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Abstract—Analysts prefer simpler interpreted languages to
program their computations. Prominent languages include R,
Python, and Matlab. On the other hand, analysts aim to compute
mathematical models as fast as possible, especially with large
data sets. Data summarization remains a fundamental technique
to accelerate machine learning computations. Based on this moti-
vation, we propose a novel summarization mechanism computed
via a single matrix multiplication in the statistical R language.
We show our summarization benefits a large family of linear
models, including Linear Regression, PCA, and Naive Bayes. We
present a subsystem that enables exploiting summarization by
detecting Gramian matrix products in R. We optimize the existing
R source code by overriding the internal R matrix multiplication
algorithm using ours. Our solution can be plugged into R and
help solving where a similar matrix multiplication appears, much
faster and without RAM limitations. Moreover, our solution
can be benefited from the parallel processing ability of the
summarization matrix. We present an experimental validation
showing our subsystem incurs little overhead since it works on
source code while providing much faster speeds compared to the
R language built-in functions. To round up our comparisons, we
also compare our subsystem with Spark in parallel machines. For
our solution, we assume that data can be in the HDFS, disk, or
already partitioned. Our solution triumphs Spark in most cases
proving we can also compete in the big data space.

Index Terms—R, Summarization Operator, Matrix Multiplica-
tion, Machine Learning.

I. INTRODUCTION

Machine Learning has been gaining much traction recently
due to an explosion in the availability of data and processing
power. There are a lot of languages and technologies like
Python, R, Matlab, Java, C++, and many more for building
machine learning models. Even having the advantage of
compiling at faster speeds, Java and C++ still suffer from many
limitations like memory-management, complicated and strict
syntax, and little scope to create new operators. On the other
hand, Python and R offer extensive library support to analysts
outside standard built-in libraries. Moreover, advancement
in hardware, simplicity, machine independency, and library
support has made analysts high-level languages like Python or
R as their favorite choice for data analysis.

Although deep learning is currently popular and being used
by many data analysts [1], [8], it is still computationally
expensive and analysts often rely on trial and error to find
a working model. On the other hand analytic languages like
Python, R provide comprehensive libraries to support machine
learning and statistical computation. However, they are not
designed to scale to large data sets. Also, there are issues

of memory management and speed for large data sets. These
factors create a dilemma for the analyst. In this work, we focus
on the R language and present an efficient way to compute
several ML models exploiting the R language interpreter and
summarization mechanism. Data summarization is also another
popular technique among machine learning practitioners to
accelerate ML computations [10], [12], [14].

Our contributions are: (1) We introduce a new matrix
multiplication operator in the R language that helps summarize
the large data sets without RAM limitation. (2) We detect
the Gramian (or Gram) matrix products and overrides the
internal R matrix multiplication algorithm using ours. (3) We
present parallel processing aspects to compute summarization
to compete with other existing big data solutions. Though
modifying the R parser is not easy, we understand how R does it,
and we modify the parser to override the matrix multiplication
operator. We combine R with C++ for efficiency and overcome
the main memory limitation. Our summarization benefits a
large family of linear models including Linear Regression
(LR), Principal Component Analysis (PCA), and Naı̈ve Bayes
(NB) [4]. Analysts compute the models much faster than R
built-in functions as well as write short, elegant R source code.
Finally, given the fact that there are many R scripts, it is easier
to plug in our optimization than rewriting them to work in
some Hadoop platform (e.g. Spark).

II. PRELIMINARIES

A. Mathematical Definitions

We start by defining the input matrix X which is a set of
n column vectors. All the models take a d× n matrix X as
input. We use d× n for convenience of math notation but in
practice X is stored n× d. Let the input data set be defined
as X = {x1, ..., xn} with n points, where each point xi is a
vector in Rd. In the case of predictive models, we augment X
with a (d+ 1) dimension: an output variable Y for regression
or discrete attribute G for the class (most commonly binary),
making X a (d+1)×n matrix and we call it X. We represent
Θ as a statistical or ML model (LR, PCA, NB).

