
Monitoring Networks with Queries
Evaluated by Edge Computing

Quangtri Thai
∗

University of Houston§

USA

Carlos Ordonez
University of Houston§

USA

Omprakash Gnawali
University of Houston§

USA

Abstract—Monitoring networks requires efficiently detecting
abnormal events and summarizing connection information in
big volumes of packet-level data. Some of these tasks can be
accomplished with network and operating system utilities, but
the questions should be relatively simple and each tool is designed
to provide specific analysis. Another requirement is to be able
to process data both in a centralized and decentralized manner,
given the diversity in instrumentation and vantage points. On
the other hand, database systems can answer complex questions
phrased as queries, provided data is in the right format and
is quickly loaded. Having such motivation in mind, we propose
to monitor a network with queries, running on a traditional
DBMS (i.e. not a custom-built system programmed in C or
C++). Thus, queries can be processed in a central manner in
a traditional database server or in a distributed fashion, with
edge computing. Our experimental evaluation shows queries can
indeed be used to monitor the network with low latency and
reasonable delay on a low-resource device like the Raspberry
Pi. We explain some interesting findings in a local network. In
addition, we show queries can be efficiently evaluated in a small
computing device capturing local traffic, showing promise for
distributed monitoring.

Index Terms—edge computing, SQL, network, monitoring,
stream, network packet.

I. INTRODUCTION

Over the last decade, researchers have increasingly adopted
the use of testbeds to bring realism in their network experi-
ments or used instrumentation in real networks to understand
the network packet patterns. The testbeds allow researchers
to capture a large volume of somewhat realistic data traces
from the network, but many of these testbeds do not provide
a powerful, flexible, and practical network data analysis tool.
Such lack of tools has led researchers to use either basic
network diagnostics tools (e.g., derivatives of ping, traceroute)
or roll out their own custom tools leading to inefficiency in
testbed based wireless networking research.

The availability of testbeds and instrumentation data from
realistic environments are evidence of progress the research
community has made, but we also observe a general lack
of standard and flexible data analysis capability to fully take
advantage of these powerful testbeds. For example, tools such
as ping and traceroute are adequate for certain near-real time
network data analysis, but these tools may find historical data

§Department of Computer Science, University of Houston, Houston TX
77204, USA∗

trithai45@gmail.com

processing a bit harder and is often not as flexible apart from
their given task. While there are more sophisticated tools
developed by researchers [7], [20], they are unable to provide
a flexible way to allow custom, real-time queries that the user
may want to run.

Our solution to this problem is informed by two principles.
First, leverage the common architecture used by these testbeds
and networks to export network packet data to the researchers.
Second, rather than reinvent yet another data processing frame-
work to process the packet data, leverage existing technologies
that are known to be effective in other domains with similar
data properties.

Combining the use of SQL to store and analyze network
streams from a tool like Tshark is a fast and flexible option
when compared to the standard tools provided by Linux, al-
lowing for historical data processing. Using SQL will provide
more custom and complex queries while keeping it simple,
flexible, and scalable [13]. Streams will be captured in small
batches with Tshark, then added and analyzed in Postgres
with SQL to give a historical analysis of the data. While
using custom Python/R code for data analysis can provide
further specialized queries, this comes with the price of being
much harder to implement and is much more of a hassle to
change and specialize to a different task. SQL-like queries are
also another alternative but lacks in power, clarity, and data
management when compared to SQL. Our solution will allow
a more interactive and flexible exploration of network data
by researchers. Furthermore, our evaluation shows that it is
feasible to run this system on modern edge devices like the
Raspberry Pi thereby allowing the researchers to use the same
analytical tools on the testbed nodes or their desktops/laptops
leading to significant reuse of analysis code. These devices
are deployed in many wireless testbeds today and represent a
low-cost and low-resource node that has enabled the scaling
of many wireless testbeds.

In this paper, we study how viable it is to monitor and
analyze a network stream through the use of SQL in both a
centralized and distributed manner. This involves tackling two
of the five V’s in big data, volume and velocity. We then study
the feasibility of implementing a query system, an intensive
and complicated system, directly on the edge device and run
it reasonably efficiently for both near real-time and historical
data analysis. The edge device will bring along complications
from its limited hardware, causing possible inconsistencies



or limitations. We will look into how to overcome these
complications as we move forward. The network stream will
be continuously captured and processed on the Raspberry
Pi while measuring how long each step takes. We analyzed
the captured data using the tools we developed and measure
the processing latency to see how viable it is on a low-
resource device such as the Raspberry Pi. We also try to
understand how well the system scales with increasing stream
size and devices. By doing so, we hope to create a more
secure network by allowing accessible detection of abnormal
sessions/connections, improving the quality of service in turn.

