
Scalable Machine Learning in the R Language
Using a Summarization Matrix

Siva Uday Sampreeth Chebolu, Carlos Ordonez, Sikder Tahsin Al-Amin

Department of Computer Science
University of Houston, Houston TX 77204, USA

Abstract. Big data analytics generally rely on parallel processing in
large computer clusters. However, this approach is not always the best.
CPUs speed and RAM capacity keep growing, making small comput-
ers faster and more attractive to the analyst. Machine Learning (ML)
models are generally computed on a data set, aggregating, transform-
ing and filtering big data, which is orders of magnitude smaller than
raw data. Users prefer “easy” high-level languages like R and Python,
which accomplish complex analytic tasks with a few lines of code, but
they present memory and speed limitations. Finally, data summariza-
tion has been a fundamental technique in data mining that has great
promise with big data. With that motivation in mind, we adapt the Γ
(Gamma) summarization matrix, previously used in parallel DBMSs, to
work in the R language. Γ is significantly smaller than the data set,
but captures fundamental statistical properties. Γ works well for a re-
markably wide spectrum of ML models, including supervised and unsu-
pervised models, assuming dimensions (variables) are either dependent
or independent. An extensive experimental evaluation proves models on
summarized data sets are accurate and their computation is significantly
faster than R built-in functions. Moreover, experiments illustrate our
R solution is faster and less resource hungry than competing parallel
systems including a parallel DBMS and Spark.

1 INTRODUCTION

Machine Learning has become popular and gained a lot of demand in the present
world with the availability of abundant data and abundant processing power.
There are a lot of tools and technologies like Python, R, Scala, Java, C# and
many more which compute these machine learning models. However, data sets
can be so large that they do not fit in the main memory. For these types of
data, Hadoop stack or distributed systems or DBMSs like Vertica, SciDB is a
popular choice to compute the Machine Learning models [15], [10]. Contrary to
the popular belief, we propose that the size of the cleaned data set, rather than
its raw counterpart should dictate the data processing platform to be used. Data
cleaning strips off a lot of unwanted and inaccurate data. As a result, the size of
the data set is significantly reduced and with it, the need to use a heavyweight
data processing platform like Hadoop. Therefore, with a refined data set, data
processing can be limited to a single system environment like, in our case, R.
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With a vast package ecosystem coupled with extensive developer support,
R ticks all the right boxes when it comes to being a data analytics platform
[7]. However, R has few shortcomings of which memory management, speed and
efficiency are the most noticeable. While parallelism in R can be achieved by
using packages like parallel, the shortcoming becomes evident with an increasing
number of cores. The language design sometimes poses a great problem when
working with large data sets since the data has to be stored in physical memory.
With the dedicated physical memory, R cannot scale to deal with data sets
larger than the proportion of memory allocated to it and is forced to crash in
such cases. So, the physical memory limitation clearly outweighs the need to
address the issue of parallelization in R. In an attempt to address the above
limitation in R, we used the summarization technique in the first Phase of our
approach. But again, summarization technique can be used only for those models
which accept Gramian Matrix product like Linear Regression (LR), Principal
Component Analysis (PCA), Näıve Bayes (NB), K-means (KM) and few others.
Furthermore, we built upon the parallel database systems algorithm in [10] to
make it work in a serial scalable manner in R. Here, we implemented the models
from [10] and also explored new models like Näıve Bayes and K-means which
require a new gamma matrix, Diagonal Gamma, instead of the old ones stated in
[10]. The environment does not crash even for large data sets, works independent
of the physical memory allocated to the R environment and gives as accurate
results as the existing packages that compute the above models in R.

2 DEFINITIONS

This is a reference section which introduces definitions of input data sets and
models from mathematical perspective, R runtime and RCpp package. Each
subsection can be skipped by a reader familiar with the material.