B. Matrix Multiplication in the R Language

There are several ways to compute the matrix multiplication
in R. The most common way of doing that in R is by using
the % ∗% operator. This operator multiplies two matrices if
they are compatible. If one argument is a vector, it will be
promoted to either a row or column matrix to make the two



arguments compatible. If both are vectors of the same length,
it will return the inner product (as a matrix). Another method
is the sum of the vectorized product of rows. In this case, we
slice the rows of the first matrix and the columns of the second
matrix as separate vectors. Then we compute the sum of the
products of corresponding rows and columns and store it in
a new matrix, like using two loops. An example of % ∗% in
R to get the mean and variance of X with n rows is given
below:
mu = colSums(X) /n
var = (t(X) %*% X)/n - (t(mu) %*% mu)

In this work, we will create a new operator (∗) different from
this % ∗% operator and we will give it a different meaning:
Gramian matrix or Gram matrix multiplication operator.

III. A POWERFUL MATRIX MULTIPLICATION IN R

First, we review the summarization matrix from our previous
work. Then, we present our R scripts to compute the ML
models and discuss how we detect the Gramian matrix product
and override the internal R matrix multiplication. Finally, we
discuss the parallel processing aspects of our solution.

A. Summarization Matrix

We first review the Gamma summarization matrix (Γ) [4],
[12] and computation of several ML models (Θ) exploiting Γ.
The main algorithm had 2 phases.

• Phase 1: Computation of Summarization Matrix; one Γ
matrix or k-Γ matrices.

• Phase 2: Computation of model Θ based on the Γ matrix
(or matrices).

1) Phase 1: If we consider X as the input data set, n counts
the total number of points in the dataset, L is the linear sum
of xi, and Q is the sum of vector outer products of xi, then
from [12], the Gamma (Γ) is defined below in Eq. 1. We first
define n, L, Q as: n = |X|, L =

∑n
i=1 xi, and Q = XXT =∑n

i=1 xi · xTi . Now, the Gamma (Γ) matrix:
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X is defined as a d × n matrix, and Z is defined as a
(d + 2) × n matrix (X augmented with extra row of n 1s).
From [12], we can easily understand that Γ matrix can be
computed in the two ways: (1) matrix-matrix multiplication
i.e., ZZT . (2) sum of vector outer products i.e.,

∑
i zi · zTi .

So, in short, the Gamma computation can be defined as: Γ =
ZZT =

∑n
i=1 zi · zTi .

Now, from [4], k-Gamma (Γk) is given in Eq. 2. The major
difference between the two forms of Gamma is, we do not
require parameters off the diagonal in Γk as in Γ. Here, we need
only a few parameters out of the whole Γ, namely, n,L, LT , Q.
Also, in Γ, the Q is computed completely whereas in Γk, the

Q is diagonal. So, we can also call this a Diagonal-Gamma
matrix.

Γk =

 n LT 0
L Q 0
0 0 0

 , where Q =

 Q11 0... 0
0 Q22... 0
0 0... Qdd


(2)

2) Phase 2: Now, we briefly discuss how to compute the
ML models using the Γ and Γk matrix. A detailed explanation
can be found in [4].

a) Linear Regression (LR): We can get the column vector
of regression coefficients (β̂), from the above mentioned Γ,
with: β̂ = Q−1(XY T )

b) Principal Component Analysis (PCA): There are
two parameters, namely the set of orthogonal vectors U ,
and the diagonal matrix (D2) which contains the squared
Eigen values. We compute ρ, the correlation matrix as
ρ = UD2UT = (UD2UT )T . Then we compute PCA from
the ρ by solving Singular Value Decomposition (SVD) on
it. Also, we express ρ in terms of sufficient statistics as:
ρab = (nQab − LaLb)/(

√
nQaa − L2

a

√
nQbb − L2

b)
c) Naı̈ve Bayes (NB): Here, we need the k-Gamma matrix.

We compute NG, LG, QG as discussed in Phase 1 for each
class. The output is three model parameters: mean (C), variance
(R), and the prior probabilities (W ). We can compute these
parameters from the Γk matrix for each class label with the
following statistical relations.

WG =
nG
n

; CG =
LG

nG
; RG =

QG

nG
− diag [LGL

T
G]

n2
G

(3)

B. Automatic Optimization of R programs

Here, we present the R source code to compute the
summarization matrix and the models step by step in the R
interpreter. While the summarization matrix can be exploited
to compute many models, we are showing some representative
models here. A detailed explanation of how we parse, detect,
and compute summarization is given below.

