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Abstract Big data analytics requires scalable (beyond RAM limits) and highly
parallel (exploiting many CPU cores) processing of machine learning models,
which in general involve heavy matrix manipulation. Array DBMSs represent
a promising system to manipulate large matrices. With that motivation in
mind, we present a high performance system exploiting a parallel array DBMS
to evaluate a general, but compact, matrix summarization that benefits many
machine learning models. We focus on two representative models: linear re-
gression (supervised) and PCA (unsupervised). Our approach combines data
summarization inside the parallel DBMS with further model computation in
a mathematical language (e.g. R). We introduce a 2-phase algorithm which
first computes a general data summary in parallel and then evaluates matrix
equations with reduced intermediate matrices in main memory on one node.
We present theory results characterizing speedup and time/space complexity.
From a parallel data system perspective, we consider scale-up and scale-out in
a shared-nothing architecture. In contrast to most big data analytic systems,
our system is based on array operators programmed in C++, working directly
on the Unix file system instead of Java or Scala running on HDFS mounted
of top of Unix, resulting in much faster processing. Experiments compare our
system with Spark (parallel) and R (single machine), showing orders of mag-
nitude time improvement. We present parallel benchmarks varying number of
threads and processing nodes. Our 2-phase approach should motivate analysts
to exploit a parallel array DBMS for matrix summarization.

1 Introduction

As big data keeps growing, business and scientific goals become more challeng-
ing and organizations want to save money in infrastructure they push the need
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to computing machine learning models in large parallel clusters. Cloud com-
puting [1] is an established technology in big data analytics given its ability
to scale out to a large number of processing nodes, providing ample RAM and
practically unlimited disk storage. It can provide an affordable, yet powerful
computing infrastructure with an easy-to-use software service. From the soft-
ware side, there exists a long-time existing gap between mathematical packages
and large-scale data processing platforms. On one hand, mathematical systems
like R, Matlab and more recently Python, provide comprehensive libraries for
machine learning and statistical computation, but none of them are designed
to scale to large data sets that exceed even a single machine’s memory. On the
other hand, parallel DBMSs (e.g. Teradata, Oracle, Vertica) and “big data”
Hadoop systems (e.g. MapReduce [7], Spark [27]) are two prominent technolo-
gies that offer ample storage and parallel processing capabilities. However,
even though there is significant research progress on data mining algorithms
[13], computing machine learning models on both parallel systems remains
a challenging problem. In the DBMS world UDFs have been shown a great
mechanism to accelerate machine learning algorithms [4,19], at the expense of
customizing the computation to a specific DBMS. On the other hand, it is fair
to say that R remains one of the important languages for machine learning
computations [14]. Previous research attempted integrating R with Hadoop as
well as DBMSs (e.g. DB2 Ricardo [6], SQL Server R suite and Vertica pre-
dictive analytics, among others). A tight integration takes advantage of R’s
powerful mathematical capabilities and on the other hand, it leverages large-
scale data processing capabilities from Hadoop and parallel DBMSs. Some of
the examples from the MapReduce world are Apache Mahout, MLBase and
Spark. All of them lack data management capabilities and optimizations avail-
able on a DBMS. At the same time, DBMSs like SQL Server, Vertica, Teradata,
Netezza and Greenplum have incorporated machine learning algorithms inside
their systems. Even though those extensions enable computations to perform
in-DBMS analytics, they do not work well in parallel for iterative algorithms.
That is, both worlds are getting closer. However, scalable parallel matrix com-
putations remain difficult to evaluate inside a parallel DBMS. Our goal is to
show a parallel DBMS can indeed help in a demanding matrix summarization
common to several machine learning models.

Database systems research has emphasized that DBMSs with alternative
storage mechanisms [16,24,26] can achieve orders of magnitude in performance
improvement. SciDB [25] is an innovative parallel DBMS with array storage,
capable of managing unlimited size matrices (i.e. as large as space on secondary
storage) and well-integrated with R (with powerful mathematical capabilities).
Such scalable architecture opens research possibilities to scale machine learning
algorithms with parallel database-oriented processing and matrix sizes exceed-
ing RAM capacity.

In this work, we explore how to leverage a parallel array DBMS (SciDB)
capabilities to accelerate and scale the computation of fundamental machine
learning models in a parallel cluster of computers. Our main research contri-
butions include the following:
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1. Parallel data loading into 2-dimensional arrays (i.e. matrices).
2. Parallel data summarization in one pass returning a comprehensive sum-

marization matrix, called Γ .
3. Pushing vector-vector outer product computation to RAM, resulting in a

fully parallel matrix multiplication, with no data transfer, just one parallel
barrier, and minimal overhead.

4. Further acceleration of parallel summarization with multi-threaded pro-
cessing or a GPU exploiting many processing units (cores).

The rest of the paper is organized as follows: Section 2 introduces math-
ematical definitions. Section 3 presents a parallel algorithm and analyzes its
time complexity and speedup. Section 4 explains the technical details of our
system. Section 5 presents a benchmark comparing our system with com-
peting systems, including Spark, from the Big Data Hadoop world and R, a
well-known statistical system. Related work is compared in Section 6. Finally,
Section 7 summarizes conclusions and identifies directions for future work.

2 Definitions

2.1 Input Data Set and Output Model

This section can be skipped if the reader is familiar with machine learning
models. The input for our machine learning models is a d × n matrix X . In
mathematical terms, let X = {x1, x2, . . . , xn} be the input data set with n
points, where each point xi is a column vector in Rd. The goal is to compute a
machine learning model that we call Θ, minimizing some error or penalization
metric (e.g. squared error).

