
Towards Green Query Processing - Auditing Power
Before Deploying

Simon Pierre Dembele
LIAS/ISAE-ENSMA

France

Ladjel Bellatreche
LIAS/ISAE-ENSMA

France

Carlos Ordonez
University of Houston

USA

Abstract—Nowadays, energy reduction has become a critical
and urgent issue for the database community. A lot of initiatives
have been launched on energy-efficiency for intensive-workload
computation covering individual hardware components, system
software, to applications. This computation is mainly ensured
by query optimizers. Their current versions minimize inputs-
outputs operations and try to exploit RAM as much as possible,
by ignoring energy. A couple of studies proposed the integration
of energy into query optimizers that can be classified into
hardware and software solutions. Several researchers have the
idea that the operating systems and firmware manage energy
and put software solutions in the second plan. This does not
distinguish between tasks of operating systems and DBMSs.
In this paper, we claim that building from scratch a green
query processors and revisiting existing ones pass through 4-
steps procedure: (1) establishment of a deep audit that allows
understanding the query processor functioning, (2) identification
of relevant energy-sensitive parameters belonging to hardware
and software components, (3) elaboration of mathematical cost
models estimating consumed energy when executing a query
on a target DBMS and (4) setting of values of the energy-
sensitive parameters using a nonlinear regression technique. To
show the effectiveness of this procedure, we apply it on two open-
source DBMSs with different functioning policies: PostgreSQL
and MonetDB and compared them using the dataset and the
workload of the TPC-H benchmark.

Index Terms—Query processing, DBMS audit, Machine Learn-
ing, Green computing, large databases.

I. INTRODUCTION

IN today’s world, our life depends too much on computers.
Therefore, we are forced to look at every way to save

energy, including DBMSs. Providers of data storages and
processing solutions are at the heart of the new world order.
They have to satisfy at the same time two important, crucial and
conflictual Non-Functional Requirements (NFR): (1) a rapid
processing of the deluge of data issued by enterprise sources,
social networks, Internet of Things, etc. and (2) an optimal
energy consumption for these Data Storage Systems (DSS) to
contribute as the ecological objective fixed to save our planet.
Historically, the first NFR has dominated the second one,
because decision-makers demand fast access to data, no matter
how complex the queries are.

Recently, this tendency has slightly changed, since numerous
governments, organizations, associations, scientists, industrials,
ordinary and famous people around the world have raised the

Fig. 1: Energy distribution among different components[31].

flag regarding climate change. They agree that the first step
towards energy saving is to rethink our life and work styles
by the means of political and economical actions including
certainly a review of the process of data deluge. Consequently,
the second NFR has emerged and naturally collapsed with the
first one, since any IT company is seeking for data to increase
its added-value. As mentioned in The Economist ”the world’s
most valuable resource is no longer oil, but data”[10]. Like
any oil, data pollutes as mentioned in the latest Blog entry of
the Martin Tisné published on July 24, 2019: ”Data isn’t the
new oil, it’s the new CO2”[35]. This pollution is caused by
storing and processing this data.

As database researchers, we are then obliged to sensible
ourselves, academia, industry, IT companies, funding agencies,
and students by promoting research, products, actions related
to energy savings of the DSS by considering small and big
initiatives. In addition to the DSS, the infrastructure of a
company includes hardware, software, and facility service
components that support the delivery of business systems and
IT-enabled processes. According to the statistics published by
the InfoTech group, IT equipment consumes approximately 50%
of the total energy. Figure 1 illustrates the power consumption
distribution of major components that consume energy in
IT infrastructure. DSSs regardless of their types (DBMSs,
Data Centers, and parallel database machines, etc.) have been
identified as one of the major energy-consuming components.
The processor consumes a major portion of energy followed by
the storage device [31]. The first and major efforts in managing
the energy of DSS have particularly touched Data Centers
[7] since they have been pointed out by several organizations
reports as one of the biggest energy consumers. Based on U.S.
Environmental Protection Agency, in 2014, U.S. Data Centers
consumed approximately 70 billion kilowatt-hours, totaling
about 1.8% of domestic electricity consumption[34].978-1-5386-5541-2/18/$31.00 ©2018 IEEE

The principle of first tackling the biggest energy consumers
is not enough to save the global warming of our planet as
recommended by recent Conference Of the Parties (COP)
meetings. Small initiatives may have a big impact on saving
energy[8]. This principle is true in the context of DSS. It
should be noticed that actually several small and medium-
sized enterprises intensively own DBMSs. The integration
of energy into DBMS is beyond doubt a crucial and urgent
issue. Claremont’s report on database research emphasized
the importance of ”designing power-aware DBMSs that limit
energy costs without sacrificing scalability”. This is also echoed
in the more recent Beckman report on database systems, which
considers ”energy constrained processing as a challenging issue
in Big Data” [1]. The integration of energy into DBMS has to
concern all its components and its actors including hardware
and software providers, database designers and administrators,
end-users, etc.

In this paper, we focus on building a green query processor
– considered as one of the most important energy consumers of
the DBMS [27] and touches all actors. Traditionally, the main
objective of query optimizers is the satisfaction of the first
NFR. This is performed by reducing the number of inputs-
outputs (IOs) operations by exploiting the RAM, by scarifying
the second NFR representing the energy consumption. The
2010s were a decade that marked the beginning of the
integration of energy in designing query optimizers [19], [38],
where hardware and software solutions have been discussed,
evaluated, analyzed and implemented [8], [14], [40]. Hardware
research efforts got more attention than software ones. This is
because several studies consider that the operating systems and
firmware (hardware programs) manage energy and consequently
save energy of query processors. This finding is questionable
since they use techniques covering software (e.g., finding
the best query plan satisfying the first NFR) and hardware
(e.g., executing the appropriate algorithms associated with the
selected plan on the target platform hosting the DBMS).