2.1 Mathematical Definitions

First, we define the inputs given to the models. The most obvious one is the
input data set, interpreted as a matrix, which is defined to be a set of n column-
vectors. All the models take a d× n matrix as input. Let the input data set be
defined as X, which is considered to have n points, where each point is a vector
in R. Therefore, we can see X as a wide rectangular matrix. In the case of Linear
Regression (LR) and Principal Component Analysis (PCA), we take an extra
dimension (output variable Y ) resulting a change in the dimensions of X to
(d+ 1)× n, which we call X. We use i=1...n and j=1...d as matrix subscripts.
We augment X with an extra row of n 1s and call that as matrix Z ((d+ 2)× n)
for mathematical convenience. Column-vectors and column-oriented matrices are
used for mathematical convenience because they allow simpler equations.

We use Θ to represent a statistical model in general. That is, Θ can be a
LR or PCA model as well as any of the clustering and classification models
such as Näıve Bayes(NB) and K-means(KM). PCA is an unsupervised model to
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reduce dimensionality. LR is a fundamental supervised model, whose solution
helps in understanding and building other linear models. Näıve Bayes is another
classic supervised model, whose solution assigns a numerical value between 0
and 1 to each class label denoting the probability of data belonging to a specific
class. K-means is a clustering algorithm whose goal is to find k similar groups in
the data. The algorithm works iteratively to assign each data point to one of k
groups based on the features that are provided. Data points are clustered based
on feature similarity. Therefore, for each model, Θ = {list of matrices/vectors},
as follows. For LR: Θ = β where β is the vector or regression coefficients; for
PCA: Θ = U,D where U are the eigen vectors and D contains the squared
eigenvalues obtained from SVD; for NB: Θ= {π, µ, σ}, where π is the vector
of k class priors, µ is a set of k mean vectors and σ are k diagonal matrices
with standard deviations; and for KM: Θ={W,C,R}, where W is a vector of k
(number of clusters) weights, C is a set of k centroid vectors and R is a set of k
variance matrices.

2.2 R Runtime and RCpp Package

R is a dynamic language for statistical computing that combines lazy functional
features and object-oriented programming [6], [12]. In R, vectors are stored as
one contiguous block, matrices are 2-dimensional arrays of real numbers, which
are stored as one block in column major order dynamically allocated, Lists are
the most general ones and can have elements of diverse data types, including
atomic data types and nested data structures. R uses a dynamic interpreter and
also it utilizes C language for matrix and data frame operations and LAPACK
library for linear algebra and numerical methods. When R functions are called,
the R run-time creates nested variable environments, which are dynamically
scoped.

The advantage of the RCpp package is its memory management. We can pass
values to and from R and RCpp. When we pass the values, only the reference
gets passed to the other side but not the actual value. So, memory consumption
is very efficient and the runtime is the same. We can even pass matrices, lists,
vectors and similar data to RCpp and return any of those from RCpp.

3 Theory and Algorithm

We present our main technical contribution in this section. First, we propose our
main algorithm and then we discuss it in details. Then we discuss the implemen-
tation of our algorithm in R and RCpp. Finally, we give the run time complexity
of our algorithm.

3.1 Algorithm

Our main algorithm consists of two steps:

1. Phase 1: Compute summarization matrix: one matrix Γ or k matrices Γj .
2. Phase 2: Compute model Θ based on Gamma martix (matrices).
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In phase 1, first, we review the Gamma matrix (Non-Diagonal Gamma) and
the statistics in it which was proposed in [10]. Matrix Γ (Gamma), defined
below, is a fundamental matrix which contains a complete, accurate and sufficient
summary. Then we describe the design and implementation of our main technical
contribution, the Diagonal Gamma matrix. Both Non-Diagonal Gamma and
Diagonal Gamma provides summarization for a different set of models which are
presented in phase 2. For PCA and LR, we need one full Γ matrix assuming
element off-diagonal is not zero. And for NB and KM, we need k matrices Γj
(k classes, or k clusters respectively), where each Γj is ”diagonal” meaning we
assume Q is diagonal where off-diagonal elements are assumed to be zero. We
discuss both phases in details in the following sections.