Our system allows the computation of a wide range of linear (fundamental)
models including principal component analysis (PCA), linear regression (LR),
variable selection (VS), Näıve Bayes classifier, K-means (and EM) clustering,
logistic regression and linear discriminant analysis. Those models involve many
matrix computations, which are a good fit for an array DBMS. All the models
we support can derive their computations from the data summarization matrix
Γ . However, non-linear models such as SVMs, decision trees and deep neural
networks are not currently supported, but we will study how parallel summa-
rization can accelerate their computation. In this work we focus on PCA and
LR. In PCA we take X ”as is” with d dimensions. On the other hand, in linear
regression (LR) X is augmented with an extra (d + 1)th dimension with the
output variable Y , resulting in a X augmented (d + 1) × n matrix. We use
i = 1 . . . n and j = 1 . . . d (or j = 1 . . . d + 1 if Y exists) as matrix subscripts.
Notice that in order to simplify mathematical notation and present equations
in a more intuitive form we use column vectors and column-oriented matrices.
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2.2 Parallel DBMS

From a general parallel computing point of view, our algorithms assume a
computer cluster system with distributed memory and disk, interconnected
by a fast network. Let P be the number of processing nodes, where each node
has its own memory and disk storage (in some diagrams and plots we use
N instead of P ). Nodes communicate with each other via message passing
sending data. There is a master (central) lightweight process running on one
of the working nodes, responsible for coordinating computations.

We now explain the parallel DBMS architecture in more depth. The par-
allel DBMS works on a parallel cluster of computer (nodes), under a fully dis-
tributed memory and disk architecture (i.e. shared-nothing) [11]. That is, each
node has its own main memory and secondary storage and it cannot directly
access another node storage. Therefore, all processing nodes communicate with
each other transferring data. Before launching the parallel computation, ex-
ecutable operator code is replicated across all nodes. All physical operators
automatically work in parallel on partitions of the data. All the nodes are
called “worker” nodes and one of them has the additional role of serving as
the coordinating (master) node. Notice there is no separate ”master” node,
unlike other parallel systems. This is due to the fact that the coordination
workload is much lower than the worker CPU and I/O tasks and because it
is easier to maintain multiple instances of the coordinating process on mul-
tiple nodes. It is assumed CPU and I/O processing is done locally and data
transfer is avoided whenever possible [12]. When data transfer happens there
are two major possibilities: (1) There is a large amount of data, which forces
a data redistribution across the cluster. (2) There is a small amount of data
that is transferred or copied to one node or a few nodes. In general, all workers
send small amounts of data to the master node. This parallel architecture is
independent from the storage mechanism. Currently, parallel DBMSs support
the following storage mechanisms: by row, by column and as multidimensional
arrays. In this paper, we focus on 2D arrays, which represent a perfect fit to
store and read matrices..

SciDB, like most parallel SQL engines has a shared-nothing architecture.
SciDB stores data as multi-dimensional arrays in chunks, instead of rows com-
pared to traditional DBMSs, where each chunk is in effect a small array that
is used as the I/O unit. SciDB preserves the most important features from
traditional DBMSs like external algorithms, efficient I/O, concurrency control
and parallel processing. From a mathematical perspective, SciDB offers a rich
library with matrix operators and linear algebra functions. From a systems
programming angle, SciDB allows the development of new array operators ex-
tending its basic set of operators. In our case, we extend SciDB with a powerful
summarization operator.
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3 Parallel Computation

In this section we develop theory that can be applied on large-scale parallel
systems, including parallel DBMSs and “Big Data” systems running on HDFS.
These theory results need further study on HPC systems (e.g. using MPI),
where secondary storage is not necessarily shared-nothing.

3.1 Data Summarization Matrix

A fundamental optimization in our system is the data summarization matrix
Γ , which can help substituting the data set in many intermediate machine
learning model computations.

The Γ Matrix

As mentioned in Section 2.1, supervised models, like linear regression, use
an augmented matrix X (in bold face to distinguish it from X). Based on
this augmented matrix, we introduce the augmented matrix Z, created by
appending X with a row n-vector of 1s. Since X is d×n, Z (d + 2)×n, where
the first row corresponds to a constant dimension with 1s and the last row
corresponds to Y . Each column of Z is a (d + 2)-dimensional vector zi. Since
PCA is an unsupervised (descriptive) model, we eliminate the last dimension,
resulting in Z being (d + 1) × n.

The Γ matrix is a generalization of scattered sufficient statistics [19] as-
sembling them together in a single matrix and it is defined as:

Γ =
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By using the zi vector introduced above, we now come to an important
equation. Matrix Γ can be equivalently computed in two equivalent forms as
follows:

Γ = Z · ZT (1)

=

n
∑

i=1

zi · zT
i . (2)

Each form has profound performance and parallel processing implications.
The 1st form is based on matrix multiplication, whereas the 2nd form is a sum
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of vector outer products. Both forms have different implications with respect
to memory footprint, scalability and speed.

Matrix Γ contains a comprehensive, accurate and sufficient summary of X
to efficiently compute the models defined above. PCA and LR require one Γ
summarization matrix (non-diagonal),

PCA is derived by factorizing the variance-covariance matrix (simply called
covariance matrix) or the correlation matrix with a symmetric singular value
decomposition (SVD). The covariance matrix can be computed as

V =
1

n

∑

i

(xi − µ)(xi − µ)T = Q/n− (L/n)(L/n)T . (3)

Intuitively, the covariance matrix centers the data set at the origin and
measures how variables vary with respect to each other, in their original scales.
Based on the covariance matrix, the correlation matrix is derived by computing
pair-wise correlations ρab with the more efficient form:

ρab =
Vab

σaσb

= (nQab − LaLb)/(
√

nQaa − L2
a

√

nQbb − L2
b), (4)

where σa, σb are the corresponding standard deviations. Intuitively, the cor-
relation matrix is a normalized covariance matrix [14]. Then SVD factorization
is solved as

V = UEUT , (5)

ρ = UET , (6)

where U has the eigenvectors and E the squared eigenvalues (commonly
called λ2

j ). The principal components are those eigenvectors having eigenvalues
λj ≥ 1. LR is solved using

β = (XXT)−1XY T = Q−1XY T , (7)

via least squares optimization, where Q is an augmented matrix which
includes n, L, Q as submatrices.

3.2 Algorithm to Compute a Model on Large Data Sets

Our algorithm is designed to analyze large data sets on a modern parallel
cluster. Recall from Section 3 P is the number of processing nodes (machines,
processors). Our most important assumption is formalized as follows:

Assumption: We assume d � n and P � n. But for d either possibility is
acceptable: d < P or P > d.