1) Exploratory Statistics: We can compute exploratory
statistics from Gamma like mean, variance, and correlation
based on n, L, and Q. These are common computations and
can tell a lot about the data. The analyst can also exploit these
statistics to compute other models as they appear frequently
in machine learning models. Analysts may also get a subset
of data (e.g. separate data based on gender or age) and see
the statistics there using Γ. The R source code to compute
mean, variance, and correlation is given below in Listing 1.
How we detect Γ computation in the R source code, compute
it escaping main memory limitation, and hide the details from
the user is discussed in Section III-C.

Listing 1: R source code to compute the mean, variance and
correlation.
x = read.csv(’YearPredictionMSD.csv’)
Z = Z(x)
gamma = t(Z) * Z

d_plus2 = length(gamma[1,])
d = d_plus2 - 1
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n = gamma[1,1]
L = gamma[2:d,1]
Q = gamma[2:d,2:d]

mu = L/n #mean
variance = Q/n - L*L/(nˆ2) #variance
corr.matrix = matrix(nrow = length(Q[1,]),

ncol = length(Q[1,]),0)
for (a in 1:length(Q[1,])) {
denom_1 = sqrt((n*Q[a,a]) - (L[a]*L[a]))
for (b in 1:length(Q[1,])) {

numerator = ((n*Q[a,b]) - (L[a]*L[b]))
denom_2 = sqrt((n*Q[b,b]) - (L[b]*L[b]))
corr.matrix[a,b] = numerator/(denom_1*denom_2)}

}
return list(mu,variance,corr.matrix)

2) Linear Regression (LR): For LR, we can get the re-
gression coefficient (β̂) as mentioned in Section III-A. The
R source code is shown in Listing 2. First, we compute Γ
(gamma) on the data set (x). From gamma we compute Q
and XY T . And then we compute Beta by getting the inverse
of Q and multiplying with XY T . We use R built in function
solve() to get the inverse of Q.

Listing 2: R source code to compute the LR model.
x = read.csv(’YearPredictionMSD.csv’)
Z = Z(x)
gamma = t(Z) * Z

d_plus2 = length(gamma[1,])
Q = gamma[1:(d_plus2-1), 1:(d_plus2-1)]
XYT = gamma[1:(d_plus2-1), d_plus2]
Beta = solve(Q) * XYT
return Beta

3) Principal Component Analysis (PCA): Similar to Listing
1, first we detect and compute Γ (gamma) from the data
set (x). Then, from the gamma, we get the values of n, L,
and Q, and from these values we get the correlation matrix
(corr.matrix) as given in Listing 1. Finally, we compute the
SVD of the correlation matrix using the R built-in function
(svd(corr.matrix)). As the R code is similar to Listing 1
except for the svd() computation part, we are not showing the
R code due to page limitation.

4) Naı̈ve Bayes (NB): We compute NB based on Γk matrices.
However, we have to split the data set based on class labels (k)
and compute Γ for each class. So, here the Γ computation is
different than LR and PCA as we split the data set and create
a subset based on class labels. Then for each gamma class
we get the values on n, L and Q. Finally, we compute prior,
mu and sigma (from R source code in Listing 3) as given in
Eq 3 for each gamma class and return them as a list to the
model.

Listing 3: R source code to compute the NB model.
credit = read.csv(’creditcard.csv’)
nGlobal = dim(credit)[1]
gamma = by(credit, list(class=credit$V31),

FUN = function(x){
xj <- as.matrix(subset(x, select= -V31))
Z = Z(xj)
gamma = t(Z) * Z

})

model = apply(gamma, 1, function(x){
x_list = unlist(x)
gamma_class = matrix(x_list,

nrow = sqrt(length(x_list)),
ncol = sqrt(length(x_list))) #G=class

d_plus1 = nrow(gamma_class)
n = gamma_class[1,1]
L = gamma_class[2:d_plus1,1]
Q = diag(gamma_class[2:d_plus1,2:d_plus1])

prior = n/nGlobal
mu = L/n
sigma = Q/n - (L/n)ˆ2)
return(list(prior, mu, sigma))

})
return model

C. Extending the R Language with an Efficient Gramian Matrix
Multiplication Operator

First, we discuss several ways to program Γ in plain R
source code. We show this to justify why our solution with a
multiplication operator is needed. The ”brute-force” approach
will be using three nested loops. We are not showing the source
code of this as it is inefficient and have high time complexity.
Another approach will be using a vectorized multiplication
technique. Γ computed this way is slightly more efficient than
the previous one. However, it is still slow and nobody would
attempt to do this unless they have Γ in mind or they know
well how matrix multiplication works (i.e. not the average
analyst). So, it is important to have our solution with C++ that
can compute Γ faster and efficiently than R itself.