We claim that building green query processors passes through
a deep audit that allows designers to identify relevant energy-
sensitive parameters that are the entries of the mathematical
cost models estimating energy when executing a query. The
development of such models necessitates a deep understanding
of the functioning of the target DBMS hosting the database
application (e.g., query execution mode). Note that the value
of some energy sensitive parameters cannot be obtained from
the statistic module of the DBMS, therefore they have to be
computed using a machine learning technique. To show the
effectiveness of this procedure, we consider two open-source
DBMSs with different functioning policies: PostgreSQL and
MonetDB.

The remainder of this paper is organized as follows: In
section II, we first present the fundamental notions of energy
and a high-level description of PostgreSQL and MonetDB.
Section III presents our mathematical cost models estimating
energy and a non-linear regression technique to set the value
of energy-sensitive parameters. A comparison in terms of two
NFR of our DBMSs without our contributions is described in

Section IV. Experiments of comparing these two DBMSs by
considering our energy modeling is commented in Section V.
Related work is presented in Section VI. Section VII concludes
our paper.

II. PRELIMINARIES

In this section, we give the background to propose green
query processors.

A. Energy Efficiency as a Non Functional Requirements

Definition 1: Energy (E) is a measurement (in Joules)
of the ability of something to do work. It comes in many
forms (magnetic energy, electrical energy, chemical energy,
and nuclear energy). It can be transformed from one type to
another. In our study, we consider electrical energy. Energy is
a physical quantity dependent on time.

Definition 2: Power (P) is defined to be the rate at which
work is performed, or the derivative of work over time. The
unit for power is the Watts. In electronics, power is defined as
the amount of energy consumed per unit of time by the system.
Work (W) is related to the amount of energy transferred in or
from a system by a force. Formally, energy and power can be
defined as follows:

P (t) =
dE(t)

dt
(1)

E(t) =

∫ t0

0
p(t)dt (2)

where P , t, and E represent, respectively, a power, a period,
and energy. Since it is hard to guarantee the accuracy of
energy measure, in this paper we use the average power
representing the average power consumed during the execution
of the workload.

Definition 3: Energy efficiency (EE) expresses the optimal
use of energy to offer the same service. It is expressed by [36]:

EE =
Useful energy output

Total energy input
=

Performance

P
(3)

Based on the above equation, we remark that there are two
ways to improve EE either by: (i) improving performance or
(ii) reducing energy input consumption.

B. Cost Models in Database World

A cost model (CM) is a mechanism to estimate measurable
metrics associated with the quantitative QoS attributes (e.g.,
Inputs-Outputs, CPU and Network Transfer) [26] . It includes
parameters belonging to the internal and external components of
the database environment. In the context of query processors, a
CM is defined at the query physical operation level (e.g., sort-
merge implementation for join operation). Its corresponding
metric can be seen as a function with inputs include parameters
belonging to the database, the query, the deployed platform,
the processing device(s), etc. [21].

A CM corresponding to a given metric METm of an
elementary physical query operation ElemPhyOp, denoted
by CMMETm

ElemPhyOp may be defined as follows [26]:

CMMETm

ElemPhyOp : Pn −→ V alue of METm ∈ R (4)

where: P: represents the set of the parameters. The parameters’s
values are either obtained from database statistics or using the
Processor Counter Monitor (PCM)[25] or estimated by machine
learning techniques. n is the cardinality of the parameters set.

C. A Deep Understanding of Functioning of our Studied DBMS

In order to demonstrate the effectiveness of our procedure
to build a green query processor, we consider two DBMS:
PostgreSQL and MonetDB. Both are open-source software,
developed in C language, offering parallel mode for query
processing. But they differ in their storage layouts (Row-Store
vs. Colum-Store) and compression rate.

1) PostgreSQL:

It is a row-store DBMS supporting object-relational
databases. It uses the server/client model and supports the stan-
dard database languages. It offers many advanced functionalities
such as user-defined types, table inheritance, sophisticated
locking mechanism. The support of a parallel query involves
multiple background worker processes. There is a back-end
process that handles all queries issued by the connected client.
This back-end consists of the following subsystems: Parser:
it checks the query syntax expressed in a high-level query
language like SQL to determine whether it is well formu-
lated according to the grammar rules of the query language.
Analyzer: The query must be validated by verifying that all
attributes and relationship names are valid and semantically
significant in the schema of the database. Rewriter: Using
transformation rules, an internal representation of the query is
then created (query tree). Planner: It generates the cheapest
plan tree that can be executed from the query tree. Executor: A
query has many possible execution strategies, and the selection
of the best plan is usually conducted by cost model-driven
strategies [11]. Figure 2 (a) summarizes the different phases
of the PostgreSQL query processor.

2) MonetDB:

It was designed primarily for data warehouse applications.
Internally, the design, the architecture and the implementation
of MonetDB reconsider all aspects and components of classical
database architecture and technology by exploiting effectively
the potentials of modern hardware. Storage model: It is a
significant deviation of traditional database systems. It uses the
decomposed storage model (DSM) which represents relational
tables using vertical fragmentation, by storing each column in a
separate #surrogate, value# table, called binary association
table (BAT). The left column (the surrogate or object-identifier
(oid)) is called the head, whereas, the right column is the tail.
During the query evaluation, all intermediate results are in a
column format. Only just before sending the final result to the
client, N−ary tuples are constructed. Query execution model:
The MonetDB kernel is an abstract machine, programmed in
the MonetDB Assembly Language (MAL). The core of MAL
is formed by a closed low-level two-column relational algebra
on BATs. N-ary relational algebra plans are translated into two-
column BAT algebra and compiled to MAL programs. These

Fig. 2: The main steps of query processor in PostgreSQL and
MonetDB architecture.