The methods to compute the machine learning model Θ are changed, with
the following 2-phase algorithm:
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– Phase 1: parallel across the P nodes. Compute Γ in parallel, reading X
from secondary storage, building zi in RAM, updating Γ in RAM with
the sum of zi · zT

i vector outer products. This phase will return P local
summarization matrices: Γ [I] for I = 1 . . . P .

– Phase 2: at master node, parallel within 1 node: Iterate method until con-
vergence, exploiting Γ in main memory in intermediate matrix computa-
tions to compute Θ.

Phase 1 involves a parallel scan on X , where each partition is processed
independently. Since Γ significantly reduces the size of matrix X from O(dn)
to the summarized representation taking space O(d2) Phase 2 can work on
one node (i.e. the Coordinator/Master node) and Phase 2 can work only in
main memory, without I/O operations on X . However, Phase 2 can still work
in parallel in RAM with a multicore CPU (e.g. multi-threaded processing,
vectorized operations) or with a GPU (with a large number of cores sharing
memory) as we shall see below.

During Phase 1 each worker node I computes Γ [I] in parallel without ex-
changing messages with other workers. When all workers finish the coordinator
node gathers worker results to compute the global summarization matrix:

Γ = Γ [1] + . . . + Γ [P ],

having just O(d2) network communication overhead per processor to send
Γ [J] to the master node. That is, there is a fully parallel computation for large
n, coming from the fact that each zi · zi is evaluated independently on each
processor. Given the additive properties of Γ the same algorithm is applied on
each node I = 1 . . . P to get Γ [I], combining all partial results Γ =

∑

I Γ [I ]
in the coordinator node.

3.3 Parallel Speedup and Communication Efficiency

We present an analysis on parallel speedup assuming P processors on the
shared-nothing parallel architecture introduced in Section 2. Assuming X is a
large matrix it is reasonable to assume d < n and n → ∞.

The first aspect to consider is partitioning the matrix for parallel process-
ing; this is done when the data set is loaded into the parallel DBMS. As it is
standard in parallel DBMSs, when the matrix is loaded each xi in X is hashed
to one of the P processors based on some hash function h(i) applied to the
point primary key: hashing by point id i. In this manner, the input matrix X
will be evenly partitioned in a random fashion. We must mention that round-
robin assignment could also work because values of i are known beforehand.
Then each outer product zi · zT

i is computed in parallel in RAM, resulting
in O(d2n/P ) work per processor for a dense matrix and O(dn/P ) work per
processor for a sparse matrix. Both dense and sparse matrix multiplication
algorithms become more efficient as P increases or n → ∞. We present the
following speedup statement as a theorem given its importance for parallel
processing:
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Definition 1 Speedup: Let TP be the processing time to compute Γ using
P nodes, where 1 ≤ P . Parallel speedup sP using P nodes is defined as sP =
T1/TP , where T1 corresponds to sequential processing and TP corresponds to
the maximum processing time among the P nodes when they work in parallel
(i.e. slowest node is a bottleneck).

Theorem 1 Linear speedup: Assuming that d � n and that Γ fits in main
memory then our parallel algorithm gets increasingly closer to optimal speedup
sP = T1/TP ≈ O(P ).

Proof: For one node time is T1 = d2n/2 = O(d2n). Since n is large we
can evenly partition it into P parts with n/P points. Therefore, the total
computation time for P parallel processors is TP = (d2/2) · (n/P ) + 2 · d2P ,
where the first term corresponds to the parallel computation of Γ and the
second term corresponds to sending P partial results to the coordinator (mas-
ter) node and adding the P partial Gammas. Therefore, the total time is
TP = (d2/2)(n/P ) + 2d2P = O(d2n + d2P ) = O(d2(n + P )). Since we as-
sume P � n then n + P ≈ n. Therefore, computation of partial matrices
dominates cost resulting in TP ≈ O(d2n/P ) for a dense matrix and then
T1/TP ≈ O(d2n)/O(d2n/P ) = O(P ). Analog reasoning shows the speedup is
also O(P ) for sparse matrices: T1/TP ≈ O(dn)/O(dn/P ) = O(P ). 2

For completeness, we provide an analysis of a parallel system where P is
large or n is small relative to P . That is, we assume P = O(n). We must point
out this scenario is highly unlikely with a parallel DBMS where P is tens or a
few hundreds at most.

Lemma 1 Communication bottleneck: Assume only one node can receive par-
tial summarizations. Then time complexity with P messages to a single coor-
dinator (master) node is O(d2n/P + Pd2).

Proof: Straightforward, based on the fact that the coordinator requires
serialization from the P workers, becoming a sequential bottleneck. 2

Lemma 2 Improved global summarization with balanced tree: Let P be the
number of nodes (processing units). Assume partial results Γ [I] can be sent
to other workers in a hierarchical (tree) fashion. Then T (d, n, P ) ≥ O(d2P +
log2(P )d2) (a lower bound for time complexity with P messages).

Proof: We assume workers send messages to other workers in synchrony.
1: If I mod 2 = 1 then send Γ [I+1] to node I , requiring (P/2) messages. 2: If

I mod 22 = 1 then send Γ [I+21] to node I , requiring (P/22) messages. and so
on. Intuitively, we divide by 2 the number of messages at every communication
round. Therefore, the total number of messages is P/2 + P/4 + . . . + 1 ≈
P = O(P ). In summary, we just need synchronous processing for log2(P )
communication rounds which end when we get the global Γ . 2
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Fig. 1 Diagram of parallel system components (1 SciDB instance/node, N nodes).

4 Computing Machine Learning Models Pushing Summarization

into a Parallel Array DBMS

4.1 System Architecture

The parallel computation is formally defined in Section 3. Here we provide an
overview of the parallel DBMS from a systems perspective. Figure 1 illustrates
our major system components in an N -node parallel cluster showing how data
points in X are transferred from node to node (notice we use N instead of
P in the diagram). In order to simplify the diagram each node in the cluster
runs only one SciDB instance, but we want to point out it is feasible to spawn
one thread per core (i.e. intra-node parallelism).