Our contributions are: (1) Modeling the network instrumen-
tation as streaming data processing using SQL. (2) Formulat-
ing different streaming queries that are relevant for network
monitoring. (3) Implementing and evaluating a light-weight
DB and SQL-based network instrumentation system on an
edge device and overcoming the complications that arise from
using a low-resource device.

II. BACKGROUND AND DEFINITIONS

A. Network Data Stream and Flow

We first describe our model of the data stream as it
pertains to network monitoring. A stream is an unbounded
timestamped sequence of data points < ts, t >, where
ts is the timestamp and t is the tuple of data [19]. As
such, our stream will give us at least a data point of
< ts, src, src port, dst, dst port, protocol, len, info > to
sufficiently answer our queries. This data point will be gotten
from filtering our stream using Tshark, then processed and
stored in a database where our queries can make use of
the data. The data can then be further summarized, allowing
us to improve the efficiency of these queries. Data streams
can be further compressed into flows. Flows represent a
grouping of data points in which certain characteristics of
the data points remain consistent throughout. We will later
represent our streams as flows based on the characteristics
src, src port, dst, dst port, protocol.

B. Basic Queries

There are two types of queries to analyze stream data:
one-time queries and continuous queries (materialized views).
The one-time queries are the queries being used in traditional
DBMS, where the query is computed from scratch every
time. Continuous queries are used in modern stream database
systems that updates the results as new data arrives. In this
paper, we use continuous queries to replicate real situations.

As shown in Figure 1, Specific data will be extracted and
queried from the stream using the Raspberry Pi. This would
include timestamps, source, destination, length, and info. From
these fields, we can obtain various info on the stream by
grouping, summarizing, and joining them in different ways.

Time window: In a data stream, data continuously arrives as
the old data are still being processed. Hence a time window is
required on every query to purge the records falling outside the
range. It is worth noting that once the data resides within the
database, it can be queried multiple times on different time

windows. In other words, data is loaded once and queried
multiple times.

Fig. 1: Monitoring by sniffing network packets.

III. MONITORING NETWORK STREAMS WITH QUERIES

We seek to monitor and analyze the network using SQL
commands on the edge devices. We follow this approach
because of the many advantages and flexibility SQL would
offer. This would include practically unlimited storage, flex-
ibility in querying, and scalability. Relational databases, like
Postgres, have built-in mechanisms for keeping data integrity
to eliminate duplicate data and allow more flexible queries
to be carried out. While languages like Python/R can meet
these needs, it comes with the price of increased time and
complexity to implement and change these features to our
needs. While there are SQL-like queries available in some
languages or libraries, they aren’t as powerful and don’t
provide as much clarity and data management as SQL. As
such we look at SQL to compress the data stream, summarize
the data, and analyze the data stream. SQL allows the user
to answer many complex questions with little programming
effort, providing insight not available in traditional network
tools and OS commands.

A. Query Processing

1) Understanding traffic volume between source and desti-
nation: The query with group by aggregation will be used
to understand the traffic passing through our data stream.
Our query groups the source and destination to give us a
count of the packets passing through the stream between a
set time window. This can easily be modified to give us other
information about the stream.

SELECT src,dst,aggr()
FROM L
WHERE start<=ts AND ts<end
GROUP BY src,dst;

Since the data is summarized so that each row may contain
info for a range of packets and as such a range of timestamps.
The query will be changed to take into account this timestamp
range. Instead of timestamp being a single point, ts, it will



be a range, min ts to max ts. As such, there would be a
slight change in the WHERE clause, so that the query will
only consider data strictly in the time window, start to end.
The WHERE clause would simply be changed to: WHERE
start<=max ts AND min ts<end
src, dst is a set of columns to be grouped because we want

to understand the traffic between src-dst pairs.
2) Co-occurring Events: Co-occurring events are a good

way to discover distinct or peculiar events that happen in the
network. Say for example you want to find when there are
more than 10 streams running in the network. To do this you
will first need to group the streams then count them. Our query
does this using a band join [9] and an aggregate function.
Our query builds a temporary table L1 and L2 from L, then
performs a band join on both tables with a time window
between [start, end). From there we can use an aggregation
to give us more information about the streams. This is shown
as aggr() and can represent sum(), max(), count(), or any other
aggregate function.