MAL programs are then evaluated in an operator-at-a-time
manner. Figure 2 (b) shows the internal design of MonetDB.
MonetDB’s query processing scheme is centered around three
software layers: The top layer or front-end provides the user-
level data model and query language. The query language is first
parsed into an internal representation (e.g., SQL into relational
algebra), which is then optimized using domain-specific rules.
The middle layer or back-end consists of the MAL optimizers
framework and the MAL interpreter. The bottom layer or kernel
provides BATs as MonetDB’s bread-and-butter data structure,
as well as the library of highly optimized implementations of
the binary relational algebra operators.

For query parallel execution in MonetDB, a sequential
execution plan is generated firstly and parallelization is then
added in the second optimization phase. The individual MAL
operators are marked as either “blocking” or “parallelizable”.
The optimizers will alter the plan by splitting up the columns
of the largest table into separate chunks, then executing the
“parallelizable” operators once on each of the chunks, and
finally merging the results of these operators together into a
single column before executing the “blocking” operators[28].

III. ENERGY MATHEMATICAL COST MODELS

The previous section allows us understanding the functioning
of our studied DBMS. Inspired from [7], we establish the main
steps of building green query processors are: (1) identification
of relevant energy-sensitive parameters belonging to hardware
and software components, (2) elaboration of mathematical cost
models estimating consumed energy when executing a query on
a target DBMS and (3) setting of values of the energy-sensitive
parameters using machine learning techniques.

a) Step 1: (Energy-sensitive parameters identification)

Regarding the extraction of energy-sensitive parameters,
we have identified a set of parameters that cover the main
components of a DSS, that we have classified them into four
categories. These categories are database parameters, query
parameters, hardware parameters and parameters related to the
deployment architecture.

b) Step 2: (Energy-cost model construction)

To construct our model, we investigate the executor tasks
to understand how to profile the power consumption on an
individual query. To do that, we execute a set of queries
(simple and complex) in parallel mode, where the degree of
parallelism is set to 2 with different scale of factors of the
TPC-H benchmark. When evaluating these queries, we realize
the need for having a data structure capturing the different
flows during the parallel query execution mode. To do so, we
propose a Data Precedence and Localization (DPL) structure.
It is like a query tree. To illustrate this structure, let us consider
the following example:

Q: SELECT * FROM A, B, C
WHERE A.x = B.x and B.y = C.y;

Figure 6 shows the DLP graph structure of the above query.
The data blocks provenance (DP) that we call localization
is modeled by the symbol 4 and annotated. For each query
operation, we use an annotation to specify the parallelism
degree (e.g.[.., 2]) when the operation is parallelizable. Data
blocks are read from disk in parallel mode (Table A, B,
and C) to the intermediate memories. The D stands for
the Data dependencies between operators represented by
connecting edges. The L denotes the Localization of data
blocks. Precedence dependencies stating that an operator must
be terminated before another operator can start. Precedence
dependencies are represented graphically by a double direct
edge. The double direct edge between the probe operator and
merging is an example.

In PostgreSQL, we consider that queries are executing in
pipelined fashion [31], whereas MonetDB processes the data
in an operator at a time manner. In this processing model, the
operator processes the entire column at once before moving on
to the next operator because the intermediate result for each
operator must to be materialized into memory so this result can
be used by the next operator. Thus, for MonetDB, we adopt
an operations-based modeling approach.

For a given query plan of Qi executing in PostgreSQL,
denoted by PlanPosti consisting by k pipelines noted
{PLi

1, PL
i
2, PL

i
3, . . . PL

i
k}, its average power cost is esti-

mated as follows:

Power(Qi) =

∑k
j=1 Power(PL

i
j) ∗ Time(PLi

j)

Time(Qi)
(5)

where Time(Qi), Time(PLi
j) represent respectively, the

execution time of the query Qi and the execution time of
PLi

j . The power dissipated when processing the query is the
combination of main identified resources (CPU, Main memory
and Disk) energy consumption. We work on a single node
(centralized DBMS), the communication cost is ignored(no
network cost). The formula is given by the following equation:

Power(PLi
j) =

Wcpu ∗
n∑

u=1

Ccpuu +Wmio ∗
n∑

u=1

Cmiou +Wdio ∗
n∑

u=1

Cdiou

(6)

where Wcpu, Wmio and Wdio are the model parameters. Wcpu,
Wmio and Wdio are unit-power cost for instructions, read/write
operations on memory and read/write operations on disk
respectively. The Ccpuu is the number of instructions executed
by CPU. Cmiou is the number of read or write operations
accessed on memory. Cdiou is the number of read or write
operations accessed on disk. The n is the number of operators
in the pipeline. u is the summation index.

For MonetDB, the energy cost for a given query plan (Qi)
denoted by PlanMonetDBi consisting by k operations noted
{OP i

1, OP
i
2, OP

i
3, . . . OP

i
k} is estimated as follows:

Power(Qi) =

∑k
j=1 Power(OP

i
j) ∗ Time(OP i

j)

Time(Qi)
(7)

where Time(Qi), Time(OP i
j) represent respectively, the

execution time of the query Qi and the execution time of OP i
j .

The power dissipated when processing is the combination of
the energy consumption of the main resources identified. The
formula is given by the following equation:

Power(OP i
j) = Wcpu ∗Ccpuj +Wmio ∗Cmioj +Wdio ∗Cdioj (8)

c) Step 3: (Machine learning)

To identify the different values of the power unit cost in
the equations 6 and 8, we propose a polynomial regression
technique. It consists in analyzing a relationship between two
quantitative variables and using it to estimate the unknown
value of one using the known value of the other. They can be
of a simple linear model, multiple linear, nonlinear, etc. [29].