The data set file is first loaded into the DBMS. After the cluster has been
set up, SciDB loads the data set into a two-dimensional array in parallel. The
input matrix thereafter goes through the two-phase algorithm introduced in
Section 3.2:

1. Parallel data summarization to get matrix Γ ;
2. Model Θ computation in RAM in the R language, iterating the numerical

method until convergence.

During the data summarization phase the Γ matrix is computed in parallel
using a novel user-defined array operator in the parallel DBMS (SciDB). As
discussed above, the Γ matrix is much smaller than the original data set X .
Therefore, it can easily fit in the main memory substituting X in several
intermediate computations. We compute the model Θ exploiting the Γ matrix
in R, using the SciDB-R library.

Since R is responsible for the computation of the mathematical model on
one node it runs on the coordinator node. That is, it is unnecessary to run
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R in every node. The R language runtime introduces a sequential processing
bottleneck because it is single threaded given its functional programming roots.
However, the time complexity of the R computation depends only on d, not
on n. To solve SVD for PCA and least squares for LR time complexity in R is
O(d3). We should emphasize that we use the R language to make adoption of
our research prototype easier, but it is feasible to use some other host language
like C++, Java or Python which allow faster multi-threaded processing.

4.2 Parallel Data Loading

Since an array DBMS is a transient platform to perform matrix computations
it is necessary to provide a fast data loading mechanism. This is especially
important to be competitive with Hadoop systems, in which loading gen-
erally just involves copying files to HDFS. The SciDB DBMS provides two
mechanisms for loading data into arrays: (1) Converting the CSV file into a
temporary file with a SciDB-specific array 2D text format for later loading,
or (2) Loading the data file into a one-dimensional tuple array first and then
go through a re-dimensioning process to transform the one-dimensional array
(array of tuples) into a 2-d array (matrix). Since the second mechanism can be
used directly with CSV files and does not require any programming it is the
default used by most SciDB users. Unfortunately, both mechanisms are slow
with a large parallel cluster. Specifically, both loading alternatives require 2
full disk reads and 2 full disk writes. (one full disk read from the CSV file, then
one full disk write, using SciDB-specific text format or as a one-dimensional
array, then 1 full disk read to read them back, finally, a full disk write into the
matrix format). In addition, re-dimensioning requires reshaping d sets of 1D
chunks and transforming them into a single set of 2D chunks with a different
data partitioning. This implies reading disk blocks in one format, grouping and
writing them in a different format and rehashing them to the P nodes. With
this major bottleneck in mind, we developed a novel user-defined operator
load2d() for direct parallel matrix loading into the parallel array DBMS.

We now explain our optimized loading operator in terms of matrix X , as
an n × d array loaded in parallel using P nodes. Let nB be the number of
points stored on one chunk. We chose unspanned storage meaning that each
point xi fits completely inside the chunk. We set the physical chunk size for
our matrix in SciDB to nB × d, where our default setting is nB = 10k which
creates chunks in the range of MBs (ideal for SciDB). Intuitively, we partition
the input rectangular matrix d×n into smaller d×nB rectangles preserving the
d side. As the first step, the operator computes how many chunks are needed
based on n and nB : Ctotal = bn−1

nB

+1c, and determine how many chunks each

node will store: Ceach = bCtotal−1
P

+ 1c. As the second step, the coordinator
node scans the data file and determines the offset (line number) within the
file where each thread will start reading based on Ceach and nB . Then the
P nodes start reading the file in parallel without locking. We use a standard
round-robin algorithm to distribute and write chunks to each node, like SciDB
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does. This approach results in a significant acceleration. Our loading operator
directly outputs the matrix in SciDB chunk format with optimal chunk size,
avoiding any intermediate files on disk and the slow re-dimensioning process.
To summarize, our parallel load operator can load significantly faster than
the built-in SciDB loading function because: (1) It requires less I/O work:
only 2 disk scans to read data and 1 disk scan to write the 2D array. (2)
It saves significant CPU time by not re-dimensioning from 1D into 2D. (3)
There is no data redistribution (shuffling) among the P nodes, which would
add communication and double I/O overhead.

4.3 Parallel Summarization with new Array Operator

As seen in Section 3, the most important property of the Γ matrix is that it
can be computed by a single matrix multiplication using Z. As proven before,
Γ = ZZT can be more efficiently computed with this sum form assuming zi

fits in RAM and dynamically building zi in RAM as well:

Γ =
n

∑

i=1

zi · zT
i . (8)

We consider two major forms of parallelism to compute Γ based on the
second expression:

– Inter-node parallelism.
– Intra-node parallelism.

Inter-node parallelism is best for a cloud environment. A benchmark will
help understanding the scale-out properties of our system by increasing the
number of nodes, assuming network transfer cost is higher than disk to main
memory transfer. Intra-node parallelism is best for HPC-style nodes with many
CPUs and plenty of RAM. Notice, however, that intra-node parallelism cannot
scale well to analyze big data due to I/O cost. We will experimentally analyze
the scale-up behavior by increasing the number of threads in a single node,
assuming the cost to transfer data from disk to main memory gets amortized
by interleaving I/O with CPU operations.

In inter-node parallelism there is network transmission and therefore this
cost and overhead has considerable weight. Specifically, it is necessary to con-
sider if network transmission is significantly faster or slower than disk trans-
fer speed. On the other hand, in intra-node parallelism there is no network
transmission, but it is necessary to interleave I/O with CPU multi-threaded
processing, taking into account potential contention among threads for local
resources like main memory (RAM) to consolidate partial results and access to
a single disk. From a multicore CPU perspective, one thread per core may not
achieve optimal performance given the contention for limited resources and
periodic coordination. Therefore, the number of threads should be optimized.
In the case of the parallel array DBMS such number is between 1 and the
number of cores in the CPU.
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4.4 Inter-node parallelism: across the cluster

Our Γ operator works fully in parallel with a partition schema of X into
P subsets X [1] ∪ X [2] ∪ . . . ∪ X [P ] = X , where we independently compute
Γ [I] on X [I] for each node I (we use this notation to avoid confusion with
matrix powers and matrix entries). In SciDB terms, each worker I will in-
dependently compute Γ [I]. No synchronization between instances is needed
once the computation starts therefore the parallelism is guaranteed. When
all workers are done the coordinator node gathers all results and compute a
global Γ = Γ [1] + . . . + Γ [P ] with O(d2) communication overhead per node.
Notice O(d2) � O(dn). This is essentially a natural parallel computation,
coming from the fact that we can push the actual multiplication of zi · zT

i into
the array operator. Since this multiplication produces a symmetric matrix the
operator computes only the upper or lower triangular submatrix.