3.2 Phase 1: Computing Summarization Matrices

First we review the sufficient statistics for X which are integrated to form the
Non-Diagonal Gamma Matrix, which are:

n = |X|, (1)

L =

n∑
i=1

xi, (2)

Q = XXT =

n∑
i=1

xi · xTi (3)

Here, X is the data set, n counts total number of points in the data set, L is
a linear sum of xi and Q is a sum of vector outer product where xi is multiplied
by itself, i.e., Q is simply the ”quadratic” sum of xi. As defined earlier in 2.1, X
is d× n, Z has (d+ 2) rows and n columns, where row [0] are 1s and row [d+ 1]
is Y . Hence, zi can be defined as zi = [1, xi, yi]. Then the Z matrix becomes:

Z =

 1 1 ... 1
x1 x2 ... xn
y1 y2 ... yn

 (4)

Matrix Γ (Gamma), which is defined below, is a fundamental Gamma matrix
which contains a complete, definite, and sufficient summary of X to efficiently
compute models like LR and PCA that have been previously defined. We define
a complementary Gamma matrix, Diagonal Gamma, in Section 3.2 for models
assuming variable independence, like Näıve Bayes and K-means.

Γ =

 n LT 1T · Y T
L Q XY T

Y · 1 Y XT Y Y T

 =

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i

 (5)

Here, Γ which can be computed in two ways from [10]. Alternative (1) is matrix-
matrix multiplications i.e. ZZT ; Alternative (2) is sum of vector outer products
i.e.

∑
i zi ·zTi . So, Γ = ZZT =

∑n
i=1 zi ·zTi . That is, the square of matrix Z gives

us Γ , which is significantly smaller than X. In general, if d << n, Γ comfortably
fits in main memory.
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Diagonal Q matrix assuming dimensions are independent: From [10], it
is clear that Non-Diagonal Gamma matrix, despite being iterative algorithms,
avoids reading the entire data sets at every iteration. But that approach can-
not be applied on models like Näıve Bayes(NB) or K-means(KM) which require
more than one summarization matrix and may also require to read the entire
data set more than once. For example, Näıve Bayes requires k summarization
matrices for a given data set, where k being the number of unique class labels
in the data set and K-means requires k matrices for summarization of a data
set with k as the number of clusters given by the user, i.e., one for each clus-
ter. Furthermore, these models do not require the complete computation of the
Non-Diagonal Gamma as described in 3.2. The reason behind that is, the LR
and PCA are computed in rotated space whereas in NB and KM we assume that
the dimensions are independent, making Gamma diagonal. Due to this reason,
we introduce another matrix, Diagonal Gamma, which helps to compute these
models. Here, we do not require the Y parameter for Naive Bayes and K-means
as used in LR and PCA. The major difference between the two forms of Gamma
is we do not require parameters off the diagonal in Diagonal Gamma matrix as
in Non-Diagonal Gamma matrix. So, we need only a few parameters out of the
whole Non-Diagonal Gamma, namely, n,L, LT , Q. That is, we require only a few
sub-matrices from Non-Diagonal Gamma, which can be visualized as:

Γdiag =

 n LT 0
L Q 0
0 0 0

 , where Q =


Q11 0 0....... 0

0 Q22 0....... 0
0 0 Q33..... 0
0 0 0........ Qdd

 (6)

Furthermore, if we see the above sub-matrix, we observe that if we compute
the terms in the lower triangle, we can get the whole sub-matrix just by copying
the L to LT , i.e., we need to compute the terms in the lower triangle and copy it
to the upper triangle. This is the major change in definition of the Non-Diagonal
Gamma to that of the Diagonal Gamma. Also, in Non-Diagonal Gamma, the
Q is computed completely. On the other hand, in Diagonal Gamma, the Q is
diagonal. From which we came up with the name of the matrices as Diagonal
and Non-Diagonal Gamma. So, Q is diagonal or non-diagonal but not Γ .

3.3 Phase 2: Computing Models

Models are computed using the two versions of Gamma. One is with one Non-
Diagonal Gamma Matrix and another one is k-Diagonal Gamma Matrices. Both
of them were introduced previously.