In our work, we build the new operator (∗) by overriding an
existing operator in the R language. Though this ∗ operator is
not used for matrix multiplication in R, we give this ∗ operator
a different meaning: Gramian or Gram matrix multiplication.
Instead of rebuilding the matrix multiplication operator from
scratch, we built it using R’s extensibility features, and our
changes are a minimal change in the R parser. First, we parse
the source code to detect a special type of matrix multiplication,
t(X) ∗X or X ∗ t(X). We emphasize that computing X ∗XT

is a common form of matrix multiplication and it appears on
many ML models as it is related to the covariance matrix
(e.g. gaussian mixture, PCA, SVM, time series models). We
presented some of the representative models in Section III-B.
We use an R language parser that will parse the R source
code for this special case of matrix multiplication. If the
parser detects this multiplication operation, it calls our Gamma
package inside the evaluation. This is where we modify the
R’s evaluation. The grammar to override the operator is given
below.
<Gramian>::= <matrix> * t(<matrix>)
<Gramian>::= t(<matrix>) * <matrix>

The grammar shows “matrix” can be on both left and right
sides. We do not require the analyst to compute Gamma in a
specific way as Γ is O(d2) [12]. Specifying it in one fixed way
may get confusing to the analyst and writing it the other way
will have the same complexity. So, the data set (X) can be
stored as d×n or n×d. Our parser will be able to handle both
kinds of operations. If the parser detects any such operation
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(a) (b)

Fig. 1: Compute the summarization matrix in (a) one machine
(b) parallel N machines.

in the file, then it calls Gamma based on the model being
computed i.e., it calls Gamma function if the model is LR or
PCA, else it calls the k-Gamma if the model is NB. To compute
Γ or Γk, we adapted the scalability of the matrix multiplication
from [4]. We show the full process in Fig 1(a) for a single
machine. In short, we read the data in blocks and perform the
matrix multiplication in C++ and return the result to the R
language. As we are reading the data in blocks, we compute Γ
for each block (Γ∆), and add it with the Γ computed up to the
previous block (Γ = Γ + Γ∆). This way we update Γ in RAM
incrementally and it can be maintained in the RAM. Reading
data by blocks also gives us the flexibility to read data sets
bigger than the RAM. But all these details are hidden from
end-user, who will only see the R source code like the ones in
Listing 1, 2, and 3. Though we present Gamma computation
in general, our solution can help computing X ∗ XT as a
particular case.

In this paper, our prime focus is to make the Γ computation
transparent and how an analyst can easily make changes to
the algorithm as he tries different things using the Γ matrix.
Source codes in R are similar to macros, which when executes
behave as though analysts had typed those commands into the
command window. Thus, all variables created in the program
are added to the R workspace of that current session. This can
be handy while computing several models on the same data
set that require the same type of Γ matrix. For example, from
Listing 2, the model computation steps are unique for each
model. So, we can reuse the Γ computed from the LR model
while computing PCA and vice versa as Γ is already in the
workspace.

D. Parallel Processing Aspects (Big Data)

The summarization matrix proposed in Section III-A is fully
parallel and it has been implemented for DBMSs before [13].
Here, we explain how it can work outside a DBMS architecture.
Let us assume we have parallel N processing nodes (d << n
and N << n). Computing t(Z) ∗Z or Z ∗ t(Z) can be easily
parallelized as we can compute this on partial data sets in
each node and then add them on the master node to get the
final result. We emphasize that only computing t(Z) ∗ Z or
Z ∗ t(Z) can be parallelized and then the remaining of the

TABLE I: Base data sets description

Data set d n Description Model
CreditCard 30 285K raise in credit line NB
YearPredictionMSD 90 515K rain or not LR, PCA

scripts in Listing 1, 2, and 3 should be done in one machine
as R by default works better in a single machine. The idea
is to first detect the Γ operation in the source code as before.
Then instead of computing Γ in one machine, we partition the
data set X (X1, X2, ..., XN ) and transfer the partial data sets
to N machines. Then in each machine, we compute local Γ
(Γ1,Γ2, ...,ΓN ) on the partial data set using the methodology
discussed in Section III-C. Each local Γ is a d×d matrix. Next,
we send all the local Γs to the master node and we compute
the final summarization matrix with a simple matrix addition:
Γ = Γ1 + Γ2 + ...+ ΓN . Then, this Γ can be used to compute
the models using the R scripts given in Section III-B. The full
process to compute Γ in parallel is shown in Fig 1(b).

