
The Percentage Cube

Yiqun Zhang, Carlos Ordonez, Javier Garćıa-Garćıa, Ladjel Bellatreche,
Humberto Carrillo

Abstract

OLAP cubes provide exploratory query capabilities combining joins and ag-
gregations at multiple granularity levels. However, cubes cannot intuitively or
directly show the relationship between measures aggregated at different group-
ing levels. One prominent example is the percentage, which is widely used in
most analytical applications. Considering this limitation, we introduce per-
centage cube as a generalized data cube that takes percentages as its basic
measure. More precisely, a percentage cube shows the fractional relationship in
every cuboid between each aggregated measure on several dimensions and its
rolled-up measure aggregated by fewer dimensions. We propose the syntax and
introduce query optimizations to materialize the percentage cube. We justify
that percentage cubes are significantly harder to evaluate than standard data
cubes because in addition to the exponential number of cuboids, there is an
additional exponential number of grouping column pairs (grouping columns at
the individual level and the total level) on which percentages are computed. We
propose alternative methods to prune the cube to identify interesting percent-
ages including a row count threshold, a percentage threshold, and selecting the
top k percentages. We study percentage aggregations within the classification
of distributive, algebraic, and holistic functions. Finally, we also consider the
problem of incremental computation of percentage cube. Experiments compare
our query optimizations with existing SQL functions, evaluate the impact and
speed of lattice pruning methods and study the effectiveness of the incremental
computation.

1. Introduction

Companies today rely heavily on decision support systems for help on an-
alytical tasks to stay competitive. Those systems can identify important or
interesting trends by retrieving decision support information via cube queries.
Data cube, first introduced in [7], generalized the standard “GROUP BY” op-
erator to compute aggregations for every combination of the grouping columns.
Building data cubes has been well recognized as one of the most important
and essential operations in OLAP. Research on building data cubes is extensive
and many methods have been proposed to compute data cubes efficiently from
relational data [3, 19, 17]. However, the aggregation applied on the cube mea-
sure that most of the research has been studying on never goes further than

Preprint submitted to Elsevier December 15, 2017

the standard ones: sum(), avg(), count(),max() and min(). We believe that an
essential aggregation that is missing from the SQL list is the percentage.

Percentages are essential in big data analytics. They can express the pro-
portionate relationship between two amounts summarized at different levels.
Sometimes, percentages are less deceiving and more intuitive than absolute val-
ues. Therefore, they are suitable for comparisons. Furthermore, percentages
can also be used as an intermediate step in some applications for complex an-
alytics. Previous work [12] introduced percentage aggregations in individual
queries. However, exploring percentages in a full data cube is a new problem,
that is computationally harder. In this paper, we introduce a specialized form of
the data cube taking percentages as the aggregated measure, which we call the
percentage cube. A percentage cube shows the fractional relationship in every
cuboid between each aggregated measure and its further summed-up measures
aggregated by less detailed grouping columns.

Unfortunately, existing SQL aggregate functions, OLAP window functions,
and Multidimensional Expressions (MDX) are insufficient to compute percent-
age cubes. The computation is too complicated to express using existing SQL
syntax. The exponential number of grouping column pairs adds further com-
plexity. In this paper, we introduce simple percentage aggregate functions and
percentage cube syntax, as well as important techniques and optimizations to
efficiently evaluate them. We justify that the percentage cube subsumes iceberg
queries (based on a decreasing row count threshold) and it represents a harder
problem because there are exponentially more groups and it is feasible to find
large percentages both at high levels and deep levels in the dimension lattice.
Moreover, it is necessary to explore percentages interactively. Such challenges
make percentage cube materialization (precomputation) mandatory.

This paper is organized as follows: Section 2 presents definitions related to
OLAP aggregations and the percentage cube. Section 3 introduces the function
to compute a percentage aggregation and then extends it to evaluate a percent-
age cube efficiently. Section 4 contains the experimental evaluation. Section 5
discusses related approaches and the uniqueness of our work. Section 6 con-
cludes the paper.

2. Definitions

2.1. Standard Cube

We consider the standard cube having a set of discrete dimensions, where
some dimensions may be hierarchical like location (continent, country, city,
state) or time (year, quarter, month, day). To simplify exposition and bet-
ter understand query processing, we compute the cube on a denormalized table
F defined below, where all dimensions, including all dimension levels, are avail-
able in the fact table F . That is, F represents a star schema. Such fact table F
enables roll-up/drill-down and slice/dice cube operations using any dimension
at any level without join computation. Including joins to explore dimension
levels would significantly complicate the query processing study.

2

Let F be a relational table having a primary key represented by a row
identifier i, d discrete attributes (dimensions), and one (or more) numerical
attribute (measures): F (i,D1, . . . , Dd, A). Discrete attributes (dimensions) are
used to group rows to aggregate the numerical attribute (measure). In general,
F can be a temporary table resulting from some queries or a view. We use F
to generate a percentage cube with all the d dimensions and one measure [7].

2.2. Percentage Cube

Consider a typical percentage problem, for example, how much is the Q1
sales amount in California accounted for the total Q1 sales amount. Percentage
computations like this involve two levels of aggregations: the individual level
that appears as the numerator in the percentage computation (Q1 sales amount
in California), and the total level that shows as the denominator (total Q1
sales amount). In the DBMS, we name the result table of the individual level
aggregation “Findv” and the total level aggregation “Ftotal”. Both levels of
aggregations aggregate attribute A by different sets of grouping columns.

Percentage computation in a percentage cube happens in the unit of a
cuboid. When talking about a cuboid, we use G to represent its grouping
column set, that is, G contains all the dimensions in that cuboid which are not
“ALL”s. Also, we let g = |G| represent the number of the grouping columns
in a cuboid. To answer the sales amount question, for example, we need to
look at the cuboid G = {state, quarter}, where no dimension should be “ALL”,
g = |G| = 2. In each cuboid, we use L = {L1, . . . , Lj} to represent the grouping
columns used in the total level aggregation (“total by”). When computing per-
centages, measures aggregated by L serve as the total amount (denominator).
The total amounts then can be further broken down to individual amounts using
some additional grouping columns R = {R1, . . . , Rk}, L∩R = ∅. Columns in R
are called “break down by” columns. Overall, the individual level aggregation
uses L ∪ R as its grouping columns. In our sales amount example, to get the
total level amount (total Q1 sales amount), we need to aggregate the attribute
by L = {quarter}. To add more granularity to the per state level, the aggre-
gation result needs to be further broken down by adding the grouping columns
in R = {state}. Note that set L can be empty, in that case, the percentages
are computed with respect to the total sum of A for all rows. The total level
and individual level have to differ, therefore R 6= ∅. In each cuboid where the
two levels of aggregation happen, L∪R = G. The percentage is the quotient of
each aggregated measure from the individual level and its corresponding value
from the total level. All the individual percentage values derived from the same
total level group can add up to 100%.

2.3. Example

Here we give an example of a percentage cube. Assume we have a fact table
F storing the sales amounts of a company in the first two quarters of 2017 in
some US states as shown in Table 1.

3

Table 1: An example fact table F with two dimensions.

i state quarter salesAmt (million dollars)
1 CA Q1 73
2 CA Q2 63
3 TX Q1 55
4 TX Q2 35

The fact table F has two dimensions: D1=state, D2=quarter (taken from
the cube time dimension), and only one measure A = salesAmt. To explore
sales, we build a multi-dimensional cube shown in Table 2.

