graphs in large scale distributed system has not received
much attention in DBMS using relational queries.

Understanding the structure of the graph is more difficult
and complex than solving fundamental graph problems like
exploring the graph [3] and transitive closure [7]. It has been
done in many algorithms [5], but not with queries. With
columnar DBMSs, we revisit the problem of solving graph

algorithms with SQL queries. We propose several algorithms
solved with SQL queries that can help to understand the
structure of the graph. Our goal is to prove that DBMS can
help us to understand the graph structure with something that
is more complicated than what was done before with recursive
queries (transitive closure) [15]. Moreover, columnar DBMS
provide significant accelerations in Join and Group By queries.

In our work, we propose several algorithms that produce
metrics and show properties of the graph such as the di-
ameter of the graph, the betweenness centrality of a vertex
and k-betweenness centrality. We study how to express the
computation of these algorithms only with relational queries
and how we can optimize the queries. Most of the existing
graph databases fail when data volume is too large. Also, the
usability of these graph databases is comparatively less than
relational DBMSs as they have no standard set of rules. More-
over, these graph databases along with many popular platforms
including Python and Spark are limited by main memory. We
believe efficient graph algorithms for relational databases will
avoid wasting time exporting the data or setting up external
systems. Also, it has been established that columnar DBMS
perform better than GraphX or array DBMS for certain kind
of graph queries [3], [7]. In our opinion, even though query
optimization is classical, well studied, topic optimization of
relational queries on graphs needs further research.

II. DEFINITIONS AND BACKGROUND

A. Graphs

Let G = (V,E) be a directed graph with n = |V | vertices
and m = |E| edges. An edge in E links two vertices in V and
has a direction. Our definition allows the presence of cycles
and cliques in graphs. A cycle is a path which starts and ends
at the same vertex. A clique is a complete sub-graph of G.
The adjacency matrix of G is a n×n matrix such that the cell
i, j holds 1 when exists an edge from vertex i to vertex j.

From database perspective, graph G is stored in table E
as a list of edges (adjacency list). Let, table E be defined as
E(i, j, v) with primary key (i, j) representing the source and
destination vertices and v representing a numeric value e.g.
cost/distance. A row from table E represents the existence
of an edge. For undirected graph, for each edge (i, j, v), we
add reverse edge (j, i, v) meaning both edge direction in both
ways. In summary, from a mathematical point of view E is



a sparse matrix and from a database perspective, E is a large
and narrow table having one edge per row.

B. Queries used in solutions
We use standard SQL queries to analyze graphs. SQL

queries are particularly useful in handling structured data. The
standard SPJA includes selection, projection, join, aggregation
queries. The SPJ queries are written as σ, π, and 1 in
relational algebra. The SQL queries we used can be recursive
and non-recursive. Non-recursive SQL queries solve common
graph exploration problems like counting triangles. A simple
example of non-recursive query in terms of relational algebra
with aggregation can be πi,j,min(v)(E 1j=i E). However, we
also use recursive queries to solve harder graph problems such
as betweenness centrality.

C. Columnar DBMS
A columnar database stores data in columns instead of rows

(such as Vertica, MonetDB [11]). Storing data by column
benefits the use of compression. Columnar databases can use
traditional database query languages to load data and perform
queries. The goal of it is to efficiently write and read data to
and from disk in order to speed up the time it takes to return re-
sults of a query. The indexing mechanism of columnar DBMSs
is significantly different than other traditional DBMSs. For
instance, Vertica does not use indexes to find the data like row
DBMSs. The data in the table are stored in projections, which
can be optimized for different queries. A detailed review of
columnar DBMS architectures in given in [1]. We use Vertica
as the platform to run our SQL queries.

D. Definition of Problems
1) Diameter: The diameter of a graph is the length

max(i,j)d(i, j) of the longest shortest path between any two
graph vertices (i, j), where d(i, j) is a graph distance. d(i, j)
is defined as the number of edges in a shortest path connecting
i and j. When intermediate vertices and edges of d(i, j)
are restricted to a particular subgraph H of G, the distance
between i and j is denoted dH(i, j). The diameter of a graph
G is d if max(i,j)d(i, j) = d.