4.5 Intra-node parallelism: multiple threads per node with a multicore CPU

From a systems perspective, we assume each array chunk (multidimensional
block) is independently processed by one thread. Recall from Section 3.2 that
X can be processed fully in parallel without communication during summa-
rization. This fact also applies to a multicore CPU where main memory is
partitioned depending on the number of threads. Each thread can keep a lo-
cal Γ version without locking (i.e. without concurrent updates). Therefore,
with a multicore CPU it is possible to increase speed by increasing floating
point operations (FLOPS). In theory, if the CPU has Q cores then Q could
independently process a partition of X doing I/O and FLOPS without syn-
chronization, but there may exist some contention for local resources (cache,
RAM, disk). It is assumed disk I/O is slow, but disk to RAM transfer is fast. A
low number of threads, below Q, will leave some cores idle. On the other hand,
if the number of threads goes beyond Q this configuration will introduce over-
head because a thread will serve multiple partitions introducing many context
switches. Once local Γ versions per thread are ready they can be sent directly
to the coordinator node. That is, it is unnecessary to follow a 2-phase scheme,
by first getting Γ on each node aggregating Γ from all local threads and then
computing global Γ across all P nodes.

4.6 Intra-node parallelism: accelerating summarization with a GPU

Computing Γ by evaluating ZZT is a bad idea because of the cost of trans-
posing Z row by row and storing ZT on disk. Instead, we evaluate the sum
of vector outer products

∑n

i=1 zi · zT
i , which is easier to update in parallel in

RAM. Moreover, since Γ is symmetric, we only compute the lower triangle
of the matrix. Our Γ matrix multiplication algorithm works fully in parallel
with a partition of X into P subsets X [1] ∪ X [2] ∪ . . . ∪ X [P ] = X , where
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we independently compute Γ [I] on X [I] for each processor I . A fundamental
aspect is to optimize computation when X (and therefore Z) is sparse: any
multiplication by zero returns zero. Specifically, nnz ≤

√
dn can be used as

a threshold to decide between a sparse or dense algorithm, where nnz is the
number of non-zero entries in X . In this paper we focus on parallelizing the
dense matrix algorithm. On the other hand, computing Γ on sparse matrices
with a GPU is challenging because tracking and partitioning non-zero entries
reduces parallelism by adding more complex logic in the operator code; we
leave this aspect for future work.

Our following discussion focuses on integration with an array DBMS, given
its ability to manipulate matrices. From a systems perspective, we integrated
our model computation using Γ with the SciDB array DBMS and the R lan-
guage, with a 2-phase algorithm: (1) data summarization in one pass returning
Γ ; (2) exploiting Γ in intermediate computations to compute model Θ. We
emphasize zi is assembled in RAM (we avoid materializing zi to disk). Unlike
standard UDFs in a traditional relational DBMS with SQL, which usually need
to serialize a matrix into binary/string format then deserialize it in succeeding
steps, our operators in SciDB return Γ directly in 2D array format, which is
a big step forward compared to previous approaches. Finally, Phase 2 takes
place in R on the master node leveraging R’s rich mathematical operators and
functions. Even though Phases 2 does not run in parallel across nodes, it does
not have a significant impact on performance because Γ is much smaller than
the data set.

Parallel processing happens as follows. In SciDB, arrays are partitioned and
stored as chunks and such chunks are only accessible by C++ iterators. In our
previous work [21], we compute the vector outer product zi · zT

i as we scan
the data set in the operator. We emphasize zi is assembled in RAM (we avoid
materializing zi to disk). In general, interleaving I/O with floating point com-
putation is not good for GPUs because it breaks the SIMD paradigm. In our
GPU accelerated operator, we first extract matrix entries in each chunk into
main memory. Then we transfer the in-memory subsets of X to GPU memory,
one chunk at a time. Then the GPU computes the vector outer products zi ·zT

i

fully in parallel with its massive amount of processing units (cores). The sum
is always maintained in the GPU memory. It takes log(n) time to accumulate
n partial Γ s into one using the reduction operation. When the computation
finishes for the whole data set, the Γ matrix is transferred back from GPU
memory to CPU main memory. The C++ operator code is annotated with
OpenACC directives to work with GPU. In our current GPU version, the
CPU only does the I/O part. Since the DBMS becomes responsible for only
I/O our approach also has promise in relational DBMSs.

5 Experimental Evaluation

We study efficiency and evaluate parallel processing comparing our DBMS-
based solution with competing analytic systems: the R language and Spark.
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Table 1 Data sets.

Data set d n Description
NetIntrusion 38 4,940,217 Computer network intrusion detection (KDD 99 Cup)
YearSongPred 90 515,345 Predict year of song release (UCI Repository)

We present benchmark results on three systems: one server with a multicore
CPU, a large parallel cluster running in the cloud and a server with a GPU
(many cores) and a multicore CPU.

5.1 Data Sets

We used two real data sets to measure time complexity and compare differ-
ent systems, described in Table 1. Both data sets are widely used in machine
learning and data mining research, but they are small to evaluate parallel pro-
cessing. Therefore, we decided to create “realistic” data sets by replicating
rows and columns and rows to create challenging data sets. Since the Net-
Intrusion data set is large and represents typical big data problems (sparse,
coming from a log, predictive attributes) we use it as the base data set to build
large matrices.

5.2 Evaluating Performance and Numeric Accuracy with Real Data Sets

We compare the performance of our system and evaluate accuracy with real
data sets to compute our default model: linear regression (LR). Given mod-
ern servers, with large RAM, available data sets to compute machine learning
models fit in RAM across the parallel cluster and they are adequate to test
parallel speedup. Therefore, we have opted to compare performance on a single
machine with R, a popular analytic language in machine learning and statis-
tics. To provide a more complete comparison we also include Spark running on
the same hardware (one node) although we caution Spark is better suited for
parallel processing on multiple nodes, which we analyze in the next section.