Table 2: An OLAP cube built on top of the fact table F

state quarter salesAmt (million dollars)
D1 D2 A
CA Q1 73
CA Q2 63
CA ALL 136
TX Q1 55
TX Q2 35
TX ALL 90
ALL Q1 128
ALL Q2 98
ALL ALL 226

From Table 2 it is easy to find the sum of the sales amount grouped by
any combination of the dimensions. However, a user may be interested in a
“pie-chart” style quotient, such as how much Q1 sales amount in California
contributed to the total Q1 sales amount. That is when the user wants a per-
centage. With the standard OLAP cube, we need to evaluate a query to get
the total Q1 sales amount (128M), a second query to get the Q1 sales amount
in California (73M), and finally, compute the quotient to get the answer (57%).
This process may not look complicated when answering one single question, but
data analysts usually explore the cube with a lot of cube exploration operations
(roll-up/drill-down, slice/dice). Therefore, the effort of identifying the individ-
ual/total group and evaluating additional queries every time to get percentages
becomes a burden in the analysis. Instead, Table 3 shows a percentage cube
built on top of the fact table F :

With this percentage cube table, we can easily answer the question “how
much did California contribute to the Q1 sales?” with a glance at one row.
But this flexibility has a price. Compared to the standard cube table (Table 2),
each cuboid in the percentage cube is significantly exploded. For instance, for
the cuboid {state, quarter}, we only have four rows of data showing the sales

4

Table 3: A percentage cube built on top of the fact table F .

total by break down by state quarter salesAmt%
L1 {R1}, {R1, R2} A
state quarter CA Q1 54%
state quarter CA Q2 46%
state quarter TX Q1 61%
state quarter TX Q2 39%
quarter state CA Q1 57%
quarter state TX Q1 43%
quarter state CA Q2 64%
quarter state TX Q2 36%
ALL state CA ALL 60%
ALL state TX ALL 40%
ALL quarter ALL Q1 57%
ALL quarter ALL Q2 43%
ALL state,quarter CA Q1 32%
ALL state,quarter CA Q2 28%
ALL state,quarter TX Q1 24%
ALL state,quarter TX Q2 16%

amount in every {state,quarter} combination. On the other hand, in the per-
centage cube, given all potential dimension combinations for the “total by” keys
and the “break down by” keys, we have 12 rows of data showing the percentages
dividing individual amounts (numerator) by total amounts (denominator).

In reality, analysts may not even need to look at this percentage cube table.
Pie charts are considered as a natural visualization of percentages. Percentage
cubes are, in this sense, a collection of hierarchical pie charts which users can
easily navigate by rolling up or drilling down to choose cube dimensions. Once
the computation of a percentage cube is complete, the percentage cube can be
interactively visualized traversing the dimension lattice up and down, without
further query evaluations. Figure 1 shows a pie chart example.

3. Generalizing Percentage Aggregation Queries to the Percentage
Cube

In this section, we first introduce a new syntax for percentage aggregations
to the standard SQL. We then propose two methods to evaluate a percentage
aggregation. Our most important contribution is the percentage cube, which is a
big step beyond [12]. We show how to build the percentage cube from primitive
percentage aggregations. We introduce optimizations to prune the lattice only
when using a row count threshold. We show querying the cube represents a
harder problem when selecting minimum or top k percentages.

5

Figure 1: Drill-down percentage cube visualization

3.1. Percentage Aggregations: New SQL Syntax

The basics of a percentage cube is percentage aggregations. By far, there is
no syntax in the standard SQL for percentage aggregations, so in this section
we will first propose our pct() function to compute them.

pct(A TOTAL BY L1, . . . , Lj
BREAKDOWN BY R1, . . . , Rk).

The first argument is the expression to aggregate represented by A. The next
two arguments represent the list of grouping columns used in the total level
aggregation and the additional grouping columns to break the total amounts
down to the individual amounts. Compared to the old syntax we introduced
in [12], our new syntax makes it clearer to see which part is the total columns
and which part is the break-down columns. This new syntax reduces the chance
of confusing the users, but to some extent sacrifices some simplicity. The
following SQL statement shows one typical pct() call:

SELECT L1, . . . , Lj , R1, . . . , Rk,
pct(A TOTAL BY L1, . . . , Lj

BREAKDOWN BY R1, . . . , Rk)
FROM F
GROUP BY L1, . . . , Lj , R1, . . . , Rk;

When using the pct() aggregate function, several rules shall be enforced:

1. The “GROUP BY” clause is required because we need to perform a two-
level aggregation.

2. Since set L can be empty, the “TOTAL BY” clause inside the function
call is optional, but the “BREAKDOWN BY” clause is required because
R 6= ∅. Any columns appeared in either of those two clauses must be listed
in the “GROUP BY” clause. In particular, the “TOTAL BY” clause can
have as many as d− 1 columns.

6

3. Percentage aggregations can be applied to any queries along with other
aggregations based on the same GROUP BY clause in the same statement.
But for simplification and exposition purposes, we do not apply percentage
aggregations on queries having joins.

4. When there is more than one pct() call in one single query, each of the
pct() call can be used with different sub-grouping columns, but still, all of
the grouping columns have to be present in the “GROUP BY” clause.

The pct() function computes one percentage per row and has a similar be-
havior to the standard aggregate functions sum(), avg(), count(),max(), and
min() that have only one argument. The order of rows in the result table does
not have any impact on the correctness, but usually, we return the rows in the
order given by the “GROUP BY” clause because rows belong to the same group
(i.e. rows making up 100%) are better displayed together. The pct() function
returns a real number in the range of [0,1] or NULL when divided the by zero or
doing operations with null values. If there are null values, the sum() aggregate
function determines the sums to be used. That is, pct() preserves the semantics
of sum(), which skips null values.

Example

We still use our fact table shown in Table 1. The following SQL statement
shows one specific example that computes the percentage of the sales amount
of each state out of every quarter’s total.

SELECT quarter, state,
pct(salesAmt TOTAL BY quarter

BREAKDOWN BY state)
FROM F
GROUP BY quarter, state;

In this example, at the total level we first group the total sums by quarter, then
we further break each group down to the individual level by state. The result
table is shown in Table 4.

Table 4: The result of pct(salesAmt) on table F .

quarter state salesAmt%
Q1 CA 57%
Q1 TX 43%
Q2 CA 64%
Q2 TX 36%

Comparing Table 4 and Table 3 we will find that a percentage cube is no
more than a collection of percentage aggregation results.

7

3.2. Query Processing

The pct() function call can be unfolded and evaluated using standard SQL.
The general idea can be described as the following two steps:

1. Evaluate the two levels of aggregations respectively.

2. Compute the quotient of the aggregated measures from Findv and Ftotal
rows that have matching L (total-by) column values as the individual
percentages.

In practice, how do we compute the two levels of aggregations is the key factor to
distinguish the evaluation methods. In this section, we introduce two methods:
the OLAP window method exploiting window functions, and the GROUP-BY
method using standard aggregations.

