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Abstract. RDF and SPARQL have been widely adopted for modeling
and querying Web objects as facts in the Semantic Web. The amount
of data stored in RDF format has grown significantly pushing RDF pro-
cessing systems to implement efficient query processing techniques in
parallel and distributed architectures. In such environments, the data
partitioning is a pre-condition for query performance. Traditionally, the
graph-based RDF systems store the data using adjacency lists formed
by a vertex and its outgoing edges. Nevertheless, for a certain type of
queries, considering entities and their ongoing edges may speed up their
execution. This point motivates us to present a new partitioning tech-
nique (called reverse partitioning) dedicated to graph-based triple stores
that is complementary to traditional ones. In this paper, we first de-
tail its main principles by illustrating its functioning. Secondly, the best
classes of queries for which reverse partitioning gives better performance
are discussed. Finally, we report on intensive experiments using large
RDF datasets that show significant performance improvements for cer-
tain queries in a graph-based triple store and in a relational-based sys-
tem.

Keywords: RDF · Partitioning · Distributed Computing.

1 Introduction

The Semantic Web strives for a worthwhile integration of the data published
on the Web to be exchanged and reused in a variety of applications, communi-
ties and scenarios. Accordingly the W3C promotes standard data formats and
exchange protocols, most fundamentally the Resource Description Framework
(RDF) and SPARQL [11] as its query language. RDF has been widely adopted
for modeling web objects as facts in the semantic web representing data as a
collection of triples of the form < subject, property, object >. A collection of
RDF triples form an RDF graph as the one shown in Figure 1.

With the advent of low-cost distributed architectures and the need to scale to
process datasets with several millions of triples, the number of research projects
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on distributed RDF systems4 has significantly increased. Indeed, distributed
computing raises other challenges such as data distribution and execution skew-
ness that are less relevant in centralized architectures. In distributed engines, a
correct data placement strategy is a pre-condition to balance the loads and opti-
mize the performance of the processing system. In this context, many algorithms
have been proposed for specific platforms, applications and constraints.

Most of distributed RDF processing systems are based on the relational
model. These approaches map triples to relations and apply partitioning strate-
gies used in relational databases (e.g. hashing functions, vertical partitions). In
our work, we focus in other kind of systems storing the data as graphs, with-
out a relational database layer. We are interested in systems persisting the data
as adjacency lists. This storage model is embraced in the gStoreD [8] system
and also in systems built on top of key-value stores (e.g. Trinity.RDF [12]). In
this representation, each node (generally the subject) is stored together with its
outgoing edges and 1-hop neighbors. This paper explores adjacency lists storing
each node and its ingoing edges. We name our strategy reverse partitioning and
we show that this representation is useful for queries with specific shapes. Then,
we propose and compare three allocation strategies in a distributed RDF system.

The contributions of this paper are: i) The introduction of the reverse parti-
tioning main principles firstly by means of a motivating example that is used in
the formalization part to clarify the main concepts, ii) An experimental study
performed in a graph-based parallel RDF engine to evaluate our complimen-
tary partitioning solution, and iii) The comparison of distinct physical storing
strategies simulating different partitioning schemas in a relational-based system.

The organization of the paper is as follows. In the next section (Section 2) we
provide a motivating example to clarify our reasoning. In Section 3 we describe
and formalize our partitioning approach. Section 4 shows our experimental re-
sults. Section 5 gives the study of related work and we conclude and give future
perspectives in Section 6.

4 We use the term distributed RDF systems to denote both parallel and distributed
architectures
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2 Motivating Example

Let us consider the RDF graph G of Figure 1 stored in an adjacency list as
shown in Figure 3a. Each element of the list is called an entity class depicting a
vertex and its outgoing edges. Generally, the entity labels (eLabel in Figure 3a)
are indexed to improve the performance of queries seeking for a specific subject.
Consequently, conventional adjacency lists are adept to answer linear and star
queries in which the subject or head is known as it is the case of Q1 in of Figure
2a . However, in many cases the query is not selective on the subject and instead
its properties are given to identify the subject vertex (e.g. Q2 in Figure 2b). In
these types of queries, the index mentioned previously on subject labels cannot
be used to prune based on a known subject, bearing a full scan of the adjacency
list to solve the SPARQL query.