The main bottleneck of this method is partitioning the data
set X into N machines. We explain in more detail why this is
a bottleneck in Section IV-D. Partitioning a large file among
several machines has been studied and implemented efficiently
by HDFS [15] and parallel DBMSs [17] and it is beyond the
scope of this paper. However, as each local Γ is a d×d matrix,
transferring them to the master node is much faster.

E. Time Complexity Analysis

From [4], it is clear that the computation time for Γ is O(d2n)
and Γk is O(dn) if the processing happens in a single machine.
For parallel computation, the complexity will be changed to
O(d2n/N) and O(dn/N) respectively. The time complexity of
the parser is O(1) as the number of lines in the R source code
is independent of d or n. We take advantage of Γ (or Γk) to
accelerate computing the ML models. So, the time complexity
of this part does not depend on n and is Ω(d3). In the case of
parallel computation, transferring all the local Γs to the master
node at once is: O(d2), for sequential transfer: O(d2N), and
for hierarchical binary tree fashion: O(d2N + log2(N)d2).

IV. EXPERIMENTAL EVALUATION

Here, we compare our proposed solution with built-in R and
our previous approach in [4]. We also compare with Spark
running in parallel clusters to show our solution can compete
in the big data space.

A. Experimental Setup

The system used for the experiments is one with Pentium(R)
Quadcore CPU running at 1.60 GHz with Linux Ubuntu as the
operating system. The system has 8 GB of Physical Memory
and 1 TB of storage space. For parallel processing, we perform
our experiments using an 8-node parallel cluster each with the
same configuration as above. We developed our solutions using
standard R and C++.

The data sets are summarized in Table I. They are obtained
from the UCI machine learning repository. We have already
showed in [4] that we can get more than 99% accurate model
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using ”original” data sets by our summarization mechanism.
Hence, we are not repeating the same experiments here.

B. Parsing R Source Code

We use R to parse the R source code and detect the
Gamma computation. How we detect the Gamma computation
is discussed in section III-C. The parsing is fast even though we
do it in R (< 1 sec) and not in C++. And the time to override
the “*” is also done in a fraction of seconds (< 1 sec). We also
detect what type of model the code is computing. Based on the
type of model computation, we call Gamma or k-Gamma. We
also import (load) the previous library to compute Gamma in
C++ [4]. That time is also minimal (< 1 sec) and negligible.We
emphasize that we do not need an LR or recursive parser
because we assume Gamma appears once in one R line and
therefore there is no recursion in the grammar. However, an
entire matrix equation does indeed require a recursive grammar,
but that is handled by the R grammar.

C. Benchmarking

TABLE II: Time to compute X ∗ t(X) using multiplication
operators in R (in Seconds) (M= Millions).

Matrix (n× d) %*% (R) Vectorized mul. (R) Gamma
0.5M × 91 10 292 5
1M × 9 1 6 1
1M × 91 66 588 10
10M × 30 Stop Stop 1000

First, we compare our Gamma matrix with the standard
matrix multiplication operators in R as discussed in Section
II-B to show why our multiplication scheme is needed. We
present the result of multiplying a matrix with itself (X ∗ t(X))
for varying n and d in Table II. Here, it is clear that our Gamma
computation is much faster than the other two methods. And
when the matrix dimension is high, the other two methods fail
to compute the multiplication in a reasonable time and they
do not scale well. We put ”Stop” if the computation is not
finished in 30 minutes.

TABLE III: Time to compute LR and PCA on YearPrediction-
MSD Data set (in Seconds).