The OLAP Window Method

We first consider SQL built-in functions. Queries with OLAP functions
can apply aggregations on window partitions specified by the “OVER” clauses.
Each OLAP query can have several window partitions with different grouping
columns. That makes this method the only way we can get Findv and Ftotal
from the fact table within one single query. The issue with the OLAP window
function is that, although the aggregate functions are computed with respect to
all the rows in each partition, the results are applied to each row. Therefore, in
our case, the result table may have duplicated rows with the same percentage
values. The following example shows the SQL query to compute the percentage
of the sales amount for each state and quarter, using the raw OLAP window
function method:

SELECT quarter, state, (CASE WHEN Y <> 0 THEN X/Y
ELSE NULL END) AS pct

FROM
(SELECT quarter, state,
sum(salesAmt) OVER (PARTITION BY quarter, state) AS X,
sum(salesAmt) OVER (PARTITION BY quarter) AS Y FROM F) foo;

To get the results correct, we can get rid of the duplicates with the following
two methods:

1. Use the “DISTINCT” keyword.

SELECT L1, . . . , Lj , R1, . . . , Rk,
(CASE WHEN Y <> 0 THEN X/Y
ELSE NULL END) AS pct

FROM
(SELECT DISTINCT L1, . . . , Lj , R1, . . . , Rk,
sum(A) OVER (PARTITION BY L1, . . . , Lj , R1, . . . , Rk) AS X,
sum(A) OVER (PARTITION BY L1, . . . , Lj) AS Y FROM F) foo;

8

The disadvantage with this method is that the “DISTINCT” keyword
introduces external sorting in the query execution plan. Such sorting
can be expensive if no auxiliary data structures (indexes, projections) are
exploited.

2. Use the “row number()” function
row number() is another OLAP function that can assign a sequential num-
ber to each row within a window partition (starting at 1 for the first row).
When using this method, we assign row identifiers in each partition de-
fined by L ∪ R, then we just need to select one of such tuples per group
to eliminate the duplicates.

SELECT L1, . . . , Lj , R1, . . . , Rk,
(CASE WHEN Y <> 0 THEN X/Y ELSE NULL END) AS pct

FROM
(SELECT L1, . . . , Lj , R1, . . . , Rk,
sum(A) OVER (PARTITION BY L1, . . . , Lj , R1, . . . , Rk) AS X,
sum(A) OVER (PARTITION BY L1, . . . , Lj) AS Y,
row number() OVER (PARTITION BY L1, . . . , Lj , R1, . . . , Rk)
AS rnumber FROM F) foo WHERE rnumber = 1;

The GROUP-BY Method

This method is based on standard aggregations. The two levels of aggrega-
tions are pre-computed and stored in temporary tables Ftotal and Findv respec-
tively. The percentage value is evaluated in the last step by joining Findv and
Ftotal on the L columns and computing Findv.A/Ftotal.A. It is always important
to check before computing that Ftotal.A cannot be zero as the denominator.

We explain the evaluation of Ftotal and Findv. It is evident that Findv can
only be computed from the fact table F :

SELECT L1,. . . ,Lj ,R1,. . . ,Rk, sum(A) INTO Findv FROM F
GROUP BY L1,. . . ,Lj ,R1,. . . ,Rk;

Ftotal, however, as a more brief summary of the fact table with fewer grouping
columns (only columns in L) than Findv, can be derived either also from the
fact table F , or directly from Findv. Evaluating aggregate functions requires a
full scan of the input table. Therefore, the size of the input table has a major
impact on the performance. When the size of F is much larger than Findv, in
which case the cardinality of the grouping columns is relatively small, getting
Ftotal from Findv is much faster than computing it from F because fewer rows
are scanned:

SELECT L1,L2,. . . ,Lj ,sum(A) INTO Ftotal
FROM Findv or F
GROUP BY L1,L2,. . . ,Lj ;

The final result can either be inserted into another temporary table or be in-
serted in-place by updating on Findv itself. The in-place update avoids creating
the temporary table with the same size as Findv which is helpful to save disk
space.

9

INSERT INTO Fpct
SELECT Findv.L1,. . . ,Findv.Lj ,Findv.R1,. . . ,Findv.Rk,

(CASE WHEN Ftotal.A 6= 0 THEN Findv.A/Ftotal.A
ELSE NULL END) AS pct

FROM Ftotal JOIN Findv
ON Ftotal.L1 = Findv.L1,. . . ,Ftotal.Lj = Findv.Lj ;

Compared to the two methods we introduced just now, we argue that our
syntax for percentage is a lot simpler and do not require join semantics.

Handling Abnormal Data

In order to have a well-defined and robust aggregation for diverse analyses, it
is necessary to consider abnormal and missing values. Specifically, it is necessary
to define rules to handle nulls in the dimensions, nulls in the measure attribute,
zeroes, and negative values in the measure attribute. We introduce the following
rules, indicating where our proposed aggregation deviates from standard SQL.
These rule can be considered to integrate percentage aggregations into a DBMS
or BI tool.

1. A null value in the dimensions is treated as a single missing value. There-
fore, the behavior is same as a GROUP BY query. That is, SQL auto-
matically handles nulls in the dimensions.

2. A null measure value in a BREAK-DOWN subgroup will result in the
percentage value for that subgroup being null. In other words, we do
not treat a missing measure value as a zero like standard SQL; such per-
centages would be misleading. That being said, it is better to make all
percentages in the corresponding cuboid null.

3. In general, percentages adding up to 100% come from positive values.
Therefore, negative percentages are allowed with a warning.

4. A total sum equal to zero will result in all percentages for individual
subgroups being null (i.e. undefined).

3.3. The Percentage Cube

Recall that percentage cubes extend standard data cubes. Even though they
share a similarity that can give us insights on the data in a hierarchical manner,
they are quite different. A data cube has a multidimensional structure that
summarizes the measures over cube dimensions grouped at all different levels of
details. A data cube whose dimensionality is d will have 2d different cuboids.
While a percentage cube, in addition to summarizing the measure in cuboids
like a data cube does, it categorizes the dimensions in each cuboid into set L
and R in all possible ways. Then a percentage aggregation is evaluated based
on each L and R key sets. The computational complexity of the percentage
cube can be summarized in the following properties:

Property 1: The number of different grouping column combinations in a cuboid
with g grouping columns is 2g − 1.

10

Figure 2: Expansion from data cube to percentage cube.

Property 2: The total number of all different grouping column combinations

in a percentage cube with d dimensions is
d∑
i=1

(di)(2
i − 1) = O(22d).

So a percentage cube can be much larger than an ordinary data cube in size
and it is a lot more difficult to evaluate. Figure 2 shows a specific example when
d = 2, the standard data cube will have 4 cuboids while the percentage cube
will have in total 5 different grouping column combinations (the last cuboid
{∗, ∗} will not be included in the percentage cube because set R cannot be
empty). The difference is not big here because the d we show is low due to
space limit. Since both the number of cuboids in the cube and the number of
possible grouping column combinations in one cuboid grow exponentially as d
increases, this difference will become surprisingly large when d gets high. Full
materialization in SQL for a percentage cube, therefore, may not be feasible
in the end when we have very high d and dimension cardinality, beyond the
computational power of the DBMS. When this happens, a dimension reduction
is required, or analysts have to choose some percentage aggregations instead
of the full percentage cube to materialize. This paper focuses on the d and
the dimension cardinality settings where we are still capable of doing a full
materialization.

Due to the similarity of the representation of percentage cubes and percent-
age aggregations, it is not surprising that the problem of building a percentage
cube can be broken down to evaluating multiple percentage aggregations and
they can share similar SQL syntax. Below we propose our SQL syntax to create
a percentage cube on the fact table we showed in Table 1. When creating a
percentage cube, the pct() function call no longer requires a “TOTAL BY” or

11

“BREAKDOWN BY” clause.

SELECT quarter, state, pct(salesAmt) FROM F
GROUP BY quarter, state
WITH PERCENTAGE CUBE;

We describe the algorithm to evaluate a percentage cube using percentage
queries in Algorithm 1. The outer loop in Algorithm 1 iterates over each cuboid.
Recall that we use G to represent a cuboid’s grouping column set (dimensions
in that cubioid which are not “ALL”s). For each cuboid, we exhaust all the
possible ways in the inner loop to allocate the columns in set G to set L and R
(columns in set L are the grouping columns for the total level aggregation, and
columns in set R are the additional grouping columns to break down the total
amounts). For each L and R allocation, we evaluate a percentage aggregation
and union all the aggregation results together to be the final percentage cube
table.