In our work, we use a non-linear regression technique
involving the identified energy-sensitive variables. To do that,
we set to 2 the polynomial degree for PostgreSQL and to 3 for
MonetDB. We find the values of parameters of our equations:
Wcpu, Wmio and Wdio by applying this setting in R language.
The polynomial regression applied to our equations 6 and 8,
we transform them as follows:

P (PLi
j) = β1 ∗ Ccpu + β2 ∗ Cmio + β3 ∗ Cdio + β4 ∗ Ccpu ∗ Cmio

+ β5 ∗ Cmio ∗ Cdio + β6 ∗ Ccpu ∗ Cdio + β7 ∗ C2
cpu

+ β8 ∗ C2
mio + β9 ∗ C2

dio + β0 + ε (9)

P (OP i
j) = β1 ∗ Ccpu + β2 ∗ Cmio + β3 ∗ Cdio + β4 ∗ Ccpu ∗ Cmio

+ β5 ∗ Cmio ∗ Cdio + β6 ∗ Ccpu ∗ Cdio + β8 ∗ C2
cpu

+ β7 ∗ Ccpu ∗ Cmio ∗ Cdio + β9 ∗ C2
mio + β10 ∗ C2

dio

+ β11 ∗ C2
cpu ∗ Cmio + β12 ∗ Ccpu ∗ C2

mio + β18 ∗ C3
mio

+ β13 ∗ C2
cpu ∗ Cdio + β14 ∗ C2

mio ∗ Cdio + β19 ∗ C3
dio

+ β15 ∗ Ccpu ∗ C2
dio + β16 ∗ Cmio ∗ C2

dio + β17 ∗ C3
cpu

+ β0 + ε (10)

where Ccpu, Cmio, Cdio are parameters whose estimated values
are provided by the DBMS statistics module and Processor
Counter Monitor (PCM), ε represents measurement errors and
(β1, ˙..., β19) are regression coefficients that will be estimated.

To estimate the values of the parameters in our equations, we
use the TPC-H benchmark. We generate data at different scale
factors: 5 GB and 30 GB. For each scale factor, we study and
collect the characteristics of forty-four (44) Select-Project-Join
(SPJ) queries and measure the energy consumed by each of

Fig. 3: Execution time comparison using SPJ queries in parallel
mode on TPC-H SF5.

them using the power meter. These queries are constituted
from simple to complex (Join and Group by) involving CPU
intensive operations.

IV. EVALUATION OF OUR DBMSS WITHOUT OUR COST
MODELS

This section presents an experimental study comparing in
terms of two NFR (rapid query performance and reduction
of power consumption) our DBMS without integrating our
findings. These experiments are conducted using the firt 10
SPJ queries of the TPC-H. In all our experiments, we consider
SPJ queries.

A. System Setting

Our experiments are conducted in the following setting:
a DELL Latitude E6430 with Dell 0CPWYR motherboard,
Intel Core i5 3340M CPU@ 2.70GHz (1 CPU - 2 Core - 4
Threads), 8GB SODIMM DDR3@ Synchronous 1600 MHz
main memory from Samsung, ATA Disk Toshiba MQ1ABF0
500 GB. To measure the power of the server we use power
meters called Watt UP PRO at a 1Hz frequency placed between
the electrical power source and the database server. It is linked
via USB connections to the monitor to collect result data.
The environment topology of our experimentation is shown in
Figure 5. The server uses Ubuntu 18.04 bionic (kernel 5.0.0-
27-generic) as the operating system with PostgreSQL release
10.10 and MonetDB release 11.33.11. In the experiments,
we set the degree of parallelism (DoP) to 2. The following
commands are used to set this degree on both DBMSs:
max parallel workers per gather = #number# (Post-
greSQL) and gdk nr threads = #number# (Mon-
etDB). We generate data at different scale factors (SF):
5GB, 10GB, 30GB to populate our databases.

B. Query Performance Analysis

In this experiment, we evaluate the first NFR of both DBMS
using two database configurations 5GB and 30GB. Lastly,
elapsed time for each SPJ query on the same database has
been compared. Figures 3 and 4 summarize the execution time
results obtained using the firt 10 SPJ queries.

Fig. 4: Execution time comparison using SPJ queries in parallel
mode on TPC-H SF30.

Fig. 5: Deployment of our experimental testbed.

These results show that the performance of MonetDB
outperforms those obtained by PostgreSQL for all considered
queries and datasets. This performance gaps is mainly due to
the fact that PostgreSQL cumulates an important number of
page faults when processing queries. The row-store systems
have to scan and use the entire n-tuples rather than only the
needed columns values. Therefore, the entire rows plus the
built-in index tree cannot reside long enough in the main
memory or in the cache memories. They must be swapped on
the disk this leads to many disks IOs. For column-oriented
systems like MonetDB, just the values of the columns required
to answer the queries are loaded.

C. Power Consumption Analysis

In Section IV-B, we find that the performance of MonetDB is
better than that of PostgreSQL. This is particularly interesting in
the context of energy consumption as energy is a quantity that
depends on time flowing. To compare the energy consumption
on both systems when executing queries, we measure the power
dissipated per second using an amperage apparatus named
wattmeter. At the end of these measurements, we calculate
the average energy consumed by each query. Figures 8 and 9
show average energy consumption for SF5 and SF30 datasets
respectively. Starting from the results presented in the Figures

Fig. 6: The DLP-Graph of Q query.

DBMS
Variables MonetDB PostgreSQL

Outputs Multiple R-squared 0.58 0.83
Adjusted R-squared 0.45 0.78
Residual [−2, 2] [−3, 3]

TABLE I: Regression statistics and residual outputs.

8 and 9, the average energy consumed by MonetDB during
the execution of the queries is reasonable than for PostgreSQL.
The high consumption of the PostgreSQL query processor can
be explained by the characteristics of this type of row-store
DBMSs. MonetDB uses compression techniques to reduce the
cost of data scans. This directly impacts query performance
due to fewer I/O requests and page faults. To summarize,
all experiments that we conducted to execute the 10 TPC-H
queries in both DBMS unequivocally place first MonetBD, far
ahead of PostgreSQL for two NFR.

V. EVALUATION OF OUR GREEN DBMSS

In this section, we evaluate our green DBMSs obtained by
using our mathematical cost models in the same environment
as for the previous experiments(cf. subsection IV-A).