LR PCA
n d R Γ-R Γ-RLang R Γ-R Γ-RLang

1M 91 630 74 55 575 66 60
10M 91 Fail 720 569 Fail 726 570

1M 9 24 6 7 21 9 7
10M 9 285 91 78 205 91 78

100M 9 Fail 941 820 Fail 1018 802

TABLE IV: Time to compute Naı̈ve Bayes on CreditCard data
set (in Seconds).

n d R Γ-R Γ-RLang
1M 30 158 40 32

10M 30 Crash 399 312
100M 30 Crash 1132 Stop

Now, we compare the performance of the models computed
by our solution with the models computed by the currently

available best packages in R, and with the models computed by
the Γ-R package [4]. We want to show that our solution is much
faster than R built-in packages and it performs almost as good as
our previous solution. To compute our models we need to parse
the R code first, detect a Gamma computation, and then call our
method. We report the time including these computations done
in Section IV-B. In Table III, we present a time comparison
of the LR and PCA model computations with our solution (Γ-
RLang) and the aforementioned standards (R and Γ-R). Table
IV shows the time to compute the NB model. As the size
of the data set grows, the standard R packages crash due to
insufficient main memory, but our solution performs almost as
good as the Γ-R package. However, NB script from Listing 3
shows that we are using built-in R functions (apply(), unlist())
to compute the models that tends to make the computation
slower than the previous one (Γ-R) where we could use C++
functions to escape these pitfalls. As the analyst is developing
the script in R, we used the R built-in functions for the model
computation. In short, our solution provides the analysts faster
execution than R built-in routines and greater flexibility to
analyze the data sets than our previous solution without much
time compensation.

D. Comparison with a Parallel Big Data System: Spark

Here, we compare our solution with Spark, a popular parallel
data processing engine developed to provide faster and easy-to-
use analytics. For that, we partition the data sets using HDFS
and then run the models using the Spark-MLlib library (with
Scala), Spark’s scalable machine learning library to run the
ML models. We used the available functions in MLlib and
we emphasize that we used the recommended settings and
parameters as given in the library documentation.

Table V compares our solution with Spark-MLlib in parallel
N = 8 machines. Here, we are taking data sets with varying
n (n=1M, 10M, 100M) and medium d (d=10) to demonstrate
how large data sets perform on both. For our solution, we
assume that data to be analyzed can be stored in the file system,
in HDFS, or already partitioned in disks. If data is in the file
system, we need to partition the data set among N machines.
Data can be also in HDFS as it is a popular platform to store
huge data sets. In that case, we have to export the data and then
partition it among N machines. Finally, if the data set is already
partitioned, we do not have to do any partitioning. From Table
V, the ’Partition’ column is the time to partition X among
N processing nodes. We used the standard and fastest UNIX
commands available to perform this operation. The ’Export
from HDFS’ column is the time to export the data set X
from HDFS to the local machine. And the ’Compute Γ and Θ’
column is the time to compute Γ in parallel N machines, send
them to the master node to compute the final summarization
matrix and compute the ML model (Θ) from it. In the Spark
part of Table V, ’HDFS Partition’ is the time to load and
distribute the data set in HDFS among N machines. And we
report the time to compute the models using Spark-MLlib in
the ’Compute Θ’ column.
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TABLE V: Time (in Seconds) to compute the ML models with our solution and in Spark (N = 8 nodes; M=Millions)

Θ Our solution (N=8) Spark (N=8)
(Data set) n d Partition Export from HDFS Compute Γ and Θ HDFS Partition Compute Θ
LR 1M 10 9 6 12 7 41
(Year- 10M 10 23 13 29 17 286
Prediction) 100M 10 317 96 218 161 1780
PCA 1M 10 9 6 12 7 15
(Year- 10M 10 23 13 29 17 46
Prediction) 100M 10 317 96 218 161 277
NB 1M 10 11 6 13 7 Crash
(credit- 10M 10 28 17 36 25 Crash
card) 100M 10 335 125 252 231 Crash

(a) LR (b) PCA (c) NB

Fig. 2: Total time (in Seconds) for ML models using different approaches (M=millions).

Despite HDFS being faster to partition the data sets, the
time to compute the model (Θ) is much slower in Spark.
However, Spark uses a similar algorithm as ours to compute
PCA. It computes XT .X by computing the outer product of
each row of the matrix itself, then adds all the result up which
is similar to compute Q of Γ. In the case of LR, Spark trains
the model using Stochastic Gradient Descent (SGD) which
solves the least square regression formulation. This results in
slower execution of the model as shown in Table V. For NB,
Spark implements multinominal NB that takes RDD of labeled
point and an optional smoothing parameter as input. The major
drawback of this model is, having negative values in the data
set crashes the model showing ”illegalArgumentException”
which has happened for the Creditcard data set here.