Data: fact table F , measure A, cube dimension list M = {D1, . . . , Dd}
Result: d-dimension percentage cube

Result table RT = ∅ ;
for each G ⊆M,G 6= ∅ do

for each L ⊂ G do
R = G \ L
RTtemp = pct(A TOTAL BY L

BREAKDOWN BY R);

RT = RT ∪RTtemp ;

end

end
return RT ;

Algorithm 1: Algorithm to evaluate percentage cube.

There is one small difference in the output schema between an individual
percentage aggregation and a percentage cube. In a percentage cube, we add
two more columns called “total by” and “break down by” to keep track of the
total and the individual level setting (See Table 3). This is because unlike
individual percentage queries having only one total and individual level setting
in the output, the percentage cube explores all the potential combinations. An
entry having column {A,B} may be “total by” A and “break down by” B or
the opposite, or even “break down by” both A and B.

We also need to point out that for each cuboid, no matter how the grouping
column setting L and R change, the individual level aggregation Findv stays
the same. This is because Findv is grouped by L and R meanwhile L ∪ R = G
which always stays the same in one cuboid. Based on this observation, unlike
in percentage aggregations where we compute Findv from F in each pct() call,
here we only compute Findv once for every cuboid. The result is materialized

12

for all the rest L and R combinations in the same cuboid to avoid duplicated
computations of Findv.

3.4. Pruning the Percentage Cube

Not all percentages are interesting or can provide valuable information.
Based on common analytic goals, we propose three mechanisms to identify in-
teresting percentages:

1. Row count threshold: filtering out groups below a row count threshold,
similar to frequent itemsets [13].

2. Percentage threshold: filtering out percentages below a minimum percent-
age threshold.

3. Top k percentages: Getting the top-k highest (or lowest) percentages.

The percentage computation can exploit a row count (SQL count(*)) thresh-
old, like iceberg queries [9], to significantly reduce the computation effort and
avoid getting percentages on tiny groups with very few records behind. Since a
high d is sparse, the row count threshold is essential when computing percent-
ages on many dimensions or dimensions where percentages are very small (e.g.,
percentage of sales by product id, for all products).

The last two mechanisms are alternative filtering mechanisms: A user should
use either filter, but not both. The rationale behind such constraint is that
output would be incomplete and it would be difficult to understand the overall
picture.

Row Count Threshold

We revisit the classical optimization to prune the search space of cubes.
Since a data cube with d dimensions has 2d cuboids as well as numerous group
rows within each cuboid, it is a computationally hard problem. Moreover, as
explained in Section 3.3, a percentage cube is much larger than a standard data
cube because in addition to the 2d cuboids, there are a lot more potential total
group column combinations in each cuboid. Therefore, computing percentage
cubes is significantly more demanding than computing ordinary cubes.

Taking a closer look, not all percentage groups (i.e. groups formed by the
total level aggregation) are valuable. Although in some groups a user can dis-
cover entries with remarkable percentage values, the group itself may be small
in row count. Discoveries based on such groups do not have enough “statistical
evidence”, like support in frequent itemsets [1]. It is expected that there will be
many such small groups in a percentage cube, especially when d is large. If we
can avoid computing those groups, the overall evaluation time and the output
size can be correspondingly reduced.

On the data cube side, a similar problem of eliminating GROUP-BY parti-
tions with an aggregate value (e.g., count) below some support thresholds can
be solved by computing Iceberg cubes [9]. For Iceberg queries, it is justified
that a frequency threshold is required; and it is even more necessary in a per-
centage cube. In an analog manner, we introduce a threshold to prune groups

13

under a specified size. We call this threshold group threshold, represented by
φ. In percentage cubes, all the groups are generated by the total level aggre-
gation (Ftotal). Therefore, unlike in Iceberg cubes we prune the partitions, in
percentage cubes we prune groups under a specified size φ, that is, to filter
the aggregated count() of groups formed by all the possible L sets through this
frequency threshold.

Previous studies have developed two major approaches to compute Iceberg
cubes, top-down [21] and bottom-up [3]. The most important difference be-
tween those two methods is that the bottom-up algorithm can take advantage
of Apriori pruning [2]. Such pruning strategy can also be applied on percentage
cubes. In this section, we introduce two pruning strategies: direct pruning and
bottom-up cascaded pruning.

Direct pruning based on row count

Direct pruning further develops Algorithm 1. This algorithm validates the
threshold on all possible grouping column combinations directly without sharing
pruning results between computations at different grouping levels. In order to
let the computation of Ftotal continue to reuse the result of the Findv table that
comes from the coarser level of details, we also put count(1) in Findv results.
When computing Ftotal from F , the group frequency is evaluated by count().
However, when using Findv to get Ftotal, the group frequency is evaluated by
summing up the counts in Findv. The threshold is enforced in Ftotal query by
specifying the threshold in the “HAVING” clause.

SELECT L1,L2,. . . ,Lj ,sum(A),count(1) AS count
INTO Ftotal
FROM F
GROUP BY L1,L2,. . . ,Lj
HAVING count(1)> φ;

SELECT L1,L2,. . . ,Lj ,sum(A),sum(count) AS count
INTO Ftotal
FROM Findv
GROUP BY L1,L2,. . . ,Lj
HAVING sum(count)> φ;

Cascaded pruning

In order to take advantage of previous pruning results, we propose a new
algorithm that iterates over all cube groups going from coarser aggregation lev-
els (few grouping columns) to finer (more grouping columns) levels. We show
the cascaded pruning algorithm to compute the percentage cube with a fre-
quency threshold φ in Algorithm 2. If the count() of any group fails to meet
the minimum threshold, the group can be pruned and we avoid going deeper
checking other groups that have more dimensions included in the path along
the dimension lattice. On the other hand, qualified groups can be materialized
in temporary tables with their grouping column values, the count(), and the

14

aggregated measures so that this materialized table can be used later for per-
centage computations, or for pruning the lattice search space with more detailed
grouping columns.

We contrast our cascaded algorithm shown in Algorithm 2 with the percent-
age cube algorithm shown in Algorithm 1. We first determine the cuboid to get
G, the cuboid’s dimension list in the outermost loop. Then we get each L and R
sets from G in the inner loop. Keep in mind that the Findv is always grouped by
G. Therefore, in this computational order, every Findv is computed, intensively
utilized and discarded. The cascaded pruning algorithm, however, generates
the aggregation result level by level. The complication here is that a grouping
column set on a certain level may appear in multiple cuboids. For example,
for a cube with dimensions {A,B,C,D}, a grouping column set {A,B} is used
in cuboid {A,B,C}, {A,B,D}, and {A,B,C,D}. Therefore, the materialized
result table for each grouping column set can be reused in multiple cuboids in
a more scattered manner. It is important we keep the results for future usage
after a group is first computed. A side effect is that when computing some
Ftotal, it is not always true that Ftotal can be computed from Findv because the
Findv it needs may have not been computed yet.

In order to label the L set on each materialized table, we assign each cube
dimension with an integer identifier according to the position it is standing in
the dimension list. The identifier for the i-th dimension will be 2i−1. With
the dimension identifier, any L set or R set or cuboid dimension list can be
represented by a representation code that comes from the bitwise OR operation
on all the dimensions’ identifier in the set, and the code for its parent set can be
evaluated by eliminating the highest non-zero bit. All materialized Findv and
filtered Ftotal are named as Findvi and Ftotali where i stands for the dimension
representation code. Figure 3 shows the relation between the representation
code and the dimension set it represents. Also by eliminating the highest non-
zero bit, it can be linked with its parent dimension set.