Models based on one Non-Diagonal Gamma:

Linear Regression (LR): From [10], the standard definition of LR is given
as Y = βTX + ε, where β is the column vector of regression coefficients and ε
represents the Gaussian error. X is a (d + 1) × n augmented matrix where we
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have X with a row of n 1s. β can be defined as β̂ = (XXT )−1XY T . From the
discussed Non-Diagonal Gamma, we can rewrite this equation as

β̂ = Q−1(XY T ) (7)

.
Principal Component Analysis (PCA): PCA is mainly implemented on a
data set to reduce noise and redundancy of dimensions. PCA can be computed
on the covariance matrix (V ), or the correlation matrix (ρ), of the data set
from [4]. This model require two parameters. First is U , which is a set of d
orthogonal vectors, principal components of the data set, ordered in decreasing
order by their variance. Second is the diagonal matrix D2 which contains the
squared eigen values. From [10], we can compute ρ, the correlation matrix, from
the two parameters, D and U as ρ = UD2UT = (UD2UT )T . We can also
compute the covariance matrix as V = Q/n− LLT /n2. Then we compute PCA
by using Eigen decomposition of the ρ, which is a symmetric matrix factorization.
That is, we compute PCA from the correlation matrix by solving Singular Value
Decomposition (SVD) on it. Also, we express ρ in terms of the sufficient statistics
to compute SVD as follows:

ρab =
(nQab − LaLb)

(
√
nQaa − L2

a

√
nQbb − L2

b)
(8)

.
Models based on k Diagonal Gammas:

Näıve Bayes (NB): The input for this model is a data set X and the output
is a Näıve Bayes classification model which contains C(mean per dimension), R
(variance per dimension), and W (prior per class). First, we take the data set
X as input in chunks of fixed size. In each chunk, we split the data based on
number of classes in the data set. We compute one gamma for each part of the
chunk and at last add up these Γ matrices with respect to the classes and arrive
at a final list of Γ matrices one for each class. We focus on k = 2 classes for NB.
Then finally we have Γ0 for class 0 and Γ1 for class 1. We extract Ng, Lg, Qg as
defined in 3.2, from this final list of Γ s. So, we arrive at lists of Ng, Lg, Qg from
where we compute π, µ and σ per dimension per item in the list separately like:

πg =
Ng
n
, (9)

µg =
Lg
Ng

, (10)

σg =
Qg
Ng
− diag[

LgL
T
g

N2
g

] (11)

Here, Ng = |Xg| and we take the diagonal of L · LT and Q, which can be
manipulated as a 1-dimensional array instead of a 2D array. These are the 3
parameters included in the Näıve Bayes model. Now, we can predict class labels
for new data using this model. For the prediction, for each point in the input
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data, we compute a probability value per class using the model parameters and
assign the class with maximum probability. We compute the probability using,

Pxiclass
= (1/

√
2πσ2

gj )e
(−0.5(xi−µxi)

2/σ2
gj

)

K-means (KM): The input for this model is a data set X and the number of
clusters (k) and the output is three matrices C, R, W , containing the means,
the variances and the weights respectively for each cluster of X. For K-means
with k clusters, we have list of matrices as Γ1, Γ2, .., Γk, where k ≥ 2. Following
definitions from 3.2, we introduce similar model parameters Xj , Nj , Lj , Qj as
the subset of X which belong to cluster j, the total number of points per cluster
(|Xj |), the sum of points in a cluster (

∑
∀xi∈Xj

xi) and the sum of squared points

in each cluster (
∑
∀xi∈Xj

xix
t
i) respectively. From these statistics, we compute

Cj , Rj , Wj as:

Cj =
Lj
Nj

, (12)

Rj =
Qj
Nj
− diag[

LjL
t
j

N2
j

], (13)

Wj =
Nj
n

(14)

Here Nj = |Xj| and we take diagonal of L · LT and Q, which can be treated as
vectors instead of a matrix. The algorithm iterates executing two steps starting
from random initialization until cluster centroids become stable.

Step 1 determines the closest cluster for each point and adds the point to it.
K-means uses Euclidean distance to determine the closest centroid to each point
xi which is defined as d(xi, Cj) = (xi − Cj)t(xi − Cj)

Step 2 updates all centroids Cj by computing the mean vector of points
belonging to cluster j. The cluster weights Wj and diagonal covariance matrices
Rj are also updated based on the new centroids. The quality of a clustering
solution is measured by the average quantization error q(C), defined in [8] (also
known as distortion and squared reconstruction error). Lower is the value of q(C),
better is the quality of clustering. q(C) = 1

n

∑n
i=1 d(xi, Cj) , where xi ∈ Xj .