2) Betweenness Centrality: Betweenness is calculated as
the fraction of shortest paths between vertex pairs that pass
through the vertex of interest. It is an important class of
centrality measures the extent to which a vertex lies on the
paths between others. Btweenness centrality can be used to
identify critical vertices in a network. High centrality scores
indicate that a vertex lies on a considerable fraction of shortest
paths connecting pairs of vertices. We define a path from
i ∈ V to j ∈ V as an alternating sequence of vertices and
edges, starting from i and ending with j, such that each edge
connects its previous and next vertex. Let ϕij = ϕji denotes
the number of shortest paths from i to j, where ϕii = 1 by
convention. And ϕij(m) is the number of shortest paths from
i to j that m ∈ V lies on. The betweenness centrality for
vertex m is:

CB(m) =
∑

i 6≡m 6≡j∈V

ϕij(m)

ϕij
(1)

Define the pair-dependency δij(m) as
ϕij(m)

ϕij
, then standard

formula for betweenness centrality can be written as:

CB(m) =
∑

i 6≡m 6≡j∈V

δij(m) (2)

Besides the full betweenness centrality, k−betweenness
centrality captures information provided by paths whose length
is within k unions of the shortest path length, is also a useful
kernel for analyzing the importance of vertices. We will define
k-betweenness centrality in the following manner. For a graph
G(V,E), let d(i, j) denote the length of the shortest path
between vertices i and j. We define ϕijk to be the number
of paths between i and j whose length is less than or equal to
d(i, j)+k. Likewise, ϕijk(m) is the count of the subset of these
paths that pass through vertex m. Therefore, k−betweenness
centrality is given by:

CB(m) =
∑

i 6≡m6≡j∈V

ϕijk(m)

ϕijk

(3)

III. PROGRAMMING ALGORITHMS WITH QUERIES

A. Diameter

The diameter of a graph is the length of the longest shortest
path between any two vertices (i, j). The exact value of
the diameter of a graph is achieved by calculating all pairs’
shortest paths (APSP). The algorithms for the APSP problem
include matrix multiplication or repeated squaring, the Floyd-
Warshall algorithm, and transitive closure of a graph.

Fig. 1: Transitive Closure algorithm.

With SQL, we could use linear recursive queries to im-
plement transitive closure algorithm to get all the shortest
path of any two vertices. But diameter is different since
it focuses on the ”longest” shortest path, so it does not
have to get the reachability for every vertex. We compute
Rk = Rk−1 1 E, and then only keep the shortest path from
Rk to continue doing join. Hence, the iterations are of the
form k = 1, 2, 3.... The base step produces R1 = E. And
then R2 = E 1 E = πi,j,min(v)(E 1j=i E) ,... and so on.



When Rk becomes empty since no more rows satisfy the join
condition, we reach the maximum iteration. The longest path
in Rk is the diameter. The basic join query is shown below.
SELECT d+1, R.i, E.j, R.v+E.v
FROM R
JOIN T ON R.j=E.i
GROUP BY R.i, E.j
HAVING R.i!=E.j

SELECT MAX(d) AS diameter
FROM RK

B. Betweenness Centrality

Fast sequential and parallel algorithms are available for
computing betweenness centrality. Brandes described a fast
sequential algorithm for computing betweenness in O(mn)
time for an unweighted graph [6]. But no one has developed
one algorithm which works for DBMSs. One reason is that
there are not stack, queue such data structures in DBMSs, so
it would be difficult when developing complicate algorithms
such as betweenness centrality. Another reason is the table
size would grow largely when the algorithm needs multiple
times of join, which makes the process take more time. We
developed our solution for betweenness centrality problem
according to Brandes’s algorithm which is shown below.

Fig. 2: The best known and fast algorithm for Betweenness
Centrality.

From the algorithm, we could see that there are two steps:
computing the length and number of shortest paths between
all pairs of vertices and adding all pair-dependencies. But Data
structures such as list and queue are used in the algorithm and
also this is a sequential algorithm. Thus there is no way to
directly change the algorithm to SQL. We propose a solution to
solve the betweenness centrality problem using standard SPJA
queries by adding an aided column. And later we optimized
it and largely reduced the table size.