Queries on which the head of the outgoing edge is unknown (e.g. Q2 in
Figure 2b) are very frequent when exploring RDF graphs to obtain meaningful
information. A vertex is described by its properties, therefore if a node or a set
of vertices are to be identified, their properties should be clearly stated in the
query. An efficient searching process in the adjacency list should be able to prune
irrelevant results and avoid a full scan of the list when possible. We propose the
creation of a reverse adjacency list (illustrated in Figure 3b) that stores the
graph and groups its vertices in terms of its ongoing edges.

eID eLabel adjList

003 :Prince William (has mother, :Princess Diana),

(has father,:Prince Charles),

(has grandmother,:Elizabeth II),

(lives in, y:Kensington palace),

(has name, “William Arthur”)

008 :Elizabeth Mother (died on date, ”2002-03-30")

006 :Elizabeth II (has mother, :Elizabeth Mother),

(lives in,Buckingham Palace)

005 :Prince Charles (has mother,:Elizabeth II),

(has grandmother,:Elizabeth Mother)

(a) Regular Adjacency List for G

eID eLabel adjList

006 x:Elizabeth II (has grandmother,

x:Prince William),

(has mother,x:Prince Charles)

008 x:Elizabeth Mother (has grandmother,x:Prince Charles)

, (has mother,x:Elizabeth II)

001 ”William Arthur” (has name, x:Prince William)

007 y:Buckingham Palace (lives in,x:Elizabeth II)

... ... ...

(b) Reverse Adjacency List for G

Fig. 3: Adjacency Lists for G
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3 Our approach

In this section we propose the Reverse Partitioning strategy which formalizes
the intuition presented in Section 2.

3.1 Preliminaries

As we have previously mentioned, graph-based triple store engines represent the
data on disk using an adjacency list. Each row of the list represents the sub-
ject and its outgoing edges. For example, x:Prince Charles → {(has mother,

x:Elizabeth II), (has grandmother,x:Elizabeth Mother)} depicts the en-
tity Prince Charles. The Prince Charles’s entity is described by its properties
and objects. Each row of the adjacency list is named a forward entity.

Definition 2: Forward entity A forward entity denoted as
−→
E is the quadruple

< VR, LR,F(VR), LF(VR) >.
−→
E is a subgraph of G where VR, LR are the root and

label respectively, and F(VR) = {< vr, v
′
r > |∃ < vr, v

′
r >∈ E} (i.e. the set of all

out-going edges from vR and vR’s one-hop neighbors in G) as well as the binding
labels LF(VR).

The forward entities are the base partitioning unit of systems like EAGRE
[13] for example. This partitioning strategy is ideal for star-shaped queries, es-
pecially when the head of the query is known and an efficient index is created
on the adjacency list keys. However, when the head of the query is not known,
the entire adjacency list (of size n) must be read to find the query matches.

Definition 3: Backward entity A backward entity denoted as
←−
E is the quadru-

ple < VR, LR,B(VR), LB(VR) >.
←−
E is a subgraph of G where VR, LR are the root

and label respectively, and B(VR) = {< v′r, vr > |∃ < v′r, vr >∈ E} (i.e. the set
of all in-going edges from vR and vR’s one-hop neighbors in G) as well as the
binding labels LB(VR).

Backward entities are ideal to solve queries in which the head of the query is
unknown. Similarly to the Forward Entities, we assume that the adjacency list
is efficiently indexed. In this case, a graph matching is easily found exploring the
index (we assumed an O(1) cost).

3.2 Partition Algorithm

In this section we define the partitioning algorithm used to distribute the data
among the nodes of a distributed/parallel system using Forward or Backward
entities as the distribution units. We represent the number of nodes as P . We
consider the following partitioning strategies.
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Hashing strategies: These methods apply a hashing function on the node’s

label LR of
−→
E or

←−
E . The hashing value modulo the number of computer nodes

(P ) returns the site to which the adjacency list’s row is assigned. The risk of
applying this method is that since the connectivity between entities is not con-
sidered, two entities (backward or inward) that are highly connected may be
found in two distinct sites making the join operation between them very costly.

Min-cut algorithms: In response to the drawback of hashing methods, graph
partitioning methods have been applied to this problem. EAGRE [13] for ex-
ample used the min-cut strategy to distribute forward entities. The first step of
this strategy consists in mapping the forward/backward entities to a weighted
graph that is partitioned with robust heuristics (e.g. METIS[6]). The METIS
heuristic, for example, takes the number of partitions as a parameter; in our
case, the number of partitions equals the number of sites. Other works like [4],
have also explored scalable graph partitioning algorithms on massive graphs. To
reduce the number of nodes to be partitioned, forward and backward entities
are grouped according to their predicates (entity classes).
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Fig. 4: Partition models, P=2

Definition 4: Entity class EC is a set containing only either
−→
E or

←−
E . Two

entities belong to the same entity class set iff they share the same (or almost the
same according to a threshold) set of edge labels LF(VR) or LB(VR)..