The K-means algorithm stops when centroids change by a marginal fraction
in consecutive iterations which is measured by the quantization error. With de-
creasing q(C) at each iteration, K-means is theoretically guaranteed to converge,
yet a threshold is set on the number of iterations to avoid excessively long runs.

3.4 Computing Gamma Matrix and Machine Learning Models in R

We discuss how Γ is computed exploiting RCpp and how the models are com-
puted in R itself. Depending on the models, we choose between the Non-Diagonal
or the Diagonal Gamma matrix to compute at first.
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Phase 1: This part is computed exploiting RCpp package. From section 3.1,
phase 1 takes are of computing the sum,

∑
i ziz

T
i . The main idea is to evaluate

this equation in C++ code instead of R code, following the same UDF idea
presented in [10].

First, we take the input data set (X) and split that into chunks of equal size.
Chunks are a subset of X so that chunk fits in RAM and it has many points.
If there are M chunks, then X is partitioned into X1, X2, .., XM chunks, where
each chunk XI (uppercase i) fits in RAM. Regarding chunks most libraries in
R use data frames and therefore it is sort of a table, not a matrix. It seems
the conversion from data frame to matrix is done somewhere. We read text
files because they are the most common. However, our program would be more
efficient with binary files.

If the model to be computed is LR or PCA, we compute the Non-Diagonal
Gamma based on the type of data set (whether it is dense or sparse) for each
chunk. So, we have a list of Γ s. If the model is Näıve Bayes, we compute the
Diagonal Gamma, one for each class label for every chunk. If the model K-
means, for the first iteration and first chunk, we initialize the k cluster centroids
randomly and for successive iterations, we initialize the k cluster centroids with
that of the first chunk. Then, we assign a cluster number to each data point and
compute the Diagonal Gamma, one for each cluster in every chunk. Hnece, we
have a list of list of k Γ s. Since Γ is additive, we can add all the intermediate
Γ s to obtain a final Γ . This is straightforward for LR and PCA. But for Näıve
Bayes and K-means, since we have list of list of Γ s, we need to add the Γ s
corresponding to a given class/ cluster respectively such that we arrive at a final
Γ which is a list of matrices representing each class/cluster.

Phase 2: In this part we compute each model (θ). While Phase 1 is basically
exploiting RCpp, Phase 2 uses R itself ”as is” (we use R existing functions
and operators). After obtaining the final Γ , we use Non-Diagonal Gamma to
compute LR and PCA and Diagonal Gamma to compute Näıve Bayes and K-
means using the mathematical equations discussed previously. Since the models
LR, PCA, and NB do not need to converge to a best solution like K-means, that
will be the end of Phase 2 for them. On the other hand, K-means is not trivial
to compute as it needs to converge to a best solution by the reduction of the
quantization error to a minimum value. So, we need to repeat the Phase 1 and
Phase 2 iteratively in order to achieve this. Every time we read the data set, we
take the cluster centroids from the previous pass, which improves the accuracy
of the model. This process terminates when there is no change in the clusters
formed from previous iteration. In summary, for LR, PCA, and Näıve Bayes, we
read each and every point in the data set only once but for K-means, we read the
data set multiple times until a best solution is achieved. It is beyond the scope
of this paper to justify why Γ eliminates the need to read X multiple times in
LR and PCA, but not in KM.

Here, the input data set X, intermediate computations and output model,
everything is a matrix. In summary, the Γ s are computed in Cpp exploiting
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RCpp package and the models are computed in R itself. To compute LR and
PCA, we are forced to call R routines. But for NB and KM, we can compute it
ourselves, helped by the fact that diagonal Q simplifies computations in addition
to efficiency.

3.5 Time and Space Complexity Analysis

From [10], it is clear that the time complexity for the Phase 1 of the Non-Diagonal
Gamma with dense data is O(d2n) and sparse data is O(k2n), assuming k entries
in xi are non-zero on an average. In Phase 2, we compute the machine learning
models based on the Gamma from Phase 1. So, time for Phase 2 does not depend
on n and is Ω(d3), which for a dense matrix may approach O(d4), when the
number of iterations in the factorization numerical method is proportional to d.
This Non-Diagonal Gamma is used by models like LR and PCA.