A. Parameters Values

We use polynomial regression using R version 3.5.2 language
to determine parameters values for our models described in
the equations 9 and 10. The correlation coefficient denoted by
R measures the strength and direction of a linear relationship
between two variables. After the analysis of the collected data,
Table in I give more information about regression statistics
and residual output obtained from language R. The statistical
variable R define the coefficient of correlation or determination
of the model.

(a) For data collected from PostgreSQL.

(b) For data collected from MonetDB.

Fig. 7: Residual density of training data.

The following equations 12 and 11 describe our equations
models in 10 and 9 respectively with these parameters values.

P (OP i
j) = −2, 44 ∗ 10−7 ∗ Ccpu + 9, 17 ∗ 10−5 ∗ Cmio + 1, 99 ∗ 10−6

∗Cdio +1, 51 ∗ 10−13 ∗Ccpu ∗Cmio − 7, 22 ∗ 10−11 ∗Cmio

∗Cdio + 1, 67 ∗ 10−13 ∗Ccpu ∗Cdio − 2, 82 ∗ 10−18 ∗Ccpu

∗Cmio ∗Cdio + 3, 27 ∗ 10−14 ∗C2
cpu − 1, 46 ∗ 10−9 ∗C2

mio

− 1, 56 ∗ 10−12 ∗ C2
dio − 3, 74 ∗ 10−19 ∗ C2

cpu ∗ Cmio

+ 1, 07 ∗ 10−16 ∗ Ccpu ∗ C2
mio + 9, 67 ∗ 10−21 ∗ C2

cpu

∗Cdio +2, 93 ∗ 10−16 ∗C2
mio ∗Cdio +1, 83 ∗ 10−20 ∗Ccpu

∗C2
dio +2, 58 ∗ 10−17 ∗Cmio ∗C2

dio +3, 87 ∗ 10−21 ∗C3
cpu

− 2, 30 ∗ 10−15 ∗ C3
mio + 2, 07 ∗ 10−19 ∗ C3

dio + 47, 26 + ε

(11)

P (PLi
j) = 4, 53 ∗ 10−6 ∗ Cdio − 1, 46 ∗ 10−6 ∗ Cmio − 1, 12 ∗ 10−6

∗Ccpu +2, 30 ∗ 10−14 ∗Ccpu ∗Cmio − 5, 88 ∗ 10−12 ∗Cmio

∗Cdio +5, 97 ∗ 10−15 ∗Ccpu ∗Cdio +2, 46 ∗ 10−17 ∗C2
cpu

+ 8, 01 ∗ 10−12 ∗ C2
mio − 9, 25 ∗ 10−13 ∗ C2

dio + 48, 8 + ε

(12)

Figures 7a and 7b respectively, illustrate the residual density
for the PostgreSQL and MonetDB systems obtained from
Language R after training data analysis.

B. Query Plan Evaluation

Typically, a database server receives each query from a
user, compiles and executes it. The optimizer selects one plan
from a set of plans that have acceptable performance. The
actual evaluation model used in traditional database systems
uses cost-driven approaches that select the final query plan

Fig. 8: Average energy consumption for MonetDB comparing
to PostgreSQL on TPC-H SF5.

Fig. 9: Average energy consumption for MonetDB comparing
to PostgreSQL on TPC-H SF30.

with minimum cost. For energy-aware optimizer, a cost model
based on energy consumption must take place in the core of
system. Rather than choosing a plan with optimal performance,
the energy cost model can be used to choose a plan that
saves energy or to define a certain threshold of the trade-off
between energy and performance, for more details see our
works in [31]. The adjustable trade-off between performance
and energy is made by using a criterion that reflects the choice
of users/administrators. The criterion model adopted has the
following format: C = n ∗ T + (1 − n) ∗ E with T denote
processing time, E denote the power cost, C denote the plan
cost and n is constant value in interval [0, 1]. In the case
of PostgreSQL, it is easy to integrate our energy cost in
the optimizer because it is designed following a cost-based
approach, the process to integrate it is described in [31]. Figure
10 illustrates our query model evaluation on PostgreSQL.

For MonetDB, it is not easy to integrate energy cost because
the query execution plan is not optimal in terms of cost model
[12]. For this reason in this study, we run our model cost
outside from the threes layers (MonetDB kernel). Figure 11
illustrates our query model evaluation on MonetDB.

C. Results

We used our energy modeling defined in equations 12 and
11 to execute the 22 queries. We compare the energy estimated
(EE) by our cost models with the real energy (ER) consumed
by the database server during the processing of the query in

Fig. 10: For PostgreSQL DBMS.

Fig. 11: For MonetDB DBMS.

parallel mode. To validate the energy model as an accurate
prediction of cost for database system, we use the metric called
Estimation Error (ERR) to quantify the model accuracy. The
metric is defined by the following formula:EER = |ER−EE|

ER .
ER denotes the real values of power measured by the power
meter and EE denotes the prediction values of our models (a
non-linear regression). Tables II and III give the rate estimation
error obtained by using our energy cost model for parallelism
degree fixed to 2 on PostgreSQL and MonetDB respectively.
Noted that in Table III, the average of the estimation errors is
2.5% and the maximum error is 13%. The difference between
the estimated average power and the measured one is very
small in almost all cases. Exploiting this model obtained with
a non-significant estimation rate by varying the value of n in
the criterion model will allow us to highlight the energy-saving
gains that we will present in our future work. On Table II the
average of the error estimation is 4.1% and the maximum error
is 10%. From the analysis of the two tables, we can conclude
that our energy cost model fits as well with MonetDB as with
PostgreSQL because of non-significant estimation estimate
deviations.

VI. RELATED WORK

In this section, we review then main studies and research
efforts dedicated to reduce the energy consumption when
processing data. Figure 12 lists the major approaches explored
to increase the EE. This review covers major elements of the

Fig. 12: Overview of techniques to improve the EE.

TABLE II: Prediction Error Rate on the Postgresql
DBMS SF5.

