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Abstract—ER diagrams have a proven track record to rep-
resent data structure and relationships, in many CS problems,
beyond relational databases. The ER diagram strengths are
abstraction, generality, flexibility, and intuitive visual represen-
tation, with few weaknesses; hence its popularity. The main
con is the old box-diamond-ellipse-line notation, which has been
subsumed by the more modern and simpler UML box-line
notation. Given the broad, varied, and dynamic nature of big
data ER diagrams are mostly ignored, except when the data
sources are databases. It is common wisdom raw big data
needs significant pre-processing before computing any analytics,
resulting in a long chain of data transformations computed in
SQL, Python, or R languages, for instance. On the other hand,
flow diagrams remain the main mechanism to visualize major
components of a software system or main processing steps of
an algorithm, showing rectangles (verbs) connected by arrows
(processing order, dependence). In this work, we propose to
combine both diagrams into one. We propose a hybrid diagram,
which we call ER-Flow, based on modern UML notation, to
assist analysts in data pre-processing and exploration. Aiming
to introduce a minimal change to the ER diagram, we extend
relationships lines with an arrow, indicating processing flow and
we annotate entities coming from pre-processing with numbers
and transformation labels. We illustrate how our novel ER-Flow
diagram can help the user navigate big data at the metadata
level, providing an integrated view of data and source code, with
many practical benefits.

Index Terms—ER Diagran, Big Data, Metadata, Data Science,
Data Transformation

I. INTRODUCTION

A significant effort is required to pre-process data sets in big
data analytics because data sets come from diverse sources, they
have different structure, they come in different file formats and
they are not integrated. Hence data analysts need to collect, in-
tegrate, clean, merge, aggregate, and transform data files before
they can perform analysis. These data transformations create
many intermediate files, tables in a disorganized manner. ER
diagrams have a proven track record to represent data structure
and relationships, beyond databases. The ER diagram strengths
are generality, flexibility, and intuitive visual representation.
On the other hand, flow diagrams remain the main mechanism
to visualize major components or main processing steps of a
software system, but they are less useful to understand complex
algorithms. Several closely related works on ER diagram [1],
[2], Flow diagram [3], [4], and data transformation [5], [6]
have been done by other researchers. In this work, we defend
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the idea of combining both of them, but making emphasis on
the “data” angle. We propose a hybrid diagram, which we call
ER-Flow, to assist big data analysts in data pre-processing.

II. DEFINITIONS

Let E = {E1, ..., En}, be a set of n entities, linked by
relationships. We follow modern UML notation, where entities
are represented by rectangles and relationships are shown by
lines, with crowfeet on the “many” side. Each entity has a list
of attributes, where each attribute can be atomic or multivalued.
There exists an identifying set of attributes for each entity (i.e.
a primary key, an object id). Intuitively, entities correspond to
objects in real life and relationships to actions. Therefore,
we will use nouns as entity names and verbs to describe
relationships.

Diagram notation extension: We allow relationships to
have an arrow on one side indicating data flow direction. This
direction can also be interpreted as input and output, going
from input entities to output entities. This is a minor, yet
powerful, change that enables navigating all data elements in
the data lake, as well as having a data-oriented flow of big
data processing.

III. PROPOSED ER-FLOW DIAGRAM

Our entity concept is broad: entities can represent a file,
matrix, relational table, or dataframe. That is, we go beyond
relational databases.

Fig. 1: Generating preliminary ER-Flow diagram.

Entities are classified as source (raw) entities, representing
raw data, loaded into the Data Lake and Transformation



Fig. 2: ER-Flow diagram for a Store Data Lake.

(pre-processing) entities being the output of some tool or
programming language (Python, R, SQL).

We focus on representing data transformations for big data
analytics, including machine learning, graphs, and even text
files (documents). However, our diagram does not represent the
”analytic output” such as the parameters of the ML model, IR
metrics like precision/recall, graph metrics. We propose these
three major categories of data transformations:

1) Merge, which splices multiple entities by some attribute,
which is a generalized relational join operator.

2) GroupBy, which partition and aggregates records based
on some criteria. Every Data Science language provides
operators or functions highly similar to the SQL group
by clause.

3) Mathematical, which represent derived attributes coming
from a combination of functions and value-level operators
(e.g. equations, arithmetic expression, nested function
calls).

First, our solution generates a preliminary ER-Flow diagram
as follows. This diagram can be polished and customized by
the analyst. We show this process in Fig 1.

1) Importing ER models available from databases. We
assume ER diagrams are available or can be easily
constructed for a relational database DDLs or exported
from an ER diagram tool as CSV files.

2) Automatic entity and attribute identification from meta-
data embedded in the file itself. In particular, we assume
CSV files are the default format for spreadsheet data, logs
and mathematical software. On the other hand, JSON is
another standard file format to exchange data.

3) For plain text files like documents, source code we
assume they contain strings for words, numbers, symbols
and so on. In this case, we some IR library or tool will
pre-process the file and convert it to generic tables or
matrices. Then we propose to extract entity and attribute
names from the final table or matrix.

4) Automatic data set and attribute name identification for

data sets built by Python, R, or SQL code, generalizing a
previous approach with SQL queries [7], kind of “reverse
engineering”.

The diagram data is stored in two JSON files, where the
first file contains the relationships and the second one contains
the entities and their attributes. In the transformation module,
we define the transformation type and create new transformed
entities. The analysts may perform several transformations
discussed above in the source code that generates a temporary
entity. In the case of “Merge”, the entity structure may change
but the attribute values remain the same, and the ”Group by”
may use one or more grouping attributes along with or without
aggregations (sum, count, avg). In general, aggregations will
return numbers, but using only “Group by” will return the
attribute values as their types. Mathematical transformations
will mostly return derived attributes. Now, the new transformed
entities are linked with the original entities using an arrow.
After each valid transformation step, we can store the newly
generated ER-Flow diagram in JSON files. This ER-Flow
diagram can help the analysts to have data-oriented view of
the program, navigate source code, reuse functions, and avoid
creating redundant data sets.

We show an example in Figure 2 where we show our final ER-
Flow diagram. We consider an example of a store for which we
show the ER-Flow diagram. In our example the target analytic
is a predictive model of product sales considering history sales
data, customer information and buyers’ opinions. The goal is to
produce a data set, which can be used as input for a predictive
model like regression, decision trees, SVMs or deep neural
networks. Each entity from the original data has an identifying
attribute (primary key) and other attributes. From these entities,
analysts can generate new entities by doing data transformations
as mentioned above. Popular analytic languages like Python
and R, both support data transformations (ex: “Merge”, “Group
by”) in pandas and dpylr libraries respectively. Each of the
transformations generates a new entity which is named from
the input entities and the transformation type is shown inside
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the parenthesis as “(TYPE)”. The source entities are colored
white and the transformed entities are colored grey for better
understanding. We can see the flow of the transformed entities
as they are linked with an arrow from the source entities.
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