A separate Gamma matrix, Diagonal Gamma, is used owing to the fact that
a major set of the traditional Non-Diagonal Gamma has little-to-no utility for
models like Näıve Bayes and K-means. Time complexity of Diagonal Gamma
computation is O(dn) as we compute only L and diagonal of Q of the whole
Non-Diagonal matrix. This time complexity applies for all the models utilizing
the Diagonal Gamma except K-means. The time complexity of K-means would
be O(kdn), where k is the number of clusters.

When we come to the space complexity, space required by Non-Diagonal
Gamma matrix in main memory with dense representation is O(d2). However,
it is O(kd) for K-means and O(d) for Näıve Bayes. In short, we can state that
Diagonal Γ consumes much less memory than full Γ . However, Diagonal Gamma
does not mean faster algorithms since KM requires multiple iterations.

4 Experimental Evaluation

We present an experimental evaluation of our R package and the machine learn-
ing models based on the Γ matrix. First, we show the models computed by our
R package are accurate, down to almost zero error. Second, we compare the
times from our package in R with those times obtained in three alternatives: a
columnar DBMS (Vertica [5]), well-known R functions computing each model
and the popular Hadoop stack system, Spark.

4.1 Experimental Setup

Hardware and software: The system and software configuration used for
the experiments is a four core 2.83GHz system with Linux Ubuntu as operating
system with 4GB physical memory and 294GiB storage space.

Data sets: The data sets which are used for the experiments are described
in Table 1. All the data sets are taken from the UCI Machine Learning repos-
itory. We also include the information about the models which utilize these
data sets. We replicated each of the data sets in order to get various com-
binations of n and d without altering statistical properties of the data. The
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first one was sampled and replicated to get combinations of d = (9, 91) and
n = (0.5M, 1M, 10M), second was replicated to get the combinations of d = 30
and n = (0.2M, 1M, 10M, 100M) and the third one is replicated to get d = 4
and n = (0.1M, 1M, 10M, 100M).

Table 1. Base data sets description

Data set d n Description Used for Model

CreditCard 30 285K predict if there is raise in credit line Näıve Bayes

YearPredictionMSD 90 515K predict if there is rain or not LR and PCA

Iris 3 150 to distinguish the flower species K-means

4.2 Accuracy Evaluation

Table 2 below shows the results of the experiments that were performed using
the two forms of Gamma. We compared the accuracy of model computations of
our package with similar packages in R, which is a popular language and envi-
ronment for statistical computing. We implemented four models in our package,
namely, LR, PCA, Näıve Bayes and K-means. For each model, we have a differ-
ent way of measuring the accuracy with the common underlying metric being
Relative Error. From Table 2, we understand that the results from the functions
of our package are almost an exact match with the output given by the currently
existing best packages in R.

For LR, we get an intercept and a β per attribute as an output for the model
computed by Gamma matrix. This is similar to the output given by lm(), the
preferred default routine in R for LR, for the same input data set. We then
compute the absolute differences among all the respective values of intercept
and βs, from which we compute the Relative differences. Finally, we report the
maximum of the relative differences among the intercept and the βs in Table 2.

For PCA, we get a diagonal matrix, D, of Eigen values and two ortho-normal
matrices, S and V, which are Eigen vectors of the given input matrix. Unlike
other models, we do not compute PCA completely in Cpp as it gives inaccu-
rate results. Rather we use pure R routines to compute SVD of the correlation
matrix generated from the Gamma matrix. The values in D depict the relative
importance of each column in S and V matrices. So, we imply on the point
that, for the computation of relative error, we take the values from D whose
value is greater than 1. We first find the absolute differences among the pairs of
corresponding values from the output of the Gamma matrices and that of the
default R routines, from which we compute the relative differences. We report
the maximum of these relative differences in Table 2.

In Näıve Bayes, we build a model to predict the class labels for the test data
set. For that, we compute two separate Näıve Bayes models on the given input
training data set using the default R routine and the aforementioned Gamma
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functions. Consequently, we compute the prediction accuracy by finding the
degree to which the predictions made by the functions of our package conforms
to that from standard routine in R.