Queries Measured Prediction EER

1 56.37 56.66 0.5%
2 50.09 48.86 2.5%
3 51.22 51.98 1.5%
4 51.21 48.51 5.6%
5 51.17 47.36 8.0%
6 51.74 50.67 2.1%
7 52.51 51.62 1.7%
8 51.13 47.96 6.6%
9 46.57 51.48 9.5%
10 50.49 54.18 6.8%
11 50.69 52.07 2.6%
12 51.74 50.76 1.9%
13 52.81 58.97 10.4%
14 52.13 51.71 0.8%
15 49.84 53.19 6.3%
16 50.32 53.19 5.4%
17 50.86 53.67 5.2%
19 52.25 52.24 0.0%
20 51.82 50.93 1.7%
22 50.64 49.40 2.5%

When collecting system analysis data, the Explain
Analysis command on queries 18 and 21 took a long
time without giving any answers. We did not integrate
them in the case of PostgreSQL.

TABLE III: Prediction Error Rate on the MonetDB
DBMS SF5.

Queries Measured Prediction EER

1 48.85 49.82 2.0%
2 48.10 48.30 0.4%
3 48.72 47.83 1.9%
4 48.40 48.15 0.5%
5 47.83 47.34 1.0%
6 57.71 51.50 13%
7 48.24 47.90 0.5%
8 47.98 47.96 0.01%
9 47.41 48.27 1.8%
10 50.13 50.28 0.3%
11 47.27 48.99 3.5%
12 48.62 47.16 3.1%
13 48.07 48.01 0.1%
14 48.03 46.86 2.5%
15 47.51 45.55 4.3%
16 48.80 47.71 2.3%
17 48.92 47.57 2.8%
18 48.56 47.82 1.6%
19 44.08 48.19 8.5%
20 48.40 47.3 2.3%
21 48.70 48.27 0.9%
22 48.21 47.36 1.8%

DBMS environment.
Physical components (Hardware) and firmware level:
Techniques applied at this level commonly called Dynamic
Power Management can be broadly divided into two categories:
dynamic component deactivation and dynamic performance
scaling [3]. Dynamically controlling the clock speed of the
CPU has largely inspired the development of dynamic voltage
adjustment (DVS) techniques. Study in [20] proposed a PVC
(Processor Voltage/ Frequency Control) mechanism to trade
energy consumption for performance. They perform certain
instructions at a lower processor voltage and frequency by
taking advantage of modern processor capabilities. Their
experiments showed that PVC can be used to reduce the CPU
energy consumption by 20% and 49%, while incurring 6%
and 3% response time penalties on MySQL. [6] proposed
the Predictive Energy Saving Online Scheduling (PESOS)
algorithm in the context of Web search. Using the DVFS
technique, PESOS selects the most appropriate CPU frequency
to process a query. The goal of PESOS is to reduce the
CPU energy consumption of a query-processing node while
imposing a required tail latency on the query response times.
[17] presents a technique called POLARIS for reducing
the power consumption of transactional database systems.
POLARIS directly manages processor DVFS within the
DBMS and controls database transaction scheduling. Its
goal is to minimize power consumption while ensuring the
transactions are completed within a specified latency target. In
[33], the authors explored the performance behavior and the
related energy consumption of Solid State Drives(SSDs) under
typical access patterns for I/O database intensive applications.

Application-level: Many applications can be executed
in different ways to accomplish the same computational
task. In [24], an approach to improve the EE of software
by optimizing design patterns automatically at compile time
is proposed. They transform design for the Observer and
Decorator patterns and found energy reductions in the range
of 4.32% to 25.47%. In [22], a framework to assist software
engineers to develop high-end energy-efficient applications
(SEEDS) has been proposed.

Telecommunication networking level: Telecommunication
networks constitute a major sector of ICT and they undergo a
tremendous growth. Energy is mostly consumed in network
transmission and switching equipment such as routers. In
the literature, we observe that the focus of many research is
on control and optimization strategies for computer network
equipment enabling energy saving, by adapting network
capacities and computing resources to the current traffic load
and demands, while ensuring end-to-end quality of service
(QoS)[4]. In [16], authors developed a big data analytics
subystem called BigOptiBase to provide elastic energy
efficient solutions for the base stations using data analytics
and machine learning technologies. This tool, which aims to
optimize the energy consumption of the base stations, takes
decisions based on the energy policy of the base stations taking
into account the user’s configuration. Based on historical
analysis and real-time tuning, the authors in [23] introduce
a novel application-layer solution called GreenDataFlow,
which aims to achieve high data transfer throughput while
keeping the energy consumption at the minimal levels. It
is based on mathematical modeling with offline knowledge
discovery and adaptive online decision-making. Experimental
results show that GreenDataFlow outperforms the closest
competing state-of-the art solution. To achieve a power saving
in router, authors in [39] proposed to follow two approaches;
power efficient designing and power saving designing. The
former is an approach to create a high performance router
at low power consumption and the latter is an approach to
save wasted power. For power efficient designing, they have
developed technologies for integrating the ASICs/FPGAs
and memories of routers. for power saving design, the
authors worked on static performance control, which allows
turning off unused ports and modules. Furthermore, they
proposed a technology that lowers the frequency of lightly
utilized modules to save the wasted power. Running under the
low frequency mode, the power efficiency improved by 10-20%.

Environmental management and conventional rules:
In response to the over energy consumption in datastores and
the need to reduce the related environmental, economic and
energy supply security impacts, the governments, and corporate
sector impose regulations and acts. The European Commission
(EC) created a Code of Conduct for Energy Efficiency[2] in
Data Centers in 2008 with the aim of improving the energy
efficiency. Like EC, the U.S. Department of Energy has the
ENERGY STAR[5] program, which offers energy efficiency
guidelines for all types of buildings including Data Centers.
In addition to the Code of Conduct for Energy Efficiency,
there are several energy-efficiency standards imposed to
control the manufacture and use of equipment. Cooling system
contribute about one-third of this energy use in data [15]. The
environmental temperature recommended by American Society
of Heating, Refrigeration and Air Conditioning (ASHRAE)
for Class A1 to A2 Data Centers is between 18◦ Celsius and
27◦ Celsuis (64◦ to 81◦F).