For the first step, we could do linear recursive queries to
get all shortest paths. Linear recursive are queries of the form:
R = R ∪ (R 1 E), where the result of R 1 E gets added
to R itself. The iterations are of the form k = 1, 2, 3....
The base step produces R1 = E. And then R2 = E 1 E,
R3 = R2 1 E ,...It seems similar to transitive closure. But
computing betweenness centrality is far more difficult than
transitive closure since it needs not only the reachability of
each vertex but also the number of shortest paths, and all the
intermediate vertices that lie on those paths. One intuitive way
to do it is to store the starting vertex, ending vertex and all the
intermediate vertices of the path in a row. We also created a
new column called ′id′ by using SEQUENCE that was added
to each row to uniquely identify each path and used later to
get pair-dependencies. The query to get Rk is shown below.
CREATE TABLE Rk as
SELECT nextval(’sequ’) as id, k as d,

t1.i as i, t2.j as j, t1.v + t2.v as v,
t1.m1 as m1,t1.m2 as m2...
t1.m(K-2) as m(K-2),
t2.i as m(K-1)

FROM R(k-1) t1 JOIN E t2 ON t1.j=t2.i;

For k-betweenness centrality, it will go through k depth
of join and stop. For betweenness centrality, we should do
iterations of join until the size of Rk becomes 0. Now we have
R1, R2, ...Rk−1, Rk. it is necessary to union all the temporary
tables together to select the shortest paths for all pairs. But the
number of columns of Rk is different since the paths in those
tables are of different length. For example, all the rows(paths)
in R3 need 2 columns to store intermediate vertices, but they
need 3 columns to do that in R4. Because of that, it is difficult
to union all the table together and obtain the pair-dependency.
So we changed all the columns storing intermediate vertices
into rows before union all the table together. Now each row
contains id, the starting vertex i, the ending vertex j, the length
of the path v, and one intermediate vertex m. The queries is
shown below:
CREATE TABLE U AS
SELECT id as id, d as d, i as i, j as j,

v as v , m1 AS m
FROM RK
UNION ALL
SELECT id as id, d as d, i as i, j as j

v as v, m2 as m
From Rk
UNION ALL
...
SELECT id as id, d as d, i as i, j as j,
v as v , m(K-1) AS m
FROM RK;



The table U(id, i, j,m) contains all the paths. Then we
select all the shortest paths for each pair of vertices from
table U and stores in table F . Since id was used to identify
each unique path, we can obtain ϕij and ϕij(m) by doing
GROUP BY different columns. We performed F1(i, j, ϕij) =
πi,j,count(id)(F ), F2(i, j,m, ϕij(m)) = πi,j,m,count(id)(F ).
Finally, we obtained betweenness centrality for each vertex
m using πF2.m,sum(ϕij(m)/ϕij)(F1 1F1.i=F2.i and F1.j=F2.j

F2) to sum up all the pair-dependency.

CREATE TABLE F1 AS
SELECT i AS i, j AS j, count(distinct id)
FROM F
GROUP BY i, j;

CREATE TABLE F2 AS
SELECT i AS i, j AS j, m AS m,
count(distinct id) FROM F
GROUP BY i, j, m;

CREATE TABLE bc AS
SELECT F2.m AS m,
sum(F2.count/F1.count) AS bc

FROM F2
JOIN F1 ON F2.i=F1.i
AND F2.j=F1.j

GROUP BY F2.m;

IV. OPTIMIZING QUERIES

A. Optimization strategies for all solutions

1) Data Encoding and Compression: Columnar DBMSs
uses encoding and compression to optimize query performance
and save storage space. Data Encoding converts data into
a standard format and increases performance because there
is less disk I/O during query execution. There are several
encoding strategies used in columnar DBMSs depending on
data type. It also passes encoded values to other operations,
saving memory bandwidth. Compression is fundamental in a
columnar DBMS. It transforms data into a compact format.
Compression allows a column store to occupy substantially
less storage than a row store. In general, the efficient storage
methods that columnar DBMSs uses makes it possible to
maintain and process more data in physical storage. These
optimizations are done by the system itself.