SELECT L1.src,L1.dst,aggr()
FROM L AS L1 INNER JOIN L AS L2

ON L1.ts-c<=L2.ts AND L2.ts<=L1.ts+c
WHERE start<=L1.ts AND L1.ts<end

AND start<=L2.ts AND L2.ts<end
GROUP BY L1.src,L1.dst;

With the summarized data, each row will again have a time
range from min ts to max ts. The query will perform a
join with the data where the timestamps are strictly within a
bound, start to end. By using band joins, we can determine
what happens around the same time between multiple streams.
This can be a complicated task but is made easy using SQL.

3) Session Duration: Session duration is useful to know
because it tells us how long a user may use a particular website
or service. It may also be useful to discover network failure
or network attacks because session lengths corresponding to
that traffic may be different from session duration for regular
application traffic. The query works by simply selecting a
stream’s earliest and latest timestamp. The stream is filtered
by using src, src port, dst from table L. src port is included
to address the issue of a client having multiple connections to
the same destination.

SELECT src,src_port,dst,max(ts)-min(ts)
FROM L
WHERE start<=ts AND ts<end
GROUP BY src,src_port,dst;

4) Request/Response Protocol: The request/response pro-
tocol is a useful protocol that can be observed to find network
failure, checking if there is a response to all requests or vice
versa. The query works by selecting all rows that does not
have a response, represented as the inverse of src, dst.

WITH CTE AS (
SELECT src,dst
FROM L

WHERE start<=ts AND ts<end)
SELECT src,dst
FROM CTE L1
WHERE NOT EXISTS (
SELECT 1
FROM CTE L2
WHERE L1.src=L2.dst

AND L1.dst=L2.src);

It is also important to note that this protocol can also be
done using an outer join, but will be less efficient as the above
solution will be using a common table expression(CTE), a
temporary result set that can be used multiple times in the
query.

B. Approaches to Processing Data Streams

There are two approaches to processing data streams inside
a DBMS. One approach is to continuously load and process a
stream, while the other is to periodically load and summarize
a stream in batches. By summarizing before you process a
stream, you can reduce the data size greatly at the cost of a
bit of overhead.

1) Online Processing: Continuously processing a stream
involves keeping every individual packet, demanding greater
storage size, and keeping more details of the stream. The
greater volume imposed may exceed the RAM capacity and
often contains redundant data. However, having greater detail
of the stream will allow you to dig deeper into the stream to
find patterns and information hidden by being summarized.
However, the problem with stream processing is being able to
process the stream as it passes through main memory.

2) Summarizing in Batches: Continuously loading a stream
uses a lot of space and is inefficient, as a lot of the data is
redundant from a network stream. This large amount of data
will lead to slower analysis time when accessing and filtering
through the data. This is especially apparent in a small device
like the Raspberry Pi, which would have more trouble with
larger data sets from its limited components when compared to
larger systems. As such, it makes sense to summarize the data
after loading it into the database. This will lead to a striking
decrease in data size while retaining important aspects of the
data, although losing a bit of detail as a result. This will not
only lessen the load on the Raspberry Pi, but greatly cut the
time it takes to analyze the data.

C. Pre-processing and Loading Data

1) Pre-processing: In general, data streams have significant
redundancy. Stream data sets have the form of a log file where
records may have variable length. To accelerate processing, we
truncate string columns with a variable length such that 90%
of information is preserved. On the other hand, contiguous
records that have the same information (e.g. network packets)
are aggregated into one record. Finally, we project important
attributes for analysis, leaving out detailed information (e.g.
network packet content). Pre-processing is a necessary step to
allow the DBMS to store the packet into a relational table.