For K-means, we group the input data into k clusters, where k is pre-defined
by the user. We compute K-means with both the default R routine and the
previously discussed Gamma functions. The output from both the techniques
have three vectors, namely, Centers, Radii and Weights. We take the weight vec-
tors, sorted in decreasing order, from both the models and obtain the respective
absolute errors. We use this absolute error to compute the relative errors with
respect to the weight vector of the model computed from the default R routine.
We report the maximum value of relative error in Table 2.

Table 2. Accuracy of models on respective data sets.

Model Maximum Relative Error Data set used

LR 5.89E-10 YearPredictionMSD

PCA 4.75E-13 YearPredictionMSD

Näıve Bayes 0 CreditCard

K-means 4.7E-2 Iris

4.3 Time Performance Evaluation and Benchmarking

We compare the performance of the models in our proposed package with the
currently available best packages in R to compute the respective models, a similar
implementation done in Vertica, which is a very fast columnar database [5] and
also popular for big data analytics nowadays [1] and Spark which is the best
representative from the Hadoop world. Since Näıve Bayes and K-means are new
models that we explored in our research, there are no prior implementations of
these in Vertica. So, we made the comparisons with Vertica for LR and PCA
only.

Table 3 and 4 compares the time to compute PCA and LR on YearPrediction
data set with Vertuca, R and Spark. We can see that as the as the size of the
data set increases, the inbuilt R packages crash. One of the main reasons can be
attributed to the fact that it tries to load the whole data set into main memory,
eventually resulting in untimely aborts of the program. Howver, our package
overcome this problem by not loading the entire data set into the memory,
instead breaking the data set into chunks according to allocated memory. Also,
though Vertica and Spark are able to compute the models even for large data
sets, they perform slower than our package in R. As n grows, the time complexity
of our method for LR and PCA is shown in Fig 1.

Table 5 compares the time to compute Näıve Bayes model in our package
with the one given by R. We see that R crashes for large values of n which is
not the case with our package. From Table 6, although the current packages in
R scale well for small data sets, they result in untimely aborts for large data
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Fig. 1. Time Complexity to compute LR and PCA as n grows.

sets. As the size of data set increases, the performance of our package improves
greatly. Spark, on the other hand, is able to compute the models though it is
much slower than our package.

Table 3. Time to compute PCA on YearPrediction data set (Dense) (in secs)

n d R+ Γnon−diag (dense) R+ Γnon−diag (sparse) Vertica R Spark

0.5M 91 22 33 46 336 67
1M 91 66 80 115 575 130

10M 91 726 800 1290 crashed 1074
1M 9 9 9 10 21 31

10M 9 91 75 110 205 286
100M 9 1018 1020 1560 crashed 1780

4.4 Strengths and Weaknesses

Even though this model works efficiently for data sets with rows in the order of
millions, it does not work as intended with the billion or higher rowed counter-
parts. This issue is magnified with the K-means algorithm as it requires multiple
reads of the data set before returning the final clusters. Notwithstanding the long
execution times, it still gives accurate results in contrast to the existing packages
that result in untimely session aborts. As we see in the experimental results of
K-means, the existing most efficient package for K-means model in R is aborted
for a data set with five million rows or higher. In a similar manner, even for
Näıve Bayes, the most efficient package in R is aborted when a data set with
ten million rows is given as input while our solution returned accurate results
within a reasonable amount of time.
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Table 4. Time to compute LR on YearPrediction Data set (Dense) (in secs)

n d R+ Γnon−diag (dense) R+ Γnon−diag (Sparse) Vertica R Spark

0.5M 91 22 36 46 276 67
1M 91 74 74 115 630 130

10M 91 720 828 1290 crashed 1074
1M 9 6 6 10 24 31

10M 9 91 69 110 285 286
100M 9 941 928 1560 crashed 1780

Table 5. Time to compute Näıve
Bayes on Credit card data set (Dense)
(in secs)

n d R+Γdiag R

0.2M 30 7 51
1M 30 40 158

10M 30 399 crashed
100M 30 1132 crashed

Table 6. Time to compute K-means on
Iris data set (Dense) (in secs)

n d R + Γdiag R Spark

150 4 0 0 3.2
0.1M 4 6 0 7.5

1M 4 65 6 43.3
5M 4 380 crashed 1370

10M 4 756 crashed 3012

Our solution adapts to the local machine and customizes the chunk size
with respect to the available physical memory. The main drawback is that R
cannot be easily parallelized unlike the Hadoop stack or other parallel systems
to completely utilize the cores available in a system thus resulting in a decreased
performance.