2) Projections: Projections store data in a format that opti-
mizes query execution. Different from row DBMSs, columar
DBMSs store the actual data in projections. When data is
loaded into a table, the system creates or updates column-
store projections. Then when a query is submitted, the query
optimizer automatically assembles a query plan and choose
a more efficient projection to process the query according to
the properties of projections. So the columnar DBMSs could
optimize data access.

3) Partitioning: Partitioning divides one large table into
smaller pieces based on values in one or more columns.
It improves the performance of queries whose predicate is
included in the partition expression. This optimization is very
effective when processing data in parallel. The graph should be

partitioned in such a way that reduce uneven data distribution
and costly data movement across the network which makes
the parallel join occurs locally on each worker node possible.
So partitioning provides opportunities for parallelism during
query processing.

We perform the partitioning by vertex in our solutions. All
the neighbors of a vertex are stored on the same machine. We
assume the graph does not contain one high degree vertex but
it might contain a few high degree vertices.

4) Duplicate Elimination: The operation of 1 produces
many duplicate edges especially for dense graphs. Here We
push aggregation to eliminate duplicate edges by grouping
rows. Also we avoid cycles in the path using HAVING
R.i! = E.j. In diameter solution, a GROUP BY aggregation
on Rk was performed after each iteration of join, grouping
rows by edge with the grouping key i, j.

B. Specific Optimization Strategies for Diameter and Between-
ness Centrality

Both diameter and betweenness centrality algorithm need
to do recursive join. It will take a long time for large graphs
because of fast growing table size. So, we introduce several
optimization techniques to reduce the table size in the recursive
join process.

Only the shortest path is needed in both algorithms. Un-
necessary paths are kept even we did GROUP BY after each
iteration. For example, the shortest path for vertex pair (i, j)
exists in depth 2. But there is another path for this pair in
depth 3. Obviously, the second path is not the shortest one,
but it is still kept and explored. This increases both space
and time complexity. To keep only the shortest paths, we
maintain a table S(i, j, v) which contains all the shortest paths
found so far, and delete unnecessary paths from Rk after
each iteration. At the same time, we update table S by the
addition of new shortest paths. Since DELETE query is slower
than the CREATE query, we created a new table instead of
deleting unnecessary paths. The queries for diameter solution
are presented below. And also the steps summary is shown in
Figure 3.

CREATE TABLE RT_K AS
SELECT t1.i AS i, t2.j AS j,

min(t1.v + t2.v) AS v
FROM R(K-1) t1
JOIN E t2 on t1.j=t2.i
GROUP BY t1.i, t2.j
HAVING t1.i!=t2.j;

CREATE TABLE RK AS
SELECT i, j, min(v) AS v
FROM RT_k WHERE (i,j,v) NOT IN

(SELECT RT_k.i, RT_k.j, RT_k.v FROM RT_k , S
WHERE RT_k.i =S.i AND RT_k.j = S.j
AND RT_k.v > RT_k.v)

GROUP BY i,j;



Fig. 3: Our algorithm using standard SQL queries for diameter.

INSERT INTO S
SELECT i,j,min(v) AS v
FROM Rk
GROUP BY i,j;

For betweenness centrality solution, the difference with
diameter is that the intermediate vertices are kept. So GROUP
BY was not allowed in this part. The optimized queries for
betweenness centrality are shown below. The summary of
betweenness centrality solution steps is shown in Figure 4.
For k-betweenness centrality, for example k = 4, just need to
change the line ’where|Rk| < 0’ to ’k <= 4’, all others are
the same.
CREATE TABLE RT_k AS
SELECT nextval(’sequ’) AS id, k AS d,

t1.i AS i, t2.j AS j, t1.v+t2.v AS v,
t1.m1 AS m1,t1.m2 AS m2,...
t1.m(n-2) AS m(n-2), t2.i AS m(n-1)

FROM R(k-1) t1 JOIN E t2 ON t1.j=t2.i;

CREATE TABLE Rk AS
SELECT * from RT_K
WHERE (i,j,v) NOT IN
(SELECT RT_k.i, RT_K.j, RT_K.v
FROM RT_k , S
WHERE RT_K.i =S.i
AND RT_K.j = S.j AND RT_k.v > S.v);