2) Batch Loading: Loading data is a time-consuming task
for two reasons: the input text file needs to be parsed and
data needs to be transformed and stored into a specific binary
format on disk. Hence, catching data records and loading them
in batches yields better performance as the SQL statement is
parsed and optimized once for the whole batch. However, this
introduces a delay from the time the stream data arrives to the
time it becomes available in the database. In stream processing,
a lower latency is better. There is an I/O bottleneck introduced
in this step where the data is read from the text file then written
to disk. We want to continuously update the DBMS with new
batches of data so that the DBMS stays close to real-time. Here
we update the DBMS with many small batches instead of one
giant batch of data. This method has a lower performance than
loading large batches since the SQL statement is parsed and
optimized multiple times, but benefits from keeping the data
up to date.

D. Summarizing the Data

After the data is loaded into the DBMS, it is summarized
using a group by on src, src port, dst, dst port, protocol of
the packet from a temporary table. As each row needs to be
unique to keep data integrity, an index column is added to
the table. This method is called flow analysis where a set of
identifiers identifies a flow and a new flow is defined when an
identifier is changed. The flows are stored at set time intervals.

Summarizing query:

INSERT INTO L1(min_ts, max_ts, src,
src_port, dst, dst_port, protocol,
min_len, max_len, avg_len, summ_size)
SELECT

min(ts), max(ts),
src, src_port,
dst, dst_port,
protocol,
min(len), max(len), avg(len),
count(*)

FROM L2
GROUP BY src, src_port,
dst, dst_port, protocol;

E. Centralized and Distributed Processing

Centralized processing involves moving the data and pro-
cessing the stream through one device. This can be intensive
for one device to handle. The benefit of this method comes
from its simple implementation, only needing to worry about
one device. However, this does not cover a wide area and
would have more trouble analyzing large amounts of data. To
help alleviate this, techniques can be used to reduce the load
such as summarizing the data to help accelerate data ingestion.

Distributed processing can be used to further reduce this
load and cover a wider area, but is a bit more complicated to
implement. This method would require an additional step of
merging the data, allowing for the heavy task of processing and
collecting to be split between multiple devices. These devices

would capture and process the stream, send and merge the data
to a single device that can then be monitored and analyzed.

We plan to use a distributed architecture because our devices
won’t have as much processing power individually but together
should allow for more complex analysis. We do this by having
the DBMS running on all Raspberry Pis with each Raspberry
Pi monitoring a partition of the network as shown in Figure
2. The packets will be summarized at each Raspberry Pi,
then sent downstream to the monitoring device to eliminate
bottlenecks. For now, experiments will be ran on a single
device to test the feasibility of a distributed system.

Fig. 2: Distributed Architecture.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implement our system on the Raspberry Pi 3, a single
board computer with CPU ARM7 Quad-Core 900MHz, 1GB
RAM, and 64GB SD Card. These devices are deployed in
many wireless testbeds today and represent a low-cost and
low-resource node that has enabled the scaling of many
wireless testbeds. A DBMS server with CPU Intel Pentium
N3700 1.6GHz, 8GB RAM, and 2TB HDD was also used
to implement and compare with the Raspberry Pi. In terms
of software, we installed Postgres and T-shark, a program
utilizing the on-board network interface to capture network
packets.

B. Network Data Collection, Stream Pre-processing, and
Packet Summarization

An instance of T-shark (a packet monitoring program) is
run on the micro-computer (Raspberry Pi) to capture WIFI
packets in a busy common room. As the T-shark program
captures a large number of fields from a packet, for simplicity,
we ignore many of those fields while retaining the essence
of streaming data processing for network monitoring. As a
result, these columns are chosen: timestamp, source address,
source port, destination address, destination port, size of the
packet in bytes, protocol, and extra information that may
contain important information about the packet. These packets
are then summarized using group by on source, source port,



destination, destination port, and protocol. The summarized
table rows contain columns on minimum timestamp, maximum
timestamp, source, source port, destination, destination port,
protocol, minimum packet length, maximum packet length,
average packet length, and the number of rows summarized
for each group queried by the group by.

TABLE I: Summarized Data Schema.

Column’s Name Type
min timestamp DOUBLE PRECISION
max timestamp DOUBLE PRECISION
source TEXT
source port INTEGER
destination TEXT
destination port INTEGER
protocol TEXT
min length INT
max length INT
avg length NUMERIC
summ size INT

C. DBMS-based Analysis system Performance

To understand how well these processes perform on the
Raspberry Pi, we first look at how much data is being captured
at various time windows. To do this, we simply capture a large
amount of data, then count how many rows of data there are
at various time windows using a query.