To close this section, we emphasize that by applying pruning mechanisms,
the time complexity is significantly reduced from O(22d). The specific time O()
bound will depend on dimensions probablistic properties.

3.4.1. Percentage Threshold

Getting rid of almost empty cells in the cube helps a lot, but it is not enough
in a practical scenario. The user may want to further filter out percentages below
a certain percentage threshold. The main challenge is that it is not possible to
prune the dimension lattice like classical cubes, because large percentages may
be “hidden” behind groups with small percentages. Therefore, it is impossible
to use traditional lattice pruning strategies like those used in frequent itemsets
or iceberg queries [8]. That is, percentages are not antimonotonic. In short, a
percentage cube represents a significantly harder problem than standard cubes.
We summarize this challenge as the following property:

Property 3: A percentage aggregation on a set of cube dimensions is not
anti-monotonic. Therefore, it is impossible to develop bottom-up minimum
percentage discovery algorithms based on percentages.

15

Data: Fact table F , measure A, cube dimension list G = {D1, . . . , Dp},
group threshold φ

Result: d-dimensional percentage cube

Result table RT = ∅ ;
Ftotal0 = σcount>φ(πcount(1),sum(A)(F)) ;
for each L ⊂ G,L 6= ∅ do

i = getRepresentationCode(L) ;
p = getParentCode(i) ;
if p = 0 then

Ftotali = σcount>φ(πL,count(1),sum(A)(F)) ;
else

if Ftotalp does not exist then
continue next L;

else
if Findviexists then

Ftotali = σsum(count)>φ(πL,sum(count),sum(A)(
Ftotalp ><Ftotalp .L=Findvi

.L Findvi)) ;

else
Ftotali = σcount(1)>φ(πL,count(1),sum(A)(
Ftotalp ><Ftotalp .L=F.L

F)) ;

end

end

end
if |Ftotali | 6= 0 then

Materialize Ftotali ;
end
for each R ⊆ (G \ L) do

S = L ∪R; sCode = getRepresentationCode(S) ;
if FindvsCode

does not exist then
Materialize FindvsCode

= πS,sum(A)(F) ;
end
RTtemp = πS,FindvsCode

.A/Ftotali
.A(

Ftotali 1Ftotali
.L=FindvsCode

.L FindvsCode
) ;

RT = RT ∪RTtemp ;

end

end
return RT ;
Algorithm 2: Cascaded bottom up algorithm to get percentage cube.

16

Figure 3: Dimensions as binary codes.

Time complexity O(22d) does not change from building the percentage cube
since filtering out small percentages can be done with a sequential algorithm on
each cuboid after the percentage cube is materialized.

3.4.2. Top-k percentages

Filtering out small percentages may be difficult if the dimensions have high
cardinality. Instead, a user may decide to look at the highest percentages. The
main idea is to rank percentages from highest to lowest and then select the k
highest ones, where k ≥ 1. This filtering procedure needs to be done on each
cuboid. The query requires sorting percentages within each cuboid, which is an
expensive computation in a big cube. An important observation is that selecting
the top k percentages should be done after the cube is materialized because k
may increase. That is, it would be a bad idea to materialize a pruned percentage
cube.

The time complexity is significantly higher than computing a percentage
cube and filtering out low percentages. For the percentage cube this additional
computation will result in O(22d) sorts, where each sort has a time complexity
of O(mlog2(m)) assuming an average of m rows per cuboid. That is, time
becomes O(22dmlog2(m)). Notice that it is difficult to derive the worst case
bounds because the number of rows in a cuboid depends on the dimension
cardinality, which can vary widely.

3.5. Classification of Percentage Aggregations

In this section, we answer the questions: Are percentage aggregations harder
than standard aggregations? How hard is it to compute a percentage cube?
What is their theoretical connection to existing aggregations? Let us recall the
taxonomy of cube aggregations proposed by Gray [7]:

17

• Distributive: sum(), count()

• Algebraic: avg(), pct()

• Holistic: ranm(), top-k percentages

Since percentages are expressed as an equation dividing one sum() by an-
other sum(), it is an algebraic aggregation. Notice that count(∗) can be treated
as a sum(1). Recall holistic aggregations are the most challenging ones since
in general they require sorting rows by the aggregated value. In our case, per-
centages are ranked, and we select the k percentages with the highest ranks
in descending order. On the other hand, filtering out small percentages does
not change the time complexity of the percentage cube. Each aggregation class
results in a different cube generalization, going from easiest to hardest:

• Distributive: standard cube

• Algebraic: percentage cube

• Holistic: pruned percentage cube with top k percentages

In our experimental evaluation, we will quantify the extra effort getting each
of these cubes.

3.6. Incremental Computation

In a real environment the data warehouse is periodically refreshed with
batches of new records [11], growing in size significantly. So it is highly de-
sirable to reuse previous cube computations to refresh the percentage cube.
Assume the data warehouse has a large fact table F and a smaller table Fδ with
new inserted records. We assume |Fδ| � |F |, typically ≤ 1%.

Let Ftotal = F ∪ Fδ. A straightforward algorithm is to recompute the per-
centage cube on F ∪Fδ, which we call a full recomputation. On the other hand,
we can obtain an equivalent relational algebra equation,

πDj ,sum(A)(Ftotal) = πDj ,sum(A)(F) ∪ πDj ,sum(A)(Fδ)

.
Since percentage aggregations are algebraic, we can materialize the standard

cube with sum(). The sum() aggregation is distributive which means it can
be incrementally computed. Based on these facts we can state two important
properties:

Property 4: A Percentage Aggregation can be incrementally computed.
Property 4 enables developing incremental algorithms by materializing total

and individual aggregation queries on F and defining materialization aggrega-
tions on Fδ.

Property 5: A Percentage Cube can be incrementally computed.

18

Property 5 is a generalization of Property 4. This property allows devel-
oping incremental algorithms by materializing the standard cube on F , also
materializing the standard cube on Fδ and finally recomputing the percentage
cube. However, this may not be optimal when some cuboids do not change.
This is precisely the case when some combinations of dimension values do not
have newly inserted records. Tracking which percentage cells change is a much
harder problem, a research issue for future work.

The experimental section will compare the full recomputation and the incre-
mental computation. Computing one percentage aggregation query incremen-
tally is challenging since a join computation cannot be avoided. Computing the
percentage cube incrementally is harder since we cannot avoid the combinatorial
explosion of the cube. Experiments will pay attention to time complexity as d
grows because of the combinatorial explosion of cube dimensions.

4. Experiments

In this section, we present an experimental evaluation of our algorithms and
optimizations. We start by giving and overview of our experimental setup and
benchmark data sets.

4.1. Experimental Setup

Hardware and Software

We conducted our experiments on a 2-node cluster of Intel dual core worksta-
tions running at a 2.13 GHz clock rate. Each node has 2GB main memory and
160GB disk storage with a SATA II interface. The nodes runs Linux CentOS
release 5.10 and are connected by a 1 Gbps switched Ethernet network.

The HP Vertica DBMS was installed under a parallel 2-node configuration
for obtaining the query execution times shown in this section’s tables. Our
default configuration was 2 nodes in a local cluster, but some experiments used
1 node on the Amazon cloud.

The reported times in the table are rounded down to integers and are aver-
aged on seven identical runs after removing the best and the worst total elapsed
time.