INSERT INTO S
SELECT i,j,min(v) AS v
FROM Rk
GROUP BY i,j;

C. Time Complexity

The most challenging part to compute betweenness central-
ity and diameter is performing join multiple times. The basic
operation of iteratively perform is to multiply E by itself:
E ·E...E. For the graphs stored in a database, E ·E is matrix-
matrix multiplication. The shape, density and connectivity of

Fig. 4: Our algorithm using standard SQL queries for between-
ness centrality.

a graph will impact the complexity of join. Time and space
complexity was analyzed for iterative matrix-matrix multipli-
cation regarding different graph structures in the original and
optimized solution.

First, we will focus on the O() of |R2|. For a tree graph,
|E 1 E| = O(n) since it was necessary to exclude the leaf
nodes and the parents of leaf nodes. For a complete graph,
|E 1 E| = O(n3) as there are n(n − 1) pairs of vertices,
and there are n − 2 paths for each pair. The ultimate goal
was to understand |Rk|, where Rk = E 1 E 1 ... 1 E. To
get the betweenness centrality value, it was necesssary to go
through k depth where k >= p, p is the longest shortest path
for graphs(p equal to d for directed and connected graphs).
The worse case is when the graph is a list, then p = O(n).
So p is the second aspect impacting |Rk|. And |Rk| grows
exponentially as k grows.

The optimization of betweenness centrality and the second
optimization of diameter keep the shortest paths at each depth.
Assume the number of shortest paths for each pair is 1, So the
total number of shortest paths for every pair is O(n2). Then
|Rk| = O(n2).

For the time complexity of the join operator, it can range
from O(m) to O(m2) in each iteration. We checked the query
plan in the DBMS, and it always used a hash join. The time
complexity of the hash join could be as bad as O(m2) for
a very dense graph but is O(m) on average. For the second
optimization method of diameter, since a logarithmic join is
performed, there are d times join in the original solution, that
is at most log2(d) + 1 times join in the second optimization
method.



TABLE I: Summary of data sets.

Dataset Type n m Skewed Vertices
tree10m Synthetic 10M 10M Low
cliqueLinear100k Synthetic 2.3K 100k High
wiki-vote Real 8k 103.6K Low
webgoogle Real 875K 5.1M Low

V. EXPERIMENTAL EVALUATION

In this section, we propose experimental validations of
our algorithms. First, an overview of the experimental setup
and benchmark data sets are presented, followed by accuracy
validation, evaluation of the impact of optimization and the
performance of optimization of betweenness centrality algo-
rithm.

A. Experimental Setup

1) DBMS Software and Hardware: All the systems were
run on eight node clusters that each had an Intel Pentium(R)
CPU running at 1.6 GHz, 8 GB of RAM, 1TB disk, 224kb
L1 cache, 2MB L2 cache and running Linux Ubuntu 14.04.
For the experiments conducted in parallel computation, the
total RAM size is 64 GB, and total disk memory is 8 TB.
We used the Vertica DBMS supporting ANSI SQL to execute
our queries. However, our queries are standard SPJ queries
and work on other DBMSs too. We used Python as the host
language to generate SQL queries and submit the queries to
the DBMS as it is faster than JDBC.

2) Data Sets: Both synthetic and real graph data sets were
used for experimental evaluation. For synthetic graph data sets,
graphs were generated with varying complexity. Generated
graphs with varying clique sizes used a uniform distribution
where clique sizes increased linearly. The Stanford SNAP
repository was used for real data sets. The data sets are listed
in Table I. All the time measurements in this section are taken
as the average of running each query five times and excluding
the maximum and minimum values.

B. Accuracy Validation

In this section, we show our solution is computationally
accurate since the results of our solution for different types of
data sets both in Python and DBMS were identical.