TABLE II: Non-Summarized Records.

Time Window(secs) Total Stream Records
10 6940
20 13923
30 20863
60 41311

120 86723
1800 1595385

For the summarized data in Table III, from a different
stream, we recorded the total records at different time windows
as well as how much those records were compressed in the
summarized table.

TABLE III: Summarized Records.

Time Window Total Stream Total Summarized
(mins) Records Records

1 10152 513
5 57774 2998

10 120837 6161
15 180471 9154
20 243212 12163
25 307717 15400
30 360470 18343
40 474112 24408
50 585721 30537
60 693976 36591

240 2800527 147096

Notice in Table III how much compression greatly reduces
the data, with some reaching up to 19 times reduction for
smaller time windows. With a greatly reduced data set, we
hope to see this reflected in our experiments.

1) Pre-Processing: With a general idea of how many
records there are at each time window, we look at how long it
takes to process and store these records. Measuring these times
will give us an idea of how well these same experiments will
perform on live data and what kind of delay we can expect as
we monitor the network.

TABLE IV: Summarized Processing.

Time(secs)
Time Window 1 5 10 15 30 60
Bin to CSV 1.44 1.96 2.36 2.93 7.52 10.77
Pre-process 0.01 0.03 0.03 0.06 0.17 0.33
Load 0.04 0.07 0.08 0.09 0.34 1.82
Summarizing 0.02 0.04 0.04 0.05 0.08 0.18
Total rows 165 84 1139 1967 5777 11518
Summ rows 30 12 143 178 375 601

At each step of the process in Table IV, we measure the
time it takes to complete. The total rows represent how many
rows of data were captured in that interval and summarized
rows represent how many rows it got compressed down to.
From the Table, we can determine that the bulk of the time
is used in converting from binary to CSV. Converting is the
job of the networking tool and not the DBMS, as such it
leaves a lot of room to improve on, greatly lower the delay
required to monitor the network if optimized. The DBMS on
the other hand was able to quickly load and summarize the
data. Summarizing can reduce the rows by a lot because there
can be a lot of redundant data in streams. This can translate
to performing queries hundreds of times faster than on non-
summarized data.

In Figure 3, we do a similar test but on both the Raspberry
Pi and Server, comparing the two. From the Figure, we can
see that the Raspberry Pi times are still linear but lags a bit
behind the Server’s speed.



Fig. 3: Summarization and Load Time (Pre-processing).

2) Queries: Next, we will look at how well the queries
performed on both the summarized and non-summarized data
streams. The queries we will be looking at are group by
and band join for summarized data and additionally session
duration and request/response protocol for non-summarized
data. Quantiles are also another query we can look at in
future experiments but is currently too slow and complicated
to be implemented. By using a DBMS to query and analyze
your data, you can flexibly change your queries to your need
without having to make major changes to your program.
These tests are done on static data and on a single Raspberry
Pi/Server but should give us an idea of how they will perform
in real-time and how well they will do in a distributed fashion.

TABLE V: Group-By on Non-Summarized Data.

Time Window Total Stream Time(secs)
(mins) Records

1 10152 2.65
5 57774 2.78

10 120837 2.93
15 180471 3.10

TABLE VI: Group By on Summarized Data.

Time Window Total Stream Time(secs)
(mins) Records

1 513 0.17
5 2998 0.14

10 6161 0.15
15 9154 0.16

As you can see in Table VI, group by finished in well under
a second. The query also scales well as the number of rows
queried increases, still staying under a second with a 15 minute
time window. When compared to the times measured in Table

V, it still outperforms even when compared to a lower row
count. This is because of how compressed the data was in the
summarized table, allowing for faster processing times.

Fig. 4: Band Join Performance - Time Window
Records(1min:10k, 5min:57k, 10min:120k, 30min:360k).

Fig. 5: Band Join Performance - Time Window
Records(1min:513, 5min:2k, 10min:6k, 30min:18k).