Hardware and Software: We used one server with a 4-core CPU running at
2.1 GHz, 8 GB RAM and 1 TB disk. The operating system was Linux Ubuntu
14.1. R, SciDB and Spark were installed and tuned for this configuration.
Notice the real data sets fit in RAM on all systems. In R we use the lm() func-
tion to fit a linear model. In R+DBMS we used the solve() function following
Equation 7. In Spark we used its fastest linear regression function available
in MLlib (based on gradient descent), with 20 iterations (the recommended
default setting).

To present a complete picture, we evaluate model accuracy obtained by
our DBMS+R solution using the R solution as reference: we compute the
maximum relative error of β coefficients across all d dimensions taking the R
solution as reference. For instance, for the first regression coefficient err1 =

|β[DBMS+R]
1 − β

[R]
1 |/β

[R]
1 . Table 3 shows such maximum relative error on the
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Table 2 Comparing performance to compute linear regression (LR) model on one machine
with real data sets; time in secs.

Data Set d n R language Spark DBMS+R rel. error
NetIntrusion 38 5M 44 515 12 < 1%
YearSongPred 90 500k 32 217 13 < 1%

last column: for both data sets accuracy was higher than 99% (floating point
numbers match on at least 3 decimals).

Table 3 compares the R language matrix operators with the dense and
sparse operators to compute Γ with the NetIntrusion data set, which is a
sparse matrix. In the case of R, we use dense matrix multiplication %*% be-
cause it is the most common used in practice and because it produces an output
matrix compatible with the built-in linear regression functions. We emphasize
that R reads the input matrix and loads it into RAM before doing any compu-
tation. In order to understand the impact of matrix density (i.e. many zeroes)
we created two versions of the NetIntrusion data set: for d = 10 we selected
the 10 sparsest dimensions (highest fraction of zeroes) out of the original 38
dimensions, whereas for d = 100 we replicated all dimensions uniformly until
reaching high dimensionality d = 100 (i.e. same density, but a much wider ta-
ble). As can be seen, comparing dense matrix computations (apples to apples),
the DBMS+R combination is much faster than the R language built-in matrix
multiplication with a dense matrix storage. Moreover, R ends up failing due
to reaching RAM capacity. Spark is one order of magnitude slower mainly due
to overhead on a single node (i.e. it needs much more hardware). The main
reasons for better performance are: (1) the DBMS reads the matrix in blocked
binary form into RAM, whereas R parses the input text file line by line; (2)
the DBMS avoids an expensive matrix transposition; (3) the DBMS operator
directly transforms xi into zi in RAM and then multiplies zi by itself, instead
of extracting a matrix row and a matrix column and then multiplying them
(even if transposition was avoided). The gap becomes much wider with the
sparse matrix operator, being 2X-3X faster than the dense matrix operator.
In short, the DBMS+R combination is faster than R even when the input
matrix fits in RAM.

The comparison with our sparse operator is not fair to R (i.e. not compar-
ing apples to apples), but manipulating sparse matrices in R is complicated.
We must mention it is possible to compute Γ in R with faster and more
memory-efficient mechanisms including data frames (to manipulate nested ar-
rays), calling BLAS routines (part of the LAPACK library), vectorized oper-
ations (to skip loops), block-based I/O (reading the data set in blocks) and C
code (e.g. Rcpp), all of which would require a significant programming effort.
Nevertheless, it is unlikely R routines for sparse matrices could be much faster
than our sparse summarization operator for large disk-resident matrices. We
leave such study for future work.
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Table 3 Comparing R language, Spark and DBMS+R to get summarization matrix; real
data set NetIntrusion (replicated); dense operator (all dn entries included) and sparse op-
erator (zero entries deleted); times in secs (0* means < 0.2 secs).

d n R Spark DBMS DBMS
dense dense dense sparse

10 100k 1 16 0* 0*
density=12% 1M 5 35 1 1

10M 50 258 9 2
100M fail stop 110 53

100 100k 6.5 177 3 2
density=27% 1M 44.1 1204 31 11

10M fail stop 333 105
100M fail stop 3424 1015

5.3 Inter-node Parallelism: Computing Γ on a Parallel Cluster

We compare our array DBMS cloud solution with Spark, currently the most
popular analytic system from the Hadoop stack. We tried to be as fair as
possible: both systems run on the same hardware, but we acknowledge SciDB
benefits from data sets being pre-processed in matrix form. We analyze data
summarization and model computation.

Cloud System Setup: We created a configuration script to automate the
complicated system setup in parallel, which makes installing and running
SciDB in the cloud as easy as running HDFS/Spark. Aside from a suitable
Linux OS installation, packaged software components used as part of the sys-
tem include: the SciDB database server, the R runtime, and the SciDB-R
integration package. We also included several customized scripts in the system
that can help with the cluster set up, parallel data loading from Amazon S3,
data summarization and model computation. The user-friendly web GUI and
close integration with R can greatly lower the entry barrier for using SciDB for
complicated analysis, making the analytical processes a more flexible, exten-
sible and interactive experience with all kinds of functions and libraries that
R supports.

Parallel Load operator: As mentioned above, we developed a parallel data
loading operator that makes our system competitive with Hadoop systems
running on top of HDFS. In the interest of saving space, we did not conduct
a benchmark comparing loading speed between our cloud system and Spark.
But we should point out our parallel operator to load matrix X from a CSV
file takes similar time to copying the CSV file from the Unix file system to
HDFS plus creating data set in Spark’s RDD format. We would also like to
point out that the time to load data is considered less important than the time
to analyze data because it happens once.

Hardware: We use a parallel cluster in the cloud with 100 virtual nodes,
where each node has 2 VCPUs (2 cores) running at 2 GHz each, 8GB RAM
and 1 TB. Spark takes advantage of an additional coordinator node with 16
GB RAM (i.e. Spark uses P + 1 nodes). Notice this is an entry-level parallel
database system configuration, not an HPC system which would have much
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Fig. 2 Γ computation time varying number of nodes: array DBMS vs. Spark (n =
100M, d = 38).

larger RAM and many more cores. As mentioned before, we developed scripts
for fast automatic cluster configuration.