Data Set

The data set we used to evaluate the aggregation queries with different op-
timization strategies is the synthetic data sets generated by the TPC-H data
generator. In most cases we use the fact table transactionLine as input and the
column “quantity” as the measure. Table 5 shows the specific columns from the
TPC-H fact table that we used as total-by columns and break-down by columns
to evaluate percentage queries. |L1| and |R1| are the cardinalities of L1 and
R1 respectively. Table 6 shows the candidate dimensions and their cardinali-
ties we used to evaluate percentage queries. Table 7 shows the dimensions we
chose to generate the Percentage Cube at varying cube dimensionality. We de-
veloped a realistic experimental evaluation with a more pessimistic scenario in

19

individual percentage queries. We stress that in individual percentage queries
it may be acceptable to get very small percentages because they are assumed
to be sporadic. On the other hand, it would not make sense to materialize a
big percentage cube with very high dimension cardinalities (e.g., percentage by
product ID, percentage by customer ID out of 1000s or millions) since such cube
would have many tiny percentages that are well below 1% (i.e. a very sparse
cube). That is, we studied the behavior of full cube materialization, which is
useful in practice when dimension cardinalities are relatively small (to avoid
tiny percentages). That is why Table 6 (data for queries) has higher sizes than
Table 7 (data for cubes). In this paper, we varied the dimensionality of the
cube d from 2 to 6. Very large d does not make much sense for our computation,
because the groups will be too small.

Table 5: Summary of grouping columns for individual percentage queries transactionLine
(N=6M).

L1 R1 |L1| |R1|
brand quarter 25 4
brand dweek 25 7
brand month 25 12
clerkKey dweek 1K 7
clerkKey month 1K 12
clerkKey brand 1K 25
custKey dweek 200K 7
custKey month 200K 12
custKey brand 200K 25

Table 6: Candidate cube dimensions’ cardinalities.
Dimension Cardinality
manufacturer 5
year 7
ship mode 7
month 12
nation 25
brand 25

System Programming

All the algorithms we presented in this paper can be implemented by as-
sembling queries that are already supported in DBMSs. That is, our solution is
portable, not tied to any platform or specific database system. To support the
percentage aggregation and the percentage cube SQL syntax we proposed in this
paper, we developed a Java program that parses the percentage cube queries

20

Table 7: Selected cube dimensions at various d.
d D1 D2 D3 D4 D5 D6

2 nation brand
3 nation brand year
4 nation brand year month
5 nation brand year month ship mode
6 nation brand year month ship mode manufacturer

and converts them into a sequence of SQL queries for each method (i.e. OLAP
window function queries or GROUP-BY queries). The Java program connected
to the DBMS via JDBC, sent SQL queries, finally downloaded the final result
cube table. There are several reasons in favor of JDBC: it is a standard pro-
tocol, it works on Java guaranteeing portability across diverse computers and
operating systems. The main cons with JDBC are the slow speed to export
large tables and the overhead to submit multiple SQL statements. We avoid
the first limitation since processing and even the cube are computed inside the
DBMS (i.e. we export one small table at the end). Regarding the overhead to
submit multiple SQL statements, we minimize it, by sending several statements
together. In the end, a percentage cube can be exported to external programs,
like Excel or R, to visualize (as explained in Section 2) or to further explore
results. An important acceleration could be obtained with high d cubes by inte-
grating our algorithms inside the DBMS, but such approach requires availablity
of source code and it represents a significant programming effort. Therefore, we
believe that Java/JDBC are a reasonable compromise.

Table 8: Percentage Aggregation: GROUP-BY vs. OLAP. Scale factor=4, n=24M (times in
secs).

GROUP-BY OLAP
|L1| |R1| Ftotal from F Ftotal from Findv DISTINCT row number()

25 4 8 5 52 29
7 7 5 50 28

12 7 5 50 28
1K 7 10 6 48 22

12 10 7 49 22
25 19 16 63 30

200K 7 35 10 43 23
12 13 11 44 27
25 56 51 62 54

21

Table 9: Percentage Aggregation: GROUP-BY vs. OLAP. Synthetic data, n=200M (times in
secs).

cardinality GROUP-BY OLAP
|L1| |R1|
100 10 2.36 35.34
1K 10 3.01 26.25

10K 10 10.82 21.63
100K 10 14.93 31.43

1M 10 34.81 38.50
10M 10 95.09 110.52
100 100 2.59 33.04
1K 100 5.88 26.04

10K 100 15.00 30.70
100K 100 34.36 38.60

1M 100 80.06 77.85
10M 100 138.96 123.66

Table 10: Time to evaluate the percentage cube with nulls in the measure. n = 20M, d = 4
(times in secs).

null% time
0 3.72
5 3.58

10 3.55
15 3.73
20 3.62

4.2. Comparing Percentage Aggregation Methods

As explained in Section 3. the computation of a percentage cube is based
on assembling multiple percentage aggregation queries, in a lattice traversal
algorithm. With this motivation in mind, we first compare the two methods
to implement pct() as discussed in Section 3.2, i.e. GROUP-BY and OLAP.
We performed this comparison on a replicated fact table F whose scale factor
= 4. In this comparison, we included optimization options for both methods.
For the GROUP-BY method, we evaluate Ftotal from F and Findv respectively;
while for the OLAP window function method, we eliminate duplicates by using
“DISTINCT” and row number() respectively.

Table 8 shows the result of the comparison. For each grouping column combi-
nation in each row, we highlight the fastest configuration with bold font. Gener-
ally speaking, evaluation by the GROUP-BY method is much faster than by the
OLAP window function method. For the OLAP method, using row number()
instead of “DISTINCT” keyword may accelerate the evaluation speed by about
2 times. But it is still obviously slower than the GROUP-BY method. For the

22

Figure 4: Cube Generation: GROUP-BY vs. OLAP. Scale factor=1, N=6M (times in secs).

Table 11: Direct pruning vs. Cascaded pruning (times in secs).

threshold Direct Pruning Cascaded Pruning
d (% of N) SF=1 SF=8 SF=1 SF=8
5 10% 91 690 70 674

8% 91 693 72 675
6% 90 692 74 676

0 124 728 130 729
6 10% 268 1767 177 1680

8% 269 1769 182 1687
6% 272 1774 186 1687

0 437 1981 436 1930

GROUP-BY method, we can see the cardinality of the right key |R1|, has a di-
rect impact on the performance of two strategies to generate Ftotal. When |R1|
is relatively small, say |R1| = 7, for all different |L1| we have tested, generating
Ftotal from Findv is about 2-3 times faster than from F . However, as |R1| gets
larger, say |R1| = 25, it matters less where Ftotal is generated from.

Table 9 provides a complete picture comparing the GROUP BY and the
OLAP method. The GROUP BY method is much faster at the lower end of
dimension cardinalities, which is expected to be the common case in practice.
On the other hand, the OLAP method is slightly faster than the GROUP BY
method when both “total” and “break-down” keys have high cardinality. How-
ever, we must point out that such worst case is unlikely to be useful in practice
because it would return a very large number of tiny percentages.

We also compared the time to evaluate the percentage cube when certain
portion of the measure data is null. In table 10 we showed the comparison result.

23

The comparison does not show obvious difference in evaluation performance
when we vary the percentage of null measure values in the fact table.