1) Diameter: There is a function incorporated in Python-
NetworkX (diameter(G, e)) that gives diameter values. Since
Python runs on single node and only works for simple and
small graph, we selected two types of subsets from synthetic
and real graphs to do the accuracy validation: graphs with
larger indegree and graphs with small indegree. For the dense
subsets, we selected a vertex with large indegree first, then
we extended the graph by choosing all the vertices connected
to this vertex and repeated this process several times. For the
sparse subsets, we selected one vertex whose indegree is only
1 and then extended the graph as what we did for the dense
graph. Finally for the other subsets, subWikivote, we randomly
selected one vertex and then expanded it as sparse and dense
subsets. The comparison results are showed in Table II along

TABLE II: Experimental proof for Diameter

Data Set m n Python DBMS Relative error(%)
denseWebgoogle 37.3k 7.4k 4 4 0
sparseWebgoogle 22.3k 5.6k 11 11 0
subWikivote 34k 3.6k 5 5 0
cliqueLinear100k 100.2k 2.3k 133 133 0

with the details of the data sets. We can see that the diameters
given by our solution are the same as given by the Python
function.

2) Betweenness Centrality: The definition of
betweenness centrality could extend naturally to directed
or disconnected graphs [6]. Along with the previously
used subsets, another subset was added that is a
disconnected subset named sparseWebgoogle2. This was
created by randomly selecting some vertices whose
indegree were only 1. A function (betweenness
centrality(G, k, normalized, weight, endpoints, seed))
was incorporated in Python-NetworkX that gave the shortest-
path betweenness centrality for vertices. The maximum
relative error among all the vertices in the test graphs is
shown in table III. The depth was set equal to the length
of the longest shortest path to get the correct betweenness
centrality for each vertex. From table III, it can be seen that
the relative errors of our algorithm are lower than 0.0003 for
all the data sets. The relative error results from rounding,
different adding orders when adding a very sparse number
with a small number.

TABLE III: Experimental proof for Betweenness Centrality.

Data Set m n Depth relative error
denseWebgoogle 37.3 k 7.4 k 22 1E-9
sparseWebgoogle 22.3 k 5.6 k 5 0
sparseWebgoogle2 100 k 153.4 k 5 0
subWikivote 34 k 3.6 k 5 1E-05
cliqueLinear100k 100.2 k 2.3 k 133 0.0003

Fig. 5 shows the detail of betweenness centrality results
for different data sets. If a vertex’s betweenness centrality
value is 0, then this vertex id is not shown in the figures. We
already know that subWikivote is a tree structure graph. While
leaf nodes of a tree have 0 value of betweenness centrality,
the root has the maxium value. As the depth of the tree in-
creases, the number of nodes significantly increases, while the
betweenness centrality for these nodes significant decreases.
This is exactly the situation demonstrated in Fig. 5a. For
the sparseWebgoogle2 dataset, the difference of betweenness
centrality among all the vertices are very small, and most of the
vertices have low betweenness centrality. Fig. 5b demonstrates
sparseWebgoogle2 is a sparse graph.

C. Evaluation of the Impact of Optimizations

1) Diameter: In this part, we will compare the optimized
algorithms with the original one for diameter. Table IV shows
the comparison results. We put a ”Stop” sign in the table if



(a) subWikivote graph

(b) sparseWebgoogle2 graph

Fig. 5: The Betweenness centrality values for different data
sets.

TABLE IV: Evaluating the impact of optimization for Diam-
eter (time in seconds)

Data Set with without diameter
tree10m 350 Stop 22
subWebgoogle4 1750 Stop 22
denseWebgoogle 165 170 4
cliqueLinear100k 246 1016 133

the time is more than 30 minutes. From the table, we could
see that the optimized algorithm greatly reduced the costing
time for different graphs.

2) Betweenness Centrality: We perform experiments both
with and without optimization for betweenness centrality al-
gorithm. To save time, we use k-betweenness centrality where
k is less than the diameter. We put a Stop sign in the table
if the time is more than 30 minutes. Table V shows that the
solution with optimization takes almost the same time with the
method without optimization for sparse and small graphs, but
much less time is needed for dense and large graphs, because,
the number of unnecessary paths is small for sparse graphs
and large for dense graphs. Deleting those unnecessary paths,
the performance for dense graphs was significantly improved.
Based on the experiments, this is our default optimization for
betweenness centrality algorithms. Fig. 6a shows the table size
at different depths for the original solution and the optimized
solution for complicated graphs. In Fig. 6a shows the table
size grows dramatically with increasing depth in the original
solution. The table size stays the same or only grows slightly
in the optimized solution. |Rk| in the original and optimized

TABLE V: Evaluating the impact of optimization for Between-
ness Centrality (time in seconds).