In Figure 2 we compare both systems computing the Γ summarization
matrix. That is, we compute the submatrices L, Q in Spark using its gramian()
function, without actually computing the machine learning model. That is, we
could simply export L, Q from Spark to R and compute the model in R in
RAM. As can be seen, our system scales out better than Spark as P grows. In
fact, Spark increases time when going from 10 to 100 nodes, which highlights
a sequential bottleneck. At 100 nodes the gap between both systems is close
to two orders of magnitude.

Figure 3 compares both systems with a fundamental model: linear regres-
sion (LR). This comparison is also important because LR is computed with
Stochastic Gradient Descent (SGD) in Spark, whereas ours is based on data
summarization. In Spark we used 20 iterations, which was the recommended
setting in the user’s guide to get a stable solution. With one node the differ-
ence is more than one order of magnitude, whereas at 100 nodes our system
is more than two orders of magnitude faster than Spark. We emphasize that
even running Spark with one iteration, which would get an unstable solution,
our system is 10X faster (i.e. 920/20 ≈ 46, compared to 6 seconds).

5.4 Intra-node parallelism: multiple threads per node

We now study scale-up varying the number of threads. The mapping of threads
to cores is accomplished by varying the number of SciDB instances per node,
configured at DBMS startup time on a local server with a 4-core CPU (i.e.
our database server, not a cloud system with virtual CPUs), 4 GB RAM and
1 TB disk. Table 4 presents parallel scale-up experiments varying the number
of threads. Our objective is to determine the best number of threads in the
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Fig. 3 Model computation time for LR varying number of nodes: array DBMS vs. Spark
(n = 100M, d = 38).

Table 4 Intra-node parallelism: Γ computation with multi-threaded processing varying #
threads (d = 38, 1 node, 4-core CPU); times in secs.

n=100k n=1M n=100M
# threads time speedup time speedup time speedup

1 1.4 1.0 13.0 1.0 146.6 1.0
2 0.7 2.0 6.8 1.9 82.8 1.8
4 0.8 1.8 6.2 2.1 60.8 2.4
8 1.0 1.4 5.3 2.4 52.1 2.8

4-core CPU. As the table shows, as the # of threads increases time decreases
as well, but unfortunately at 4 threads speedup slightly decreases. Based on
this evidence it is not worth going beyond 4 threads. Therefore, the optimal
number of threads is 2, lower than the total number of cores. Our explanation
follows. At the lower end one thread is not capable of interleaving FLOPs
for Γ with I/O operations to scan X . At the other end, 4 threads introduce
excessive overhead due to frequent thread context switches, and interleaving
scan access to different addresses on the same disk. Since Γ is small it is
feasible to maintain and incrementally update it it in cache memory; we leave
this aspect for future work. It is not worth going beyond the number of cores
in the CPU, 4 in this case. The lesson learned is that if scale-up capacity has
been reached the only alternative to increase performance is to scale out.

5.5 Intra-node Parallelism: accelerating Γ computation with a GPU

The previous experiments beg the question if processing can be further accel-
erated with GPUs. Since Spark does not offer off the shelf functions exploiting
GPUs we cannot compare it. However, we emphasize that we established that
our solution is orders of magnitude faster than Spark. Therefore, it is unlikely
that Spark could be faster exploiting GPUs if our solution also uses GPUs.
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Fig. 4 Γ computation time: CPU vs. GPU.

Setup: In this section we examine how much time improvement GPU pro-
cessing can bring to model computation using Γ . We ran our experiments on
a parallel cluster with 4 nodes. Each node has an 8-core Intel Xeon E5-2670
processor, an NVIDIA GRID K520 GPU with 1,536 CUDA cores. The GPU
card has 4GB of video memory, while the machine has 15 GB of main mem-
ory. On the software side, on those machines we installed Linux Ubuntu 14.04,
which is currently the most reliable OS to run the SciDB array DBMS. The
system is equipped with the latest NVIDIA GPU driver version 352.93. We
also installed the PGI compilers for OpenACC and SciDB 15.7. We revised
our CPU operator C++ code with OpenACC annotations marking key vector
operations in the loops to be parallelized with GPU cores so that they are
automatically distributed for parallelism. The data sets are synthetic, dense
matrices with random numbers. We loaded the data sets into SciDB as arrays
split into equal-sized chunks and evenly distributed across all parallel nodes,
where each chunk holds 10,000 data points.

Figure 4 illustrates GPU impact on data summarization, which is the most
time consuming step in our 2-phase algorithm. The bar figure shows the GPU
has little impact at low d (we do not show times where d < 100 since the GPU
has marginal impact), but the gap between CPU and GPU rapidly widens as
d grows. On the other hand, the right plot shows the GPU has linear time
complexity as n grows, an essential requirement given the I/O bottleneck to
read X . Moreover, the acceleration w.r.t CPU remains constant.

We now analyze GPU impact on the overall model computation, consid-
ering machine learning models require iterative algorithms. Table 5 shows the
overall impact of the GPU. As can be seen SciDB removes RAM limitations
in the R runtime and it provides significant acceleration as d grows. The GPU
provides further acceleration despite the fact the dense matrix operator is
already highly optimized C++ code. The trend indicates the GPU becomes
more effective as d grows. Acceleration is not optimal because there is over-
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Table 5 Comparing computation of model Θ using R, DBMS+R, and DBMS+R+GPU;
dense matrix operator; P=1 node (CPU=8 cores); times in secs.

n d model CPU GPU
R R+SciDB R+SciDB

1M 100 PCA 29 14 8
1M 200 PCA 90 46 16
1M 400 PCA fail 165 33

10M 100 PCA fail 147 104
10M 200 PCA fail 466 215
10M 400 PCA fail 1598 455
10M 100 LR fail 147 103
10M 200 LR fail 464 212
10M 400 LR fail 1594 451

head moving chunk data to contiguous memory space and transferring data
to GPU memory and because the final sum phase needs to be synchronized.
However, the higher d is, the more FLOP work done by parallel GPU cores.