4.3. Comparing Percentage Cube Materialization Methods

We now assemble the pct() queries together using the Algorithm 1 to mate-
rialize the entire percentage cube. Since evaluating a percentage cube is much
more demanding than evaluating individual percentage queries, when compar-
ing those two methods in cube generation, we limit the number of dimensions d
to be within the range that it is not too hard to materialize the full percentage
cube, and we choose the best optimizations based on the experimental results
presented in Section 4.2. That is, for GROUP-BY method, we generate Ftotal
from Findv, and for OLAP window function method, we use row number()
OLAP function to eliminate duplicated rows. Figure 4 shows the result of this
comparison. The result shows that our GROUP-BY method is about 10 times
faster than the OLAP window function method for all d’s. When d gets larger,
it will take the OLAP window function method hours to finish. The two meth-
ods show enormous difference in their performances because our GROUP-BY
method takes advantage of the materialized Findv. So we can not only avoid
duplicated computation of Findv for each group in the same cuboid, but also
benefit the generation of Ftotal for different L set.

4.4. Comparing Cube Pruning Mechanisms

Cube cells with very few rows do not provide reliable knowledege because an
interesting finding may be a coincidence, without enough evidence. Therefore,
in general, the user will apply a minimum row count threshold in order to avoid
almost empty cells. Then since the percentage cube is big it is necessary to apply
a further filter on percentages. We propose to either: get the top k percentages,
where k ≥ 1 or get all percentages above a minimum threshold φ. Applying both
percentage pruning filters would result in incomplete and confusing output.

4.4.1. Row count threshold

Even though the GROUP-BY method exhibits acceptable performance when
evaluating the percentage cube, it is still not sufficient especially for fact tables
with large d and N . As discussed in Section 3.4, we want to further optimize this
evaluation process by introducing group frequency threshold to prune the groups
with low count(). In this section, we compare the cube generation with various
group threshold using direct pruning on Algorithm 1 and cascaded pruning in
Algorithm 2. We choose the value of the threshold as certain percentages of
total row number of the fact table N . Here we choose the count() threshold
as 10% of N , 8% of N and 6% of N as well as no threshold applied. The
result is shown in Table 11. We first look at evaluation times for each algorithm
separately. It shows although the time increases when we decrease the threshold,
the difference is not so big. This is because the data distribution of the data set
we used is almost uniform. A more skewed distribution of values will result in a
more obvious increase in evaluation times for the decreasing thresholds. But on

24

the other hand, we can see from the result the evaluation time increases greatly
for runs with no threshold. Therefore it proves to us that it is necessary to prune
the groups with small size because not only users have few interest in them but
also by pruning them the evaluation time can be shortened a lot. Then we
compare the evaluation time between algorithms. When d continues to grow,
bottom-up algorithm shows much better performance for cases when thresholds
are applied. But two algorithms shows almost no difference when threshold
φ = 0. Direct pruning can run without the support of the Java program.
However, for cascaded pruning, a Java program is needed to participate the
processing throughout the evaluation. So the cost of communication via JDBC
and the running the Java program can compromise the true performance of the
algorithm. This cost can be diminished by integrating the algorithm into the
DBMS as a built-in functionality.

Getting Top k percentages

Table 12: Top k percentages (times in secs).

d pct cube top k Total top k
1 0.3 0.1 0.4 25%
2 0.5 0.1 0.6 17%
3 0.9 0.4 1.3 31%
4 2.6 1.9 4.5 42%
5 26.4 62.9 89.3 76%

As explained before, identifying the highest percentages is a demanding com-
putation. Table 12 analyzes evaluation times as d grows on a large table (relative
to the system). The fraction of time taken by the top k computation grows as
d grows and the trend indicates it approaches 1. These times highlight the
combinatorial time complexity and the high cost of one sort per cuboid.

Selecting percentages above a minimum percentage threhold

In Figure 5 we compare time to prune percentages on fact tables with varying
d. We generated the percentage cube on fact tables that have 20M rows and
increasing number of dimensions. From the result we can see that as d grows,
the time it takes to compute the top k percentages become more and more
significant and its growth rate is so much larger than the time for computing
percentages with row count thresholds given the exponential number of sort
operations, one per cuboid.

4.5. Incremental Computation of Percentage Queries and Percentage Cube

We start by studying incremental computation for a single percentage query,
shown in Table 13. We varied the cardinality of the first dimension of the fact
table, which is the number of unique groups the first dimension generates. As

25

Figure 5: Pruning method: row count threshold vs. top k, n = 20M (times in secs).

we can see from the table, the incremental computation is always faster than re-
computing the full percentage cube. Also, Figure 6 showed the performance gain
from the incremental computation grows (the ratio of the incremental computa-
tion time to the full computation time gets smaller) as the cardinality increases
(more groups are generated).

Figure 6: Incremental computation, ONE query, Fraction incr/full (n =20M, d = 4, δ = 1%).

Table 14 compares the incremental percentage cube computation with a full
recomputation when inserting 1% records (200k). The goal is to understand if
there are time savings and if time can be bounded by |Fδ|. To our surprise, the
incremental computation is almost as slow as a full recomputation as d grows.
That is, extra time is not proportional to |Fδ|. But it does work at low d. The
fraction trend of time between incremental and full recomputation indicates that
an incremental computation time approaches a full recomputation time (Figure
7). In fact, at d = 5 the times are almost the same. After profiling the query
plan for bottlenecks, analyzing each query and trying several n sizes (smaller

26

Table 13: Incremental computation, ONE query (n =20M, d = 4, δ = 1%, times in secs).

Cardinality Original Full Recomp. Incremental Fraction incr/full
1 0.63 0.63 0.26 41%

10 0.67 0.70 0.27 39%
100 26.91 25.65 5.97 23%

Figure 7: Incremental computation, Fraction incr/full (n =20M, δ = 1%).

n sizes omitted because the trend was fuzzy) we came to the conclusion that d
is a much more important performance factor than n because two percentage
cubes are computed: one on F and one on Fδ. Coming up with a more efficient
incremental algorithm, compatible with SQL, is an item for future work. As can
be seen, at low d there is some gain, but at high d time almost doubles despite
the fact that top k percentages are discovered on the materialized percentage
cube.

5. Related Work

As previously mentioned, there exist OLAP extensions proposed in the ANSI
SQL-OLAP [10], an amendment that allows computing percentages in a single,
but inefficient, query. These extensions involve windowing and partitioning with
the OVER and PARTITION clauses. OLAP extensions are available in Oracle,
IBM DB2, HP Vertica, and Teradata. Microsoft SQL Server provides a loosely
related SQL extension to get the top or bottom percent of rows according to
some numeric expression. These extensions are different from our proposal in
several aspects. Their usage, syntax, and optimization are not as simple as
ours since they are based on a window of rows. They are more general, but not
particularly suitable to compute percentages which we argue it is a very common
aggregation. These extensions require specifying another aggregate function as
an argument whereas ours only requires calling the pct() function.

27

Table 14: Incremental computation (n =20M, δ = 1%, times in secs).

d Original Full Recomp. Incremental Fraction incr/full
1 0.3 0.4 0.1 25%
2 0.5 0.6 0.2 33%
3 0.9 1.0 0.6 60%
4 2.6 2.7 2.6 96%
5 26.4 30.5 29.8 98%

Some SQL extensions to help data mining tasks are proposed in [6]. These in-
clude a primitive to compute samples and another one to transpose the columns
of a table. SQL extensions to perform spreadsheet-like operations with array ca-
pabilities are introduced in [18]. Unfortunately, those spreadsheet extensions are
not adequate to compute percentage aggregations because their goal is avoiding
joins to express cells formulas, but they are not optimized to handle two-level
aggregations or perform transposition. Our optimizations and proposed query
generation can be combined with this approach. UDFs represent a programming
mechanism to materialize and query the cube in RAM [4], while maintaining
a tight integration with the DBMS. This approach allows processing the input
table directly, using the cube in RAM as a proxy of the fact table and then
evaluating SQL cuboid queries on the cube. Another closely related approach
is a horizontal aggregation [14], which presents multi-row results in pivoted
form. This approach enables more intuitive understand of all pecentages within
a cuboid.