Fig 2 shows the total time to compute the ML models using
different approaches discussed above. The plots are generated
based on Table V. We simply add the times to get the total
time for different approaches. We can see that if the data set
is already partitioned, computing the models utilizing the Γ
matrix is fast in all cases. Computing models by partitioning
the data set or exporting from HDFS and then partitioning
takes a bit more time. On the other hand, Spark is mostly
slow compared to any of our approaches. As Spark crashes
during the execution of NB, there is no plot for Spark in Fig
2(c). If we analyze the plots more carefully, we can see that
only computing model with Γ (Gamma+Model) is at least 2X
faster than other approaches. That is, the data set is already
partitioned among N machines. In the other two methods,
we have to perform partitioning the data set (when data is
in the file system), or export from HDFS and then perform
partitioning (when data is in HDFS). Both cases are a bit

TABLE VI: Time to load data in parallel (in Seconds).

n d Our method (N = 8 nodes) DBMS (N = 8 nodes)
1M 10 9 29

10M 10 23 141
100M 10 317 1711

slower. The reason behind that is we are partitioning the text
(.csv) files, not binary files. This is a bottleneck and taking a
long time as we mentioned in Section III-D. However, it is
due to the file format and not a shortcoming of our solution.
We present Table VI to prove our aforementioned argument.
It shows the time to load the data set in parallel for both our
method and a parallel columnar DBMS. Parallel DBMSs can
send blocks efficiently in parallel among the processing nodes.
However, it is still much slower than our method. Moreover,
R can read binary files and as we can call C++ code from R,
it is possible to read binary files efficiently in R (but CSV is
most common).

V. RELATED WORK

We first discuss the general related work of other researchers.
Many systems improved the efficiency of the R language
for large data sets. S. Sridharan et al. [16] addresses the
limitation of R by systematically cataloging where time is
spent when running R programs. According to S. Sridharan et
al. when analyzing large data sets, R programs spends most
time in processor stalls, trigger garbage collector frequently
and creating a large number of unnecessary temporary objects.
Ricardo [6], developed by IBM, combines the data management
capabilities of Hadoop and Jaql with the statistical functionality
provided by R. El-Khamara et al. in [9] argued that it is
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possible to enable massive parallelism with existing R solutions
with little to no modification. Also, Subramanian et al. in
[18] propose a framework that provides users with access
to high-performance computing resources with R through a
web user interface. With higher data volume and varied data
types, many new machine learning models and algorithms
aiming at scalable applications [2], [5], [11], [13]. Large-scale
distributed classification methods for Spark was proposed by
[11], where the authors used the Newton methods for solving
logistic regression and SVM. On the other hand, for handling
large data sets in Python, two libraries was proposed in [5].

We conclude our discussion comparing with our previous
works. Summarization of large data sets was first proposed for
DBMS in [12] combining UDFs and SQL queries. Being a
mathematical language, it is much easier to manipulate vectors
and matrices in R than in DBMS. We use Rcpp [7] to integrate
R and C++. Also, any average analyst will mostly use R for
computing ML models than using SQL and UDF. Taylor et al.
proposed iotools [3], which provides a set of tools for input and
output intensive data processing in R. This enables to process
data block by block and allows scalability in R. Our work is
scalable, simpler, and has more impact as X ∗ XT appears
almost everywhere in ML model computation. Algorithms to
compute the models discussed in this paper were first proposed
in [4] utilizing R. In this paper, we adapted the algorithms
from [4] and express them in a more mathematical way which
can be used in the R interpreter. Also, we provide exploratory
statistics that can help the analysts to explore data sets, combine
multiple models, and compute other models using our solution.
Moreover, we present the parallel processing aspect here which
was were not investigated in [4]. Parallel processing helps our
solution to handle even larger data sets than before.

VI. CONCLUSIONS

We introduced a new operator for the summarization of
large data sets by matrix multiplication that can be used in
R source code. Alongside developing the clean, elegant, and
intuitive scripts, we also preserved the approaches to solve the
main memory limitation in the R language and achieve high
speed by computing the summarization matrix in the C++ code.
Though the evaluation is difficult, we hide the details from the
analysts and the analysts can perform analysis with standard
and short R programs. Parsing and detecting expression where
our summarization matrix can help can be done efficiently in a
fraction of 1 second. Our parse just needs one pass to detect and
evaluate certain sub-steps more efficiently. We also presented
the parallel processing aspects to handle even larger data sets.
Our proposal works for many ML models that have mean,
variance, covariance, or correlation computations. We used
LR, PCA, NB as common examples. Our time performance
experiments show that our solution is faster and more scalable
than the built-in functions in R. Furthermore, our parallel
approach performs much better than Spark although partitioning
the data set among the machines remains a bottleneck.