Let the functions nodes(EC), edges(EC) returning the set of nodes VR and
edges E belonging to all entities in EC respectively.

Definition 5: Compressed entity graph A compressed entity graph de-
noted as C(G) =< Vc, wVc , C(E), wC(E) > is a weighted graph where VC =
{vc|vc is an entity class EC}, wVc is the node weight equal to the number of
triples contained in EC , C(E) = {< vc, v

′
c > |∃ < vr, v

′
r >∈ edges(vc) where vr ∈

nodes(vc) and v′r ∈ nodes(v′c)}, and the weight wC(E) indicates the number of ex-
changed tuples.
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Definition 6: Reverse partitioning The reverse partitioning algorithm con-
sists in applying a partitioning heuristic to the compressed entity graph C(G)
obtained checking the relationships between the backward entities in the RDF
graph.

An example of both, forward and backward entity graphs are shown in Figure
4. In Figure 4b, the weights of the nodes correspond to the number of triples in
the forward entity, and the weighted edges correspond to the number of triples
exchanged between entities. A graph partitioning heuristic creates partitions
that are balanced according to the node’s weights and that cut the least amount
of weighted edges. The Reverse Partitioning heuristic is shown on Figure 4c.

4 Experimental Evaluation

In this section we evaluate and compare the performance of the Reverse Parti-
tioning strategy in different scenarios. The first scenario, detailed in Section 4.2,
compares the reverse partitioning strategy with two physical storage approaches
applied by two state of the art systems. The scenario in Section 4.3 evaluates
the performance of the reverse partitioning strategy in a distributed graph-based
system.

4.1 Experimental setup

– Hardware: The scenario described in Section 4.2 was performed on a Dell
Tower Precision 3620 running Windows 10. This computer features an In-
tel(R) Core(TM) i7-7700 CPU @ 3.60GHz processor, 16GB of main memory
and 2TB of hard disk. The experiments on a distributed graph-based triple
store were performed on a 5 machine cluster (i.e. P = 5) connected by a
10Gbps Ethernet switch. The cluster runs a 64-bit Linux and each site has
a 8GB RAM, a processor Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz and
100GB of hard disk.

– Software: The reverse partitioning core module is implemented in Scala
and runs in Spark 2.12.2. The translation module from SPARQL to SQL
was implemented in Java and the data were stored on PostreSQL 11. The
distributed version of gStore[8] is the graph-based triple store used to test
partitioning configurations on a cluster.

– Datasets and queries: We tested our approach with the WatDiv frame-
work for datasets of 1, 10 and 20 million triples. More details are found on
Table 1. For each of these datasets we generated 80 queries (20 of each query
type).

4.2 Experiments in a single-node relational database system

We stored RDF datasets into a relational database using three different strate-
gies: i) single big table of three columns (subject, predicate, object) similar to
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Table 1: Experimental datasets M: millions,#S #O:
number of distinct subjects and objects

Dataset Size (GB) #S #P #O # Backward Entities

Watdiv1M 0.148 52,505 86 105,492 222
Watdiv10M 1.54 521,585 87 1,003,136 587
Watdiv20M 3.28 1,042,785 87 2,473,723 641

RDF-3X’s strategy [7], ii) vertical partitioning (one table per predicate) similar
to the strategy applied by SW-Store [1] and iii) applying our reverse partitioning
strategy gathering the data by incoming edges. We evaluated on each schema
the execution time of queries with different forms5. The results are shown in
Figure 5. Creating vertical partitions on the predicates gives the most perfor-
mant execution times for the majority of queries considering that there was not
an intense intermediary indexing strategy as it is the case for RDF-3X. The
major drawback of the vertical partitioning strategy is that the data are not
well distributed in terms of volume. The Reverse Partitioning strategy performs
almost as good as the vertical partitioning, especially when the dataset size is
bigger and exploring a single table becomes more costly. Reverse partitioning
has a very important overhead for queries with patterns in which the subject
and object are unknown.
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Fig. 5: Performance of partitioning configurations in relational based system

5 The tested queries are available in: bit.ly/2VCi6tL
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4.3 Experiments in a distributed graph-based triple store

We stored the dataset of 20 million triples in the gStoreD[8] system that allows
to choose among different partitioning strategies. The selected partitioning con-
figurations were: 1) simple hashing on the subject, 2) min-cut algorithm applied
to an entity graph and 3) reverse partitioning strategy.