Extending data cubes to support more types of aggregations has been ex-
plored in [15, 16], mainly focusing on aggregating texual data. Percentage aggre-
gation queries were introduced in [12]. We make several significant contributions
beyond this paper. Specifically, we refine the definition of left keys and right
keys in the function calls with the introduction of “BREAKDOWN BY” and
“TOTAL BY” clauses. We believe our new syntax is more intuitive. We also
improve the OLAP evaluation method with the row number() approach, being
twice faster than the previous “DISTINCT” approach because we avoid an exter-
nal sort operation. Nevertheless, the GROUP BY method remains the winner.
We revisit query processing in a columnar DBMS, which presents new chall-
genges. More importantly, we generalized percentage aggregation queries to the
percentage cube, which is a significantly harder problem and even harder than
standard cubes. To the best of our knowledge, percentage cubes had never been
explored before. Moreover, traditional pruning techniques need to be adapted.
Finally, a preliminary version of this paper appeared in [20]. The main differ-
ences are the following. We introduce an incremental algorithm. We consider
nulls, which require different semantics from tradtional SQL. We introduce two
alternative methods to prune the cube: a minimum percentage threshold and
getting the top k largest percentages. We showed top k percentages is a harder
problem, resulting in a holistic [7] aggregation.

28

6. Conclusions

We proposed a generalized form of data cube, namely the percentage cube,
that takes percentages as the fundamental aggregated measure. We introduced
minimal SQL syntax extensions to compute percentage queries and to material-
ize the percentage cube. Specifically, we introduced the pct() aggregate function
and we considered alternative evaluation methods based on standard SQL (i.e.
ensuring portability and wide applicability). We studied two alternative evalu-
ation methods: OLAP functions and the GROUP-BY method using standard
aggregate functions. We studied query optimization on both methods, includ-
ing efficient reuse of intermediate results, bypassing sorting in the query plan.
We introduced pruning strategies exending previous techniques from iceberg
queries. From a theoretical perspective, we showed percentages are in a higher
complexity class, doubly exponential. We characterized percentages within the
cube function hierarchy. We justified percentages are an algebraic function. On
the other hand, selecting the top-k percentages represents a holistic function,
going a big step beyond the standard cube. Fortunately, since percentage aggre-
gations are algebraic it is feasible to incrementally compute percentage queries
and the percentage cube. Experimental results showed that our GROUP-BY
method works much faster than existing OLAP window functions in SQL. We
also show the direct and cascaded pruning strategies reduce evaluation time. We
then showed pruning the cube lattice is essential. Filtering out low percentages
adds little time. We show the additional time to get top k percentages is sig-
nificant, but still acceptable. Finally, the incremental computation is effective
for one percentage query, but not effective for the percentage cube, given the
doubly exponential number of cuboids.

Since the percentage cube is a new concept, there are many research issues
for future work. The percentage cube explores all possible grouping column
combinations and the results have to be computed through joins. Due to the
large amount of grouping column combinations, it is very difficult (sometimes
infeasible) to materialize a high-d percentage cube, and it has been difficult to
take advantage of the projections in the columnar DBMS to exploit merge joins
(bypassing a sort phase in a sort-merge join). We expect better performance will
be achieved by a tighter level integration with the DBMS exploiting aggregate
UDFs [5]. We have shown selecting the top k percentages in the cube repre-
sents the most demanding class of percentage aggregation (because it is holistic),
which offers many opportunities for optimization, especially reducing combina-
torial and sort cost. Currently, we store the cube as a relational table, which
is inefficient as cube dimensionality d grows. A potential improvement is to
exploit a non-tabular data structure, like a hash-tree or FP-tree, but the caveat
is that such data structure becomes incompatible with SQL tables. Therefore,
it is necessary to explore a compromise between our purely relational solution
and non-relational data structure solution. Incremental algorithms are funda-
mental in big data analytics since the number of records keeps growing and it
is always preferable to reuse previous results. Our experimental results indicate
incremental algorithms are good for individual percetage queries, but inefficient

29

for the percentage cube. Therefore, a promising direction is to materialize the
percentage cube on a carefully chosen set of dimensions.

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In ACM SIGMOD Conference, pages 207–
216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in
large databases. In VLDB Conference, pages 487–499, 1994.

[3] K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and
iceberg cube. In ACM SIGMOD Record, volume 28, pages 359–370. ACM,
1999.

[4] Z. Chen and C. Ordonez. Efficient OLAP with UDFs. In Proc. ACM
DOLAP Workshop, pages 41–48, 2008.

[5] Z. Chen, C. Ordonez, and C. Garcia-Alvarado. Fast and dynamic OLAP
exploration using UDFs. In SIGMOD, pages 1087–1090, 2009.

[6] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman. Non-stop
SQL/MX primitives for knowledge discovery. In ACM KDD Conference,
pages 425–429, 1999.

[7] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational
aggregation operator generalizing group-by, cross-tab and sub-total. In
ICDE Conference, pages 152–159, 1996.

[8] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2006.

[9] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg
cubes with complex measures. In ACM SIGMOD Conference, pages 1–12,
2001.

[10] ISO-ANSI. Amendment 1: On-Line Analytical Processing, SQL/OLAP.
ANSI, 1999.

[11] Lilia Muñoz, Jose-Norberto Mazón, and Juan Trujillo. Automatic gener-
ation of etl processes from conceptual models. In Proc. ACM DOLAP,
DOLAP ’09, pages 33–40, 2009.

[12] C. Ordonez. Vertical and horizontal percentage aggregations. In Proc.
ACM SIGMOD Conference, pages 866–871, 2004.

[13] C. Ordonez. Models for association rules based on clustering and correla-
tion. Intelligent Data Analysis, 13(2):337–358, 2009.

[14] C. Ordonez and Z. Chen. Horizontal aggregations in SQL to prepare data
sets for data mining analysis. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 24(4):678–691, 2012.

30

[15] L. Oukid, O. Asfari, F. Bentayeb, N. Benblidia, and O. Boussaid. CXT-
cube: Contextual text cube model and aggregation operator for text OLAP.
In Proceedings of the sixteenth international workshop on Data warehousing
and OLAP, pages 27–32. ACM, 2013.

[16] L. Oukid, N. Benblidia, F. Bentayeb, and O. Boussaid. TLabel: A new
OLAP aggregation operator in text cubes. International Journal of Data
Warehousing and Mining, 12(4):54–74, 2016.

[17] Z. Wang and Y. Chu et al. Scalable data cube analysis over big data. arXiv
preprint arXiv:1311.5663, 2013.

[18] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert,
A. Gupta, L. Sheng, and S. Subramanian. Spreadsheets in RDBMS for
OLAP. In Proc. ACM SIGMOD Conference, pages 52–63, 2003.

[19] D. Xin, J. Han, X. Li, and B.W. Wah. Computing iceberg cubes by top-
down and bottom-up integration: The starcubing approach. IEEE Trans-
actions on Knowledge and Data Engineering, 19(1):111–126, 2007.

[20] Y. Zhang, C. Ordonez, J. Garćıa-Garćıa, and L. Bellatreche. Optimiza-
tion of percentage cube queries. In Proc. DOLAP, Workshops of the
EDBT/ICDT, 2017.

[21] Y. Zhao, P.M. Deshpande, and J.F. Naughton. An array-based algorithm
for simultaneous multidimensional aggregates. In ACM SIGMOD Record,
volume 26, pages 159–170. ACM, 1997.

31