In Figure 4 and 5, a band join was done on two selected
close streams from captured static data. The band join was
done on a variety of band ranges and time windows. Times-
tamps are very precise measurements, as such, we use Band
Ranges to represent how much tolerance we gave for each data
point when joining the data. This way, if data points are close
enough within the tolerance margin, they will be considered to
happen at the same time and joined in the query. Depending
on these ranges, the band join can perform reasonably well
at lower time windows but quickly escalates as you widen
the time window. On the other hand, increasing the band
range did not affect the times as much, except on wider time
windows. When comparing the two figures, you will notice
that the time to complete the queries were significantly less
for higher time windows and band ranges. Band ranges also



have a bigger effect on the summarized data when compared to
non-summarized data, being a major factor in the time spent to
finish a query. These results show that it is possible to perform
heavy queries on these devices, but it can take a long time.

Fig. 6: Queries Runtime.

In Figure 6, we compare some simple queries on both
the Raspberry Pi and Server with non-summarized data. For
these queries that are much less intensive than band join,
they were able to preform much faster and had a more linear
increase in time. As such, running these less intensive queries
directly on the Raspberry Pi before funneling the results to the
monitoring device becomes a feasible option when we later
look to implement a distributed system.

D. Discussion of Experimental Results

In short, the DBMS does well processing and loading the
data, while the bottleneck lies in converting the binary file
into a CSV file, which is not the responsibility of the DBMS.
To solve this, we can look into ways to directly insert the
binary data into the DBMS. Our goal is to quickly load and
summarize a large stream of data so that we can analyze it in
an efficient manner inside a device like the Raspberry Pi. By
summarizing the data, we can reduce its size, leading to faster
queries. We experimented on two queries for summarized data,
group by and band join, and additionally session duration and
request/response protocol for non-summarized data. Session
duration and request/response protocol queries were able to
perform very well, making it feasible to implement directly on
the Raspberry Pis when we implement a distributed system.
The group by was able to perform its task in under a second
and scales well with the growing time window. The band join
was able to do reasonably well at lower time windows but
quickly increased as we expand the time and band range. When
experimenting with bigger data, the device is able to handle
the summarized data well. On the other hand, it can be a
bit unpredictable how the device handles the non-summarized
data, having odd jumps in the data or taking very long to
complete. This can be caused by query optimization or the

data itself but will be an interesting issue to look into. It is
impressive that Postgres is running so well on the Raspberry
Pi, as Postgres is quite an intensive and complicated system,
while the Raspberry Pi is a low-resource device.

V. RELATED WORK

A. Basic network monitoring and analysis

Analyzing network instrumentation data is a problem that
has received significant attention with most work developing
specific solutions to their problems. Traditionally, Linux tools
such as ping, traceroute, netstat, and iperf are used to diagnose
or understand network performance. Researchers have devel-
oped additional tools such as tcpdump and more sophisticated
tools for deep packet inspection [5]. These tools provide basic
building blocks for network analysis but are unable to provide
a flexible way to allow queries that the users may want to
run on near real-time data and historical data with the same
system. As such, we continue our work from our poster [17],
analyzing a variety of new queries and moving towards a more
distributed system.

B. Network stream monitoring and analysis

Researchers have developed more sophisticated tools for
network monitoring over the last decades. For example, re-
searchers have designed a new relational database to ingest
network data stream [14]. The authors claimed they could
achieve throughput up to 50% of the throughput of the hard
drive itself. In order to achieve this speed, the system must
sacrifice consistency and durability characteristic of a DBMS.
Researchers have developed a distributed framework to allow
the composition of network analytic functions, thus increasing
flexibility in analysis supported by the system [7]. Declarative
languages and systems [20], [1] have been built to make it
easier for network engineers and researchers to query the
network system data. Our work applies SQL on a standard
DBMS implementation for network stream querying.

C. Streaming data analysis

GigaScope [3] has many limitations with storing stream-
ing data, not taking advantage of the parallel file system,
and not being able to correlate streaming data with stored
historical data. Over time, as sorting summarized historical
stream data(orders of magnitude smaller than packet-level
data but orders of magnitude larger than transactional data)
and supporting standard SQL became needed, a new system
was needed. In this system, queries would have arbitrary
joins (natural, outer, time band) and diverse aggregations
(distributive, algebraic, holistic). While storing, managing,
and querying stream data was more difficult than analyzing
packet-level data, it enabled advanced analytics to monitor
the network. To fulfill these requirements, the DataDepot
Warehouse system [6] was created. The DataDepot featured
a POSIX-compliant parallel file system, standard SQL, and
extensibility via UDFs [12], [11] (which enabled mathematical
analytics). DataDepot being the backbone of a data warehouse
called DarkStar at ATT shows how important it is to access