Data Set without opt with depth
tree10m Stop 1612 22
webgoogle Stop Stop 4
wiki-vote Stop 1538 4
sparseWebgoogle2 6 9 5
subWikivote Stop 345 5

TABLE VI: The average value of x for different data sets.

Data set n m x in original x in optimization
webGoogle 875K 5.1M 12 6
wikivote 103.6K 8k 43 16
subWebgoogle4 5.2k 18.4k 11 2.8
denseWebgoogle 7.4k 37.3k 15.5 6

solution could be expressed as xkn where k is the depth of
join, and n is the number of vertices in the table E. The
values of x for different graphs are listed in Table VI. |Rk|
grows much slower in the optimized algorithm when compared
with the original solution, Table VI. So our optimization could
largely reduce the table size. In general, our optimization
works well for large and dense graphs.

(a)

Fig. 6: How table size changes when doing join in the original
and optimized solution.

D. Performance Comparison

1) Diameter: We compare our algorithm with Python solu-
tion running on a single machine of the server, then with Spark
running on the 8 node cluster. We use the same data sets as
the accuracy validation part and the default optimization.

Table VII shows the results for both in single and parallel
machines. From the table, we could see that our solution is
faster than Python for all data sets except cliqueLinear100k
as the number of joins required for this graph is very high.
For parallel processing, there is a function incorporated in
Spark-Graphx(shortestpath()) calculating the shortest paths of
all pairs of vertices. Then we choose the longest shortest path
as the diameter. From table VII, we can see that DBMS is
faster than Spark for sparse graphs. And for dense or large
graphs, DBMS could get results in a short time while Spark
crashed during computation because of running out memory.



TABLE VII: Time to compute Diameter in Single and in 8-
node Parallel machines(time in seconds).

Single Machine Parallel Machines
Data set DBMS Python DBMS Spark Diameter
denseWebgoogle 396 1472 165 Crashed 4
sparseWebgoogle 207 751 60 135 11
subwikivote 138 434 47 Crashed 5
cliqueLinear100k 600 305 246 Crashed 133

TABLE VIII: Time to compute betweenness centrality in
single machine: DBMS vs Python(time is seconds)

Data Set m n Python DBMS
tree10m 10M 10M Stop 3420
sparseWebgoogle2 100k 153.4k Stop 3
denseWebgoogle 37.3k 7.4k 621 846
subWikivote 34k 3.6k 76 346

2) Betweenness Centrality: While Python can only give the
value of betweenness centrality, Our solution can provide both
betweenness centrality and k−betweenness centrality. To com-
pare our solution against Python, the betweenness centrality
was used. We use the same simple graphs as the accuracy
validation part since Python would crash when running on big
graphs. Table VIII shows the comparison results. A ”Stop”
was placed if one computation did not finished in 60 minutes.
Table VIII shows that Python was faster than DBMS for
small graphs. However, for large graphs, Python spent a lot
of time on reading large number of vertices and edges into
main memory while DBMS got the results in a very short
time. DBMS gave results for sparseWebgoogle2 very quickly
because there was few edges when doing join. So our solution
works better for large graphs than Python. And also our
solution could give k-betweenness centrality for large graphs
which is also very important, but Python could not. So our
solution is better.

In case of parallel processing, the available betweenness
centrality solution in Spark was compared to our method. Both
solutions were run on the eight node cluster. It was possible
to compute k−betweenness centrality in Spark. So we use k-
betweenness centrality to compare where depth k is 4,5,6. And
also we use big graphs. Table IX shows the calculate time.
”Crashed” was inserted when Spark crashed because it ran
out of memory. From table IX, it can be seen that Spark was
slower than DBMS for sparse graphs and crashed for dense
and large graphs. DBMS computed k−betweenness centrality
for both dense and sparse graphs in a reasonable time.

In summary of this section, we compared our proposed
algorithms implemented with SQL queries in DBMS with
popular existing systems and we proved that our algorithms
are accurate and faster.