We configured gStoreD to create the adjacency lists on the triple’s objects.
At query runtime, 7 complex queries did not send any result for both the in-
going and the out-going configurations, 13 queries (11 linear and 2 snowflake)
did not send a result either by the ongoing or the outgoing configuration. Our
final SPARQL query set is composed then of 60 queries (9 linear, 13 complex,
18 snowflake and 20 stars).

Data distribution: Our results show that the technique that is more efficient
in terms of data skew is hashing the data on the subject that distributes the data
almost evenly. Our reverse partitioning strategy sends almost 29.4% of the data
to one machine but distributes nearly evenly in the four other sites. The min-cut
algorithm on the outgoing edges entities has two sites with 28.7% and 27.3% of
the data, and a site with only 12.5% being the one with the worst performance
in terms of data skewness.

Storage overhead: Considering that our Reverse Partitioning strategy creates
an adjacency list for the node and its in-going edges, the number of individual
entities stored on the list is greater than the number of entities stored in an
adjacency list of the node and its outgoing edges. Therefore, the V*-Tree6 index
size is larger. The sizes of the hashing, mincut and reverse strategies are 1345,
1246 and 1568 MB respectively. In average compared to the other strategies, the
Reverse Partitioning creates an index 21% larger but that benefits in a much
greater percentage some queries.

Query performance: In general, the Reverse Partitioning strategy improves
the performance to solve SPARQL queries considerably. The majority of star
queries try to find the head based on the value of its properties, following what
was illustrated in the motivating example of Section 2, an inverse adjacency list
will provide a much better performance as proven by our experiments in Figure
6b . The 4th and 18th star queries of Figure 6b are both queries having contrarily
to the majority the variable not located in the center of the star, degrading the
performance of a Reverse Partitioning. With the snowflake queries we confirmed
our intuition that queries having the variable in the center, benefit greatly from
a reverse partitioning strategy.

If the workload of the system is composed only of very complex queries, the
reverse partitioning strategy is not the best option. As shown in Figure 6d, the
performance of the system is not significantly improved, the cost of storing a

6 bit-based B-Tree index on the subjects and predicates used by gStoreD



Reverse Partitioning for Sparql Queries 9

much greater index is not compensated based on the reported performance. We
can represent complex queries as a union of star queries on which the variables
are located on both, the center of star queries, and its on its properties.
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Fig. 6: Individual query results

5 Related Work

Most of distributed RDF processing systems are dependent on a single parti-
tioning strategy. This strategy relies on how the data are physically stored on
the disk or main memory and also on whether the system is built on top of a
distributed computing platform. A few works have explored RDF partitioning,
[2] for example, proposes a strategyusing the query workload. We classify the
existing systems in three categories:

– Cloud-based: The data distribution is performed by the cloud platform on
which the system is built on. For example SHARD [9] and PigSparql [10].

– Specialized systems: This category considers systems specifically built to
process RDF. We considered two sub-categories of these systems based on
their processing model: i)Partitioned-query based: At runtime a SPARQL
query is decomposed into several subqueries such that each subquery is
solved locally on a site and the results are finally aggregated (e.g. TriAD
[5]), ii)Partial query evaluation: contrary of partitioned-query based sys-
tems, each site receives the full SPARQL query and executes it on the local
RDF graph fragment to parallelise the execution (e.g. gStoreD [8]).

– P2P systems: distributed RDF systems in Peer-to-Peer networks. The sys-
tem 3rdf [3], for instance, is built on top of the 3nuts (p2p network).
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6 Conclusions

In this paper we proposed a novel partitioning strategy for graph-based RDF
distributed systems. Our partitioning method, named reverse partitioning, de-
fines first an adjacency list based on the in-going edges of each node to store the
data. Secondly, the entries in the adjacency list having similar in-going edges are
grouped together and the relations between them are represented in an undi-
rected weighted graph that is partitioned using graph partitioning heuristics.
Experiments confirmed that our partitioning strategy is effective to solve Linear
and Star queries for which the unknown parameters are located in the center of
the star query. Subject hash-based and the min-cut based partitioning strategies
are still more performant to solve a majority of snowflake and complex queries.
Our partitioning strategy is therefore complimentary to the ones already pro-
posed in the literature.

As future perspectives, we consider furthering research in a system that con-
sidering replication to enhance performance and fault-tolerance. Besides, we
acknowledge exploring algorithms to manage highly skewed vertices. Defining
which properties allow breaking groups into smaller pieces is a promising hint.
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