
A Simple Low Cost Parallel Architecture
for Big Data Analytics

Carlos Ordonez
University of Houston§

USA

Sikder Tahsin Al-Amin
∗

University of Houston§

USA

Xiantian Zhou
University of Houston§

USA

Abstract—Big Data Systems (Hadoop, DBMSs) require a
complicated setup and tuning to store and process big data
on a parallel cluster. This is mainly due to static partitioning
when data sets are loaded or copied into the file system. Parallel
processing thereafter works in a distributed manner, aiming for
balanced parallel execution across nodes. Node synchronization,
data redistribution and distributed caching in main memory are
difficult to tune in the system. On the other hand, there exist
analytical problems and algorithms, which can be computed in
parallel, with minimal synchronization and fully independent
computation. Moreover, some problems can be solved in one
pass or few passes. In this paper, we introduce a low cost, yet
useful, processing architecture in which data sets are dynamically
partitioned at run-time and storage is transient. Each node
processes one partition independently and partial results are
gathered at the master processing node. Surprisingly, we show
this architecture works well for some popular machine learning
models as well as some graph algorithms. We attempt to identify
which problem characteristics enable such efficient processing,
and we also show the main bottleneck is the initial data set
partitioning and distribution across nodes. We anticipate our
architecture can benefit parallel processing in the cloud, where a
dynamic number of virtual processors is decided at runtime or
when the data set is analyzed for a short time.

Index Terms—Parallel architecture, Big Data, Parallel Process-
ing.

I. INTRODUCTION

There has been a significant rising in data volumes and
processing speeds for the last two decades. However, data
volumes have risen at a much higher rate than the processing
speeds. Though there are powerful machines with a lot of
memory and disk space, it is costly and may fail when the
data volume is huge. Therefore, processing and analyzing
large volumes of data becomes non-feasible using a traditional
serial approach. Hence, parallel processing emerges to solve the
problem. Parallel processing allows a problem to be subdivided
into smaller pieces that can be solved faster. Distributing the
data across multiple processing units and parallel processing
unit yields improved processing speeds [12].

Many abstract models of parallel processing have been
introduced for partitioning, processing, and storage. Most
approaches start with partitioning, that is a large data set is
partitioned among multiple processing nodes where each node
operates on the assigned partitioned data. Though there are

§Department of Computer Science, University of Houston, Houston TX
77204, USA∗

Contact Author: stahsin.cse@gmail.com

some variants of parallel processing, it is often assumed that the
same set of operations must be performed in each processing
machine with shared-nothing architecture. For the output, most
models send the partial output to the master node and combine
the results to get the final result.

In this paper, our contributions are the following: (1) We
propose a simple parallel architecture that can be used for
parallel processing in big data analytics. (2) Our architecture
does not depend on any external complicated file systems,
rather we do the partition dynamically and run on commodity
hardware. We use the file system ”as is”. (3) Our architecture
is cheap, easy to set up, more machines can be added easily,
and there is no need to maintain the partitions.

This is an outline of the rest of this article. Section 2 is a
reference section. Section 3 presents our theoretical research
contributions where we present our parallel architecture and
how it comply with machine learning problems. Section 4
presents an experimental evaluation comparing our solution to
the state of the art analytic systems. We discuss closely related
work in Section 5. Conclusions and directions for future work
are discussed in Section 6.

II. PRELIMINARIES

In this section, we introduce the definitions and symbols
used throughout the paper.

A. Input Data Set and Output Solution

We start by defining the input data set as D. Here, D is
a matrix having n rows and a different number of columns,
depending if the problem comes from machine learning or
graphs. Matrix D can be either dense or sparse. We define the
problem solution in a generalized manner as Θ. For machine
learning problems, Θ is a model consisting of a list of matrices
and associated metrics and for graphs, Θ is generally a vector
and associated metrics.

B. Parallel Cluster

We define N as the number of processing nodes (also called
workers), where each node has its own CPU and memory (i.e.
a shared-nothing architecture) and it cannot directly access
another node main memory or storage. There exists a separate
master node controlling the computation, gathering partial
results and returning a final solution. The heavy duty work I/O
and CPU computation is done by the workers and the master



node does mostly CPU computation, but on much smaller input
transferred from the workers. We use I to refer to each worker
or each partition, to avoid confusion with i, used for point,
vertex or record id.

III. PROPOSED LOW COST PARALLEL ARCHITECTURE

Fig. 1: Proposed Simple Parallel Architecture.

In this section, we first discuss some our of main assumptions
in our low cost architecture and then we present our proposed
parallel architecture in general terms. Finally, we discuss two
instances of our proposed architecture: machine learning and
graph algorithms. Fig 1 shows our proposed simple parallel
architecture.

A. Main Assumptions in our Low Cost Architecture

• We assume N � n. This is important to guarantee
each node holds a large partition of D. Our architecture
is inefficient if N = O(n), in which case the cost of
partitioning and distribution may surpass CPU cost.