real-time, recent, and historical data. DarkStar is a warehouse
capable of managing hundreds of data streams and maintaining
more than two thousand tables with real-time data loading
and long-term histories. The big data trend gave rise to more
requirements and new technology. These things include higher
stream volume (with more data), HDFS (instead of a POSIX
file system), many more database sources (more streams
from more network devices) intermittent streams (with traffic
spikes and transfer interruptions), more efficient C++ code for
queries (because critical SQL queries were compiled), eventual
consistency, and advanced analytics beyond SQL queries came
with the big data trend. Given the common wisdom that one-
size-does-not-fit-all [16] and the difficulty of changing the
source code of a large existing system, it was decided to
develop a next-generation DBMS, TidalRace [9].

Recently, more research has been done on flow monitor-
ing [8], a prevalent method used to monitor high-speed traffic
using protocols such as NetFlow and IPFIX. This method
involves analyzing flows rather than individual packets, lead-
ing to much lower overhead. This benefit comes at the cost
of losing some detail from the packet, but allows the large
volume of data to become easier to manage and the loss of
detail can be offset by also performing packet analysis when
needed. To analyze these flows, tool suites like SiLK has been
created to store and analyze these high volumes of data [18].
These flows would be captured and stored in a SiLK format
then a variety of analysis tools can be run on these records,
such as sorting, filtering, and outputting a human readable
format. Research has also been done in reducing these large
data volumes to not only analyze them but also the store
then for future analysis. As such, building a data synopsis
has also been a topic of research that focuses on allowing
researchers to access and query past data days to years in
the past [4]. Although these works focus on how to capture
and store these streams, they don’t address how to analyze
these data using SQL and the flexibility that it would allow.
Complications can also arise from continuous analytics, with
research being done to improve the system’s performance by
using rolling queries. DBStream is one example where an
SQL-based system is used to perform data analysis on the
network stream. DBStream makes use of incremental queries
for rolling data analytics, showing better performance on a
single node than Spark with a cluster of ten [2]. While they
show great results in large systems composed of powerful
machines, their system doesn’t show how well it’ll perform on
a low-resource device in a distributed manner. These analytics
not only monitor the network, but research has also been done
to understand the user’s experience [15], where the data is
extracted and analyzed in real-time to define and measure the
quality of different parts of the network and how it influences
the user.

VI. CONCLUSIONS

The availability of wireless testbeds has led to the rapid
advance of technologies. Unfortunately, researchers in this
space are still not utilizing standard technologies such as

SQL and streaming data analysis to characterize network
performance. Adoption of technologies such as SQL will
lead to faster and more flexible iterations of analysis and
wider sharing of analysis techniques. Our work shows that
using a DBMS on an edge device for network monitoring
is viable with the use of summarizing the data using SQL.
By summarizing the data, we were able to greatly reduce its
redundancy, allowing the use of more intensive analysis in a
reasonable amount of time. Another aspect worth mentioning
is that even a low-cost and low-resource device such as the
Raspberry Pi, which is widely used in wireless testbeds, is
capable of processing data, arriving at high speed, but with
medium volume, allowing the researchers to obtain useful
network monitoring insights both for near real-time data and
historical data. One of the powerful aspects of our solution
is that the same queries can be used on different devices or
on more powerful devices in the future for more extensive
analysis.

Even though we have shown DBMSs are viable to analyze
pre-processed streams for network monitoring, there are many
research issues. It can be slow to load the stream into Postgres
and SQL can still be slower than lower-level languages like
C/C++. For now, nothing is done with the info column as
it contains various information and has embedded values
that would require complicated parsing and deep network
understanding to utilize, as such, we leave it as work to
explore in the future. We need faster and more accurate
queries to aggregate and summarize streams. Aiming towards
a distributed system, we still need to work out the global
state of the system to understand the order of occurrence
in our system [10]. While a distributed system is likely to
work, we still need to perform more experiments to validate
their performance in a real-time environment and with varying
loads. Determining the number of devices and traffic load each
Raspberry Pi can handle is a difficult topic that would require
more research before we can give a clear answer. From the
edge computing point of view, more research is needed to
fully understand the storage and processing capability of small
devices in the rapidly changing environment of the Internet of
Things. From a database perspective, we need to study how
to efficiently load new data into the database. Although plenty
of work both in research and practice exists in fast database
loading, we need further evaluation of their applicability in
low-cost and low-resource settings.