6 Related Work

Data summarization to accelerate the computation of machine learning mod-
els, has received significant attention. We believe we are the first to reduce data
set summarization to matrix multiplication, but computing matrix multiplica-
tion in parallel in a distributed memory database architecture has been studied
before [10]. A similar, but significantly less general, data summarization was
proposed in [28] to accelerate the computation of distance-based clustering: the
sums of values and the sums of squared values. This is mathematically equiv-
alent to a diagonal Q matrix extracted from Γ . In a ground-breaking paper
[3] exploited such summaries as multidimensional sufficient statistics for the
K-means and EM clustering algorithms. We were inspired by this approach. It
is important to explain differences between [28] and [3]: data summaries were
useful only for one model (clustering). Compared to our proposed matrix,
both [28,3] represent a (constrained) diagonal version of Γ because dimen-
sion independence is assumed (i.e. cross-products, covariances, correlations,
are ignored) and there is a separate vector to capture L, computed separately.
From an algorithmic perspective, our parallel summarization algorithm boils
down to one parallel matrix multiplication, whereas those algorithms work
with scattered aggregations. Caching and sharing intermediate computation
is an important mechanism to accelerate data mining computations in parallel
[22]. Our summarization matrix shares the same motivation, but instead of
caching data in RAM like the operating system, we compute a summarization
matrix which benefits many machine learning models. A much more general
data summarization capturing up to the 4th moment of a probability distri-
bution was introduced in [8], but it requires transforming variables (i.e. build-
ing bins for histograms), which are incompatible with most machine learning
methods and which sacrifice numeric accuracy. Recent work [5] on streams
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defends building specialized data structures like histograms and sketches. Par-
allel data summarization has received moderate attention because it has not
been seen as a widely applicable technique. Reference [17] highlights the fol-
lowing parallel summarization techniques: sampling, incremental aggregation,
matrix factorization and similarity joins. A competing technique to acceler-
ate model computation is gradient descent [9,18]. Unfortunately, it has three
major drawbacks: it does not translate well into a fully parallel computation
(the gradient is sequentially updated), it requires carefully tuning a step size
to update the solution (data set and model dependent) and the solution is ap-
proximate (not as accurate as summarization). Data summarization is related
to parallel query processing [12], considered as an aggregation query.

There is large body of work on computing machine learning models in
Hadoop “Big Data” systems, before with MapReduce [2] and currently with
Spark [27]. On the other hand, computing models with parallel DBMSs has
received less attention [15,23] because they are considered cumbersome and
slower. PCA computation with the SVD numerical method was accelerated
using parallel summarization in a parallel DBMS [20]. However, there are im-
portant differences: in this work sufficient statistics are scattered, whereas they
are integrated into a single matrix in our current paper; there are no theory
results on parallel processing; array storage is much better than relational
storage for matrices; linear regression, a harder problem, was not considered;
this work proposed UDFs for SQL instead of array operators; finally, GPUs
were not considered. The Γ summarization matrix was proposed in [21], which
introduces two parallel matrix-based algorithms for dense and sparse matri-
ces, respectively. Later, [29] introduced an optimized UDF to compute the Γ
matrix on a columnar DBMS, passing it to R for model computation. How-
ever, these papers did not explore the parallel array DBMS angle in depth,
with a large number of nodes, multi-threaded processing and GPUs. We must
point out that since matrix computations are CPU intensive, it was necessary
to study how to further accelerate computation with GPUs. Another practi-
cal aspect we did not envision initially as a major limitation turned out to
be a bottleneck: loading data into the array DBMS, especially in parallel. In
this paper we tackled all these research issues: scale out parallelism, scale up
parallelism, and parallel matrix loading. A careful performance benchmark
comparison between our system, R alone and Spark rounds our contribution.

This article is a significant extension of [30]. We added important theory
results on parallelism. From a systems perspective we now study and contrast
intra-node and inter-node parallelism. We added experiments measuring par-
allel speedup and multi-threaded processing. Related work was significantly
expanded, especially considering summarization and parallel processing.

7 Conclusions

We presented a system integrating a parallel array DBMS (SciDB) and a host
analytic language (R). Unlike most big data analytic systems, our system is
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not built on top of HDFS, but works in a traditional shared-nothing DBMS
architecture. We studied the parallel computation of a general summarization
matrix that benefits machine learning models. Specifically, we studied the com-
putation of PCA and LR, two fundamental, representative, models. We showed
data summarization is a common bottleneck in many matrix equations. We
introduce a parallel, scalable, algorithm to compute such summarization ma-
trix. We presented important speedup and communication theory results that
characterize the efficiency and limits of our parallel algorithm. From a systems
perspective, we considered inter-node and intra-node parallelism. Since matri-
ces are generally manipulated as arrays in a traditional programming language
we studied how to optimize its computation with a parallel array DBMS. We
carefully considered an array DBMS has significantly different storage com-
pared to traditional relational DBMSs based on SQL. Moreover, we studied
how to further accelerate summarization with multi-threaded processing and
GPUs. Benchmark experiments showed our system has linear speedup as the
number of nodes increases. The GPU further accelerates the computation of
the summarization matrix. On the other hand, our experiments show our sys-
tem is orders of magnitude faster than Spark and R language runtime, to
summarize the data set and to compute the same machine learning model.

There are many research issues. Our parallel summarization is ideal for
an array DBMS because it is a matrix computation. However, it has potential
applicability in a traditional parallel DBMS based on SQL, perhaps with some
performance penalty. We need to further study the computation of the sum-
marization matrix on sparse matrices. The summarization matrix is a great
fit for multicore CPUs and GPUs, but we need to study in more depth how
to compute vector outer products with vectorized execution. Given the wide
adoption of Spark, instead of competing with it, we plan to integrate our al-
gorithms with Spark to make Spark scale beyond main memory across the
cluster. The main drawback about integrating systems is the need to move
data between the DBMS and HDFS/Spark. Finally, a major limitation of our
system, compared to Spark and MapReduce, is the lack of fault tolerance dur-
ing processing: if a node fails the entire computation must be restarted. So we
need to study how to dynamically support migrating summarization from a
failing node to another node maintaining checkpoints.
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