5 Related Work
There are many techniques to improve the performance of the models PCA,
Näıve Bayes and K-means few of which are [14], which used decomposition of
Classes via Clustering to improve Näıve Bayes, [3, 13], which used the triangle
inequality and collaboration of compressed sensing theory and K-SVD approach
to accelerate K-means, [15, 8], which did Fast PCA computation in a DBMS
with Aggregate UDFs and LAPACK and improved performance on MapReduce
environment. If we observe carefully, LR, Näıve Bayes or PCA does not require
any initialization unlike the K-means model which require the number of clusters
and their respective centroids to be initialized. If the initialization is bad, we
never converge at a solution.

Summarization of scalable Machine Learning algorithms was done in a paral-
lel manner in [10]. The authors of the [10] exploited HP Vertica’s parallelization
feature, similar to [11], to perform summarization on multiple systems simul-
taneously. We adapted the algorithms in [10] and implemented them such that
they are serial, scalable and are 99 percent accurate in R. We made use of the
chunking ability in R to read the infinite amount of input data which also makes
the process faster. We removed the use of database system completely which is
the main component in [10]. In [9], Näıve Bayes is computed inside the database
with pure SQL queries. We adapted model computation from [9] and imple-
mented it in R. We compared our work with the most efficient ones in R and
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have shown that our package is faster and reliable than the former. Alternatively,
there is another technology, Microsoft R Open, which is also designed to include
an updated R engine (R 3.2.2), new fuzzy matching algorithms, the ability to
write to databases via ODBC, and a streamlined install experience. This can
also be used to obtain some optimization in building the models. Computers,
nowadays have more physical memory, more computing power. So, using a single
system, our solution is better for millions of records with all the 4 models. The
algorithms programmed in R and C++ are presented in [2].

6 Conclusions

We introduced a powerful summarization matrix to compute fundamental ML
models in two phases: Phase 1 to compute one summarization matrix or multiple
summarization matrices and Phase 2 to update model parameters based on sum-
marization, where Phase 1 is I/O intensive and Phase 2 is CPU bound. Based
on our summarization matrix we developed an R package capable of computing
ML models with high accuracy, high speed, and no main memory limitations.
Specifically, our R package computes LR, PCA, NB and KM models in one pass
over the input data set, except for KM which requires iterative processing. The
main memory limitation is solved by reading the data set in small blocks (rela-
tive to available RAM) and incrementally updating summarization (with either
one summarization matrix or multiple summarization matrices). High speed is
achieved by computing the summarization matrix in high-performance C++
code, compiled and linked to run inside the R runtime. We introduced several
variants on the Gamma matrix to work with sparse data sets, diagonal and
non-diagonal variance matrices, as well as supervised and unsupervised models.
That is, we cover a wide spectrum of data sets and ML models, thereby offering
wide applicability. We presented interesting experiments to evaluate accuracy
and time performance. We show our summarization matrix produces practically
the same model, with negligible error, compared to standard R functions. On the
other hand, we show our R algorithms are much faster than R built-in functions,
removing main memory limitations, but preserving the ease of use. Extensive
benchmarks show our package is faster than competing parallel systems: a par-
allel DBMS and the popular Spark system. In short, our R package opens the
possibility of analyzing large data sets on an average personal computer.

Even though our research proves we can get better performance and scalable
computing in the R language beyond RAM limits with single-threaded pro-
cessing, there are many opportunities for future research. We need to explore
non-linear ML models, like logistic regression and Support Vector Machines. We
need to explore mechanisms to parallelize summarization inside the R runtime,
via parallel C or C++ code running on multicore CPUs. Our approach has the
promise to be applied in other high-level languages including Python, Matlab,
and Javascript, being Python our first target. Given extensive past research
work on parallel processing on big data it is worth investigating a data set size
threshold to move processing from a single machine to a parallel cluster.
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