VII. ACKNOWLEDGMENT

We would like to thank Huy Hoang, Jay Vasani, and Steve
Aigbe for their help on the initial data collection and formula-
tion of SQL queries. We would also like to thank Wellington
Cabrera and Yiqun Zhang for their contribution in exploring
Tshark and stream exploring with queries. Carlos Ordonez
would like to thank Divesh Srivastava and Ted Johnson for
helping him understand how the ATT network is monitored
combining a data warehouse and stream feeds.



REFERENCES

[1] Kevin Borders, Jonathan Springer, and Matthew Burnside. Chimera: A
declarative language for streaming network traffic analysis. In Presented
as part of the 21st {USENIX} Security Symposium ({USENIX} Security
12), pages 365–379, 2012.

[2] Arian Bär, Alessandro Finamore, Pedro Casas, Lukasz Golab, and Marco
Mellia. Large-scale network traffic monitoring with dbstream, a system
for rolling big data analysis. In 2014 IEEE International Conference on
Big Data (Big Data). IEEE, 2014.

[3] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav
Shkapenyuk. Gigascope: a stream database for network applications.
In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pages 647–651, 2003.

[4] Qiyang Duan, Peng Wang, MingXi Wu, Wei Wang, and Sheng Huang.
Approximate query on historical stream data. In Database and Expert
Systems Applications. DEXA, 2011.

[5] I. Ghafir, V. Prenosil, J. Svoboda, and M. Hammoudeh. A survey on
network security monitoring systems. In 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW), pages 77–82, Aug 2016.

[6] L. Golab, T. Johnson, J. Spencer Seidel, and V. Shkapenyuk. Stream
warehousing with DataDepot. In Proc. ACM SIGMOD, pages 847–854,
2009.

[7] Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick Feamster, Chris
Mac-Stoker, and Walter Willinger. Network monitoring as a streaming
analytics problem. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks, pages 106–112, 2016.

[8] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin
Sadre, Anna Sperotto, and Aiko Pras. Flow monitoring explained: From
packet capture to data analysis with netflow and ipfix. IEEE Comm.
Surveys & Tutorials, 16(4), May 2014.

[9] T. Johnson and V. Shkapenyuk. Data stream warehousing in Tidalrace.
In CIDR, 2015.

[10] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7), 1978.

[11] C. Ordonez. Building statistical models and scoring with UDFs. In
Proc. ACM SIGMOD Conference, pages 1005–1016, NY, USA, 2007.
ACM Press.

[12] C. Ordonez and J. Garcı́a-Garcı́a. Vector and matrix operations pro-
grammed with UDFs in a relational DBMS. In Proc. ACM CIKM
Conference, pages 503–512, 2006.

[13] Carlos Ordonez, Theodore Johnson, Divesh Srivastava, and Simon
Urbanek. A tool for statistical analysis on network big data. pages
32–36, Lyon, France, 2017. IEEE.

[14] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat Storer.
Littletable: A time-series database and its uses. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD
’17, pages 125–138, New York, NY, USA, 2017. ACM.

[15] Diego F. Rueda, Dahyr Vergara, and David Reniz. Big data streaming
analytics for qoe monitoring in mobile networks: A practical approach.
In 2018 IEEE International Conference on Big Data (Big Data). IEEE,
2018.

[16] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem,
and P. Helland. The end of an architectural era: (it’s time for a complete
rewrite). In VLDB, pages 1150–1160, 2007.

[17] Quangtri Thai, Carlos Ordonez, and Omprakash Gnawali. Monitoring
networks with insightful queries. In Proceedings of the 14th Interna-
tional Workshop on Wireless Network Testbeds, Experimental evaluation
Characterization, Sept 2020.

[18] M. Thomas, L. Metcalf, J. Spring, P. Krystosek, and K. Prevost. Silk: A
tool suite for unsampled network flow analysis at scale. In 2014 IEEE
International Congress on Big Data, pages 184–191, 2014.

[19] Junyi Xie and Jun Yang. A Survey of Join Processing in Data Streams,
pages 209–236. Springer US, Boston, MA, 2007.

[20] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and
Boon Thau Loo. Quantitative network monitoring with netqre. In
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 99–112, 2017.