VI. RELATED WORK

There are many applications related to graphs. Recent work
on graphs offers a vertex-centric query interface to express
many graph queries [12]. A novel method called core labeling
was proposed to handle reachability queries for massive,

sparse graphs [9]. Abughofa et al., 2018 studied processing dy-
namic graphs in real-time and proposed an end-to-end frame-
work which allowed graph updates in real-time and supported
efficient complex analytics in addition to online transaction
processing (OLTP) queries [2]. However, querying from large
graphs stored on a DBMS using relational queries has not
received much attention. Malewicz et al., 2010 proposed a
system named Pregel for large-scale graph processing [13].
Pregel is designed for sparse graphs where communication
occurs mainly over edges, and the entire computation state
resides in RAM. How relational database management systems
(RDBMSs) can support graph processing at the SQL level was
revisited in [16]. The authors proposed new relational algebra
operations.

The diameter is an important parameter to understand
the graph. And many attempts were made to seek efficient
algorithms that approximate the diameter. In [8], two solutions
were exhibited which could achieve a better approximation
for the diameter, one running in O(m3/2) time and the
other running in O(mn2/3). Other works learn about the
approximation of the diameter when adding edges. But no
now has developed an optimized SQL solution which works
for big graph stored in a DBMS.

Betweenness centrality was introduced independently by
Anthoisse and Freeman in [4], [10], many works have been
done about making it faster. Brandes, 2001 developed a fast
algorithm that runs in O(n + m) on unweighted graph and
O(mn + n2log(n)) time on weighted graphs, where n is the
number of vertices and m is the number of edges in the
graph [6]. We developed our query solution of betweenness
centrality according to Brandes algorithm. Recently, many
works focusing on how to obtain rough approximations of
betweenness centrality have been done. Bader et al., 2007
presented a novel approximation for computing betweenness
centrality of a given vertex, for both weighted and unweighted
graphs. The approximation algorithm was based on an adaptive
sampling technique that significantly reduced the number of
single-source shortest path computations for vertices with
high centrality. The random sampling algorithm gave good
betweenness approximations for biological networks, road net-
works, and web crawls. But all those works are about getting
approximation of centrality since obtaining the exact value
of betweenness centrality for all vertices are time consuming
and also impossible due to RAM limitation. In our solution,
we could get exact value of betweenness centraliy and also
k-betweenness centrality.

VII. CONCLUSIONS

We represented the graph in terms of database perspective
and stored them as a form of triplets. DBMSs are fast to
load/import large external graph data set. SQL queries are
good enough to compute complex graph metrics. They are
efficient, elegant and short. In this work, we compute diameter
and betweenness centrality of a large graph inside DBMS. We
showed that DBMSs can indeed help us to compute some-
thing that is complicated than transitive closure and recursive



TABLE IX: Time to compute betweenness centrality in 8-node parallel machines: DBMS vs Spark (time in seconds)

k=4 k=5 k=6
Data set DBMS Spark DBMS Spark DBMS Spark
tree10M 80 Crashed 93 Crashed 112 Crashed
webgoogle Stop Crashed Stop Crashed Stop Crashed
wiki-vote 1538 Crashed 1790 Crashed Stop Crashed
sparseWebgoogle2 9 34 10 39 12 44
cliqueLinear100k 25 Crashed 29 Crashed 37 Crashed

queries. We expressed the computation of these algorithms
with queries and proposed several optimization methods on the
queries. Optimizing the query performance helps to compute
the algorithms faster than usual. Our experimental results
show that our queries perform better than Python in one
machine and Spark-GraphX in parallel machines in most cases.
We also provide accuracy proof to show that our solution
is computationally accurate. However, one limitation of our
proposed solution would be: too many join operations for
betweenness centrality slows down the computation in a very
dense graph.

For future work we have the following: computing circum-
ference of a graph (longest cycle), detecting two or more
disconnected subgraphs, checking if the graph contains cliques
of size at least k ≥ 3, counting maximal cliques, parallel
speedup meaning how the queries perform when we vary the
number of machines and discovering complex patterns beyond
paths. Moreover, we plan to optimize the algorithms in Spark.
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