We believe that apart from looking for just one instance
of matrix multiplication in a R program, future research

should look for detecting R programs where it may appear
multiple times. We want to explore the other statistical and
ML computations that may be benefited: most salient example
statistical tests like means comparison, chi-square, and so on.
However, there may be other computations in an R program
that do not benefit from our solution. For instance, log() on
vectors, splitting variables in decision trees, histograms because
they are not based on vector or matrix multiplications. It is
likely our approach can work in other ”analytic” languages like
Matlab and Python, but the effort to modify their parsers and
run-time evaluation may be significant. Nevertheless, as future
work, we intend to study the applicability of our summarization
operator in other areas of research such as image recognition,
text processing, and mathematical optimization methods.

REFERENCES

[1] Aizman, A., Maltby, G., Breuel, T.: High performance I/O for large scale
deep learning. In: 2019 IEEE International Conference on Big Data (Big
Data). pp. 5965–5967. IEEE (2019)

[2] Al-Amin, S.T., Ordonez, C.: Scalable machine learning on popular
analytic languages with parallel data summarization. In: Big Data
Analytics and Knowledge Discovery- DaWaK 2020. vol. 12393, pp.
269–284 (2020)

[3] Arnold, T., Kane, M.J., Urbanek, S.: iotools: High-Performance I/O Tools
for R. The R Journal pp. 6–13 (2017)

[4] Chebolu, S.U.S., Ordonez, C., Al-Amin, S.T.: Scalable machine learning
in the R language using a summarization matrix. In: Database and Expert
Systems Applications DEXA. pp. 247–262 (2019)

[5] Crist, J.: Dask & numba: Simple libraries for optimizing scientific python
code. In: 2016 IEEE International Conference on Big Data,. pp. 2342–
2343 (2016)

[6] Das, S., Sismanis, Y., Beyer, K., Gemulla, R., Haas, P., McPherson,
J.: RICARDO: integrating R and hadoop. In: Proc. ACM SIGMOD
Conference. pp. 987–998 (2010)

[7] Eddelbuettel, D.: Seamless R and C++ Integration with Rcpp. Springer,
New York (2013)

[8] Garg, S., Krishnan, R., Jagannathan, S., Samaranayake, V.A.: Distributed
learning of deep sparse neural networks for high-dimensional classifica-
tion. In: IEEE International Conference on Big Data, Big Data 2018. pp.
1587–1592. IEEE (2018)

[9] Khamra, Y.E., Gaffney, N., Walling, D., et. al: Performance evaluation
of R with intel xeon phi coprocessor. In: IEEE International Conference
on Big Data. pp. 23–30 (2013)

[10] Li, F., Nath, S.: Scalable data summarization on big data. Distributed
and Parallel Databases 32(3), 313–314 (2014)

[11] Lin, C., Tsai, C., Lee, C., Lin, C.: Large-scale logistic regression and
linear support vector machines using spark. In: 2014 IEEE International
Conference on Big Data. pp. 519–528 (2014)

[12] Ordonez, C., Zhang, Y., Cabrera, W.: The Gamma matrix to summarize
dense and sparse data sets for big data analytics. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 28(7), 1906–1918 (2016)

[13] Ordonez, C., Zhang, Y., Johnsson, S.L.: Scalable machine learning
computing a data summarization matrix with a parallel array DBMS.
Distributed and Parallel Databases 37(3), 329–350 (2019)

[14] Shah, Z., Mahmood, A.N.: A summarization paradigm for big data. In:
2014 IEEE International Conference on Big Data. pp. 61–63 (2014)

[15] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed
file system. In: IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST. pp. 1–10. IEEE Computer Society (2010)

[16] Sridharan, S., Patel, J.: Profiling r on a contemporary processor.
Proceedings of the VLDB Endowment 8, 173–184 (2014)

[17] Stonebraker, M., Abadi, D., DeWitt, D., Madden, S., Paulson, E., Pavlo,
A., Rasin, A.: MapReduce and parallel DBMSs: friends or foes? Commun.
ACM 53(1), 64–71 (2010)

[18] Subramanian, R., Zhang, H.: Parallel R computing on the web. In: 2019
IEEE International Conference on Big Data (Big Data). pp. 3416–3423
(2019)

7