Software-Based Techniques: Most important studies in
this category concern (i) the definition of cost models to
predict the energy and (ii) the proposition of cost-driven
techniques for reducing energy. In [38], the authors build
a static power profile for each basic database operation
using a simple linear regression technique. In [18], the
authors use pipeline-based modeling to the sources of peak
power consumption for a query and to recommend plans
with low peak power. The proposed model relies on the
pipeline segmenting of the query. Local learning support
vector regression (SVR) is used by [13] to perform energy
consumption predictions and they compare their results with
traditional SVRs and with deep neural networks exploiting
an H2O machine learning platform for big data. They found
that local SVR outperformed others in terms of prediction
accuracy and computation time. In Cloud database systems
environment, where users are billed for the use of services, the
authors in [37] proposed a method that adaptively optimizes
a query execution plan to satisfy both the query response
time and monetary cost objectives. Experimental results show
that the proposed method can save either the time cost or
the monetary cost based on the type of queries. The authors
in [14] analyze the effect of the three main cache structures
(Database Buffer Cache, Dictionary Cache, and Library
Cache). Based on this, they have taken the cost of memory
into account in their linear model cost dedicated to sequential
query processing mode. In [31][32], the authors proposed cost
models to predict the power consumption of single running
queries. The proposed model relies on pipeline segmenting of
the query. The model is built based on the CPU and I/O cost
of each pipeline. It measured energy in an offline task, using
a non-linear regression technique (polynomial regression).
Also the authors proposed an initiative that integrates the
energy into the physical design of database systems when
selecting materialized views. They propose a multi-objective
formalization of the materialized view selection problem,
considering two objectives: query performance and energy
consumption while executing a given workload. In [8][9],
we confront the sequential and parallel execution modes and
study their impact on EE. They extented the sequential cost
model proposed in [30], by taking into account the parallel
mode in a centralized DBMS to predict the energy cost when
executing a given query. Contrary to our proposal, most of
these studies used linear regression techniques.

VII. CONCLUSIONS

In this paper, we attempt to alert academia, industry, IT
companies and funding agencies by promoting research, tools
and software solutions to save energy in Data Management
Systems. We identify query processing as a critical task, which
consumes significant energy. Therefore, we propose to re-
engineer green query processors. To reach this objective, a
comprehensive procedure, consisting of four main steps, was
proposed: (1) a deep audit that allows understanding the query
processor functioning at a low level, (2) identification and

measurement of main energy-sensitive parameters in hardware
and software components, (3) proposing mathematical cost
models estimating consumed energy when executing queries
on a DBMS and (4) finding values of these energy-sensitive
parameters based on nonlinear regression, going a step beyond
previous linear regression models. This procedure highlighted
the importance of auditing DBMSs by understanding their in-
ternal subsystems, before proposing a suitable energy modeling.
To validate our novel procedure, we analyzed two open-source
DBMSs with complementary storage mechanisms: PostgreSQL
and MonetDB. After conducting a deep audit of these DBMSs,
mathematical cost models with relevant parameters estimating
energy consumption were proposed. Extensive experiments
were conducted to evaluate the effectiveness of our proposed
models. We hope our research will spark interest in new
directions to save energy to store, query and analyze databases.

We plan in our future work to use others machine learning
techniques and compare them with the nonlinear regression
results on much larger datasets to determine their impact on our
energy models accuracy. And also, we plan to apply the same
approach on HYRISE system and compare it with moneDB
and PostgreSQL system.

REFERENCES

[1] D. Abadi, R. Agrawal, A. Ailamaki, M. Balazinska, P. A. Bernstein,
M. J. Carey, S. Chaudhuri, J. Dean, A. Doan, M. J. Franklin et al., “The
beckman report on database research,” Communications of the ACM,
vol. 59, no. 2, pp. 92–99, 2016.

[2] M. Avgerinou, P. Bertoldi, and L. Castellazzi, “Trends in data centre
energy consumption under the european code of conduct for data centre
energy efficiency,” Energies, vol. 10, no. 10, p. 1470, 2017.

[3] A. Beloglazov and et al., “A taxonomy and survey of energy-efficient
data centers and cloud computing systems,” Advances in Computers,
vol. 82, no. 2, pp. 47–111, 2011.

[4] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijay-
sekara, R. Irfan, S. Shrestha, D. Dwivedy, M. Ali et al., “A taxonomy
and survey on green data center networks,” Future Generation Computer
Systems, vol. 36, pp. 189–208, 2014.

[5] R. Brown, C. Webber, and J. G. Koomey, “Status and future directions
of the energy star program,” Energy, vol. 27, no. 5, pp. 505–520, 2002.

[6] M. Catena and N. Tonellotto, “Energy-efficient query processing in web
search engines,” IEEE Transactions on Knowledge and Data Engineering,
vol. 29, no. 7, pp. 1412–1425, July 2017.

[7] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption
modeling: A survey,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 732–794, 2016.

[8] S. P. Dembele, L. Bellatreche, C. Ordonez, and A. Roukh, “Think big,
start small: a good initiative to design green query optimizers,” Cluster
Computing, vol. 23, no. 3, pp. 2323–2345, 2020.

[9] S. P. Dembele, A. Roukh, and L. Bellatreche, “Vers des optimiseurs
verts de requêtes en mode parallèle,” in EDA, 2018.

[10] T. Economist. The world’s most valuable resource is no longer oil, but
data. [Online]. Available: https://www.economist.com/leaders/2017/05/
06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data

[11] R. Elmasri and S. Navathe, Fundamentals of Database Systems, 6th ed.
USA: Addison-Wesley Publishing Company, 2010.

[12] R. Goncalves and M. Kersten, “The data cyclotron query processing
scheme,” ACM Trans. Database Syst., vol. 36, no. 4, pp. 1–35, 2011.

[13] K. Grolinger, M. A. Capretz, and L. Seewald, “Energy consumption
prediction with big data: Balancing prediction accuracy and computational
resources,” in 2016 IEEE International Congress on Big Data (BigData
Congress). IEEE, 2016, pp. 157–164.

[14] B. Guo, J. Yu, B. Liao, D. Yang, and L. Lu, “A green framework for dbms
based on energy-aware query optimization and energy-efficient query
processing,” Journal of Network and Computer Applications, vol. 84, pp.
118–130, 2017.

[15] M. Iyengar, R. Schmidt, and J. Caricari, “Reducing energy usage in data
centers through control of room air conditioning units,” in 12th IEEE
Intersociety Conference on Thermal and Thermomechanical Phenomena
in Electronic Systems, 2010, pp. 1–11.

[16] E. Kassela, N. Provatas, A. Tsiourvas, I. Konstantinou, and N. Koziris,
“Bigoptibase: Big data analytics for base station energy consumption
optimization,” in 2019 IEEE International Conference on Big Data (Big
Data). IEEE, 2019, pp. 6098–6100.

[17] M. Korkmaz, M. Karsten, K. Salem, and S. Salihoglu, “Workload-
aware cpu performance scaling for transactional database systems,” in
Proceedings of the 2018 International Conference on Management of
Data. ACM, 2018, pp. 291–306.

[18] M. Kunjir, P. K. Birwa, and J. R. Haritsa, “Peak power plays in database
engines,” in EDBT. ACM, 2012, pp. 444–455.

[19] W. Lang, R. Kandhan, and J. M. Patel, “Rethinking query processing
for energy efficiency: Slowing down to win the race.” IEEE Data Eng.
Bull., vol. 34, no. 1, pp. 12–23, 2011.

[20] W. Lang and J. Patel, “Towards eco-friendly database management
systems,” arXiv preprint arXiv:0909.1767, 2009.

[21] S. Manegold, P. A. Boncz, and M. L. Kersten, “Generic database cost
models for hierarchical memory systems,” in VLDB, 2002, pp. 191–202.

[22] I. Manotas, L. Pollock, and J. Clause, “Seeds: a software engineer’s
energy-optimization decision support framework,” in ICSE, 2014, pp.
503–514.

[23] M. S. Z. Nine, L. Di Tacchio, A. Imran, T. Kosar, M. F. Bulut, and
J. Hwang, “Greendataflow: Minimizing the energy footprint of global
data movement,” in 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 2018, pp. 335–342.

[24] A. Noureddine and A. Rajan, “Optimising energy consumption of design
patterns,” in Proceedings of the 37th International Conference on Software
Engineering - Volume 2, ser. ICSE ’15. IEEE Press, 2015, pp. 623–626.

[25] OPCM, “Processor counter minitor,” https://github.com/opcm/pcm, 2013.
[26] A. Ouared, Y. Ouhammou, and L. Bellatreche, “Qosmos: Qos metrics

management tool suite,” Computer Languages, Systems & Structures,
vol. 54, pp. 236–251, 2018.

[27] M. Poess and R. O. Nambiar, “Energy cost, the key challenge of today’s
data centers: a power consumption analysis of tpc-c results,” PVLDB,
vol. 1, no. 2, pp. 1229–1240, 2008.

[28] M. Raasveldt and H. Mühleisen, “Monetdblite: An embedded analytical
database,” CoRR, vol. abs/1805.08520, 2018.

[29] J. Rawlings, Applied regression analysis: a research tool. Wadsworth
& Brooks/Cole Advanced Books & Software, 1988.

[30] A. Roukh and L. Bellatreche, “Eco-processing of olap complex queries,”
in International Conference on Big Data Analytics and Knowledge
Discovery. Springer, 2015, pp. 229–242.

[31] A. Roukh, L. Bellatreche, S. Bouarar, and A. Boukorca, “Eco-physic:
Eco-physical design initiative for very large databases,” Inf. Syst., vol. 68,
pp. 44–63, 2017.

[32] A. Roukh, L. Bellatreche, and C. Ordonez, “Enerquery: energy-aware
query processing,” in ACM CIKM, 2016, pp. 2465–2468.

[33] D. Schall, V. Hudlet, and T. Härder, “Enhancing energy efficiency of
database applications using ssds,” in C3S2E Conference. ACM, 2010,
pp. 1–9.

[34] A. Shehabi, S. J. Smith, D. A. Sartor, R. E. Brown, M. Herrlin, J. G.
Koomey, E. R. Masanet, N. Horner, I. L. Azevedo, and W. Lintner,
“United states data center energy usage report,” Energy Technology Area,
Report, June 2016.

[35] M. Tisné. Data isn’t the new oil, it’s the new
co2. [Online]. Available: https://luminategroup.com/posts/blog/
data-isnt-the-new-oil-its-the-new-co2

[36] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah, “Analyzing the energy
efficiency of a database server,” in sigmod, 2010, pp. 231–242.

[37] C. Wang, Z. Arani, L. Gruenwald, and L. d’Orazio, “Adaptive time,
monetary cost aware query optimization on cloud database systems,” in
2018 IEEE International Conference on Big Data (Big Data), 2018, pp.
3374–3382.

[38] Z. Xu, Y.-C. Tu, and X. Wang, “Dynamic energy estimation of query
plans in database systems,” in ICDCS, 2013, pp. 83–92.

[39] M. Yamada, T. Yazaki, N. Matsuyama, and T. Hayashi, “Power
efficient approach and performance control for routers,” in 2009 IEEE
International Conference on Communications Workshops, 2009, pp. 1–5.

[40] C. Yang, Y. Du, Z. Du, and X. Meng, “Micro analysis to enable energy-
efficient database systems,” in EDBT, 2020, pp. 61–72.