• In the case of Machine Learning we assume d dimensions,
d� n and matrix sizes in Θ is O(d2). On the other hand,
in graphs we assume the solution vector in Θ is O(n) or
smaller, which is much smaller than O(n2) as n → ∞.
Therefore, we assume Θ and associated partial results at
each node are much smaller than D.

• We assume each node stores complete rows of DI

(points, vertex neighbors). The data set D is horizontally
partitioned on the n rows, transferring complete rows
to each node. That is, each vector i ∈ 1 . . . n is never
partitioned. Therefore, each node stores ≈ n/N vectors

• We assume DI does not fit in the main memory. In other
words, DI is stored on secondary storage, reading one
block at a time. On the other hand, ΘI and associated
partial results are always updated in main memory at each
node. Therefore, the algorithm memory footprint is small.

• We assume 1:N communication and data transfer. The
master node sends data to the N workers and the N
workers send partial results to the master node. The
workers do not transfer data to each other, nor they
communicate in a 1:1 fashion.

• The analytic algorithm may be iterative, but it must work
by sending partial results back and forth to the master
node. In particular, for some problems the algorithm may
work in one iteration.

B. Generic Algorithm for our Parallel Architecture

First, we discuss our parallel architecture in general terms.
The general algorithm is presented in Algorithm 1.

Algorithm 1: Partial Solution of Our Generic Parallel
Algorithm.

Data: Data set (D)
Result: Θ

1 Read input parameter N (Number of machines) ;
2 Sequential: Partition D in to DI = D1, D2, ..., DN in

the master node;
3 Sequential: Transfer DI to 1, 2, ..., N machines;
4 Parallel: for I=1...N do
5 Compute Analytical Solution on Partitioned Data ;
6 Return partial summaries/result (SI ) to the master

node.
7 end
8 Parallel/Sequential: Gather partial summaries/result (SI )

from N machines and merge in the Master node;
9 Compute and return final output (Θ);

1) Input: We assume that the input file is a text file that is
stored in the master node. It can be in any text file format like
.csv, .txt, and so on. However, if the file is in binary format, we
need a connector to convert the binary file. As mentioned in
Section II, the input file contains the input data set which we
define as D. It has n records and can be a machine learning
data set or graph data set. As for the storage, D may mostly
contain integer and double values. The number of machines
is also predefined (N ) and we assume n� N , a reasonable
assumption in most cases.

2) Data Set Partition: Here, we partition D at the master
node and then send the N partitions to the worker nodes. In
general, we send the whole row (vector) in one machine. For
ML problems, we partition D based on row-id. We define
the row-id as 1...n. For uniform partitioning, we partition the
input data as n/N (assuming n � N ). So, D is partitioned
into D1, D2, ..., DN , where each partitioned D has the same
number of rows (except for the last one in most cases). For
example, if we have a file with 100 million rows and we want
to partition it in 10 nodes, then each node will have 10 million

2



rows each. In case of graphs, we partition D based on vertex-id.
That is, all the neighbours of a vertex are in the same machine.
After we build the partition, we send them to the processing
nodes. Though we do it in a serial manner now, a direction of
future work will be to build the partition in the main memory
and send them to the processing nodes. However, we are not
currently performing hashing or any other mechanism to scatter
the rows on the N worker nodes, as it is done by the parallel
DBMSs. We leave it for future work. After transferring of the
partitioned D is complete, each node will have a portion of
the original D. This partitioned D will be used for processing
in that node locally.

Though there are many distributed file systems that perform
a similar kind of operation, our method is much simpler and
we do it in a dynamic manner. We must emphasize that we
are not doing this on a parallel complicated set up of lustre,
DBMS, or Hadoop. Rather we are relying on the plain file
system exploiting the OS. However, there are some drawbacks
of our solution. There is no fault tolerance, it is hard to keep
track of partitioned D when N is high, and we need to load
the partitioned D to the host programming language.

3) Parallel Processing: As mentioned in the previous step,
the partitioned D resides in each node. Here, we perform the
processing on the partitioned D depending on the problem
domain (S()). Usually, each node performs the same set of
instructions locally. Partitioned D needed to be loaded in the
host programming language and the processing happens in
all the nodes in parallel. This phase uses the programming
language, tools, or libraries that are used to perform the
computation. We need to install the necessary tools or libraries
in each machine. For example, if the user wants to compute the
sum of a matrix using Python numpy library, the user needs to
install Python and numpy in all the nodes. After the processing
is done, the partial summaries/result resides (SI ) in each node
and they are ready to send to the master node.

4) Partial Result: To return Θ, the final result, to the user,
first, we need to send the partial output (SI ) from each machine
to the master node. The partial outputs can be sent to the master
node all at once or in a serial manner. We only send minimal
information to the master node. Sending a huge chunk of output
from each machine to the master node will be time consuming
but it can be sent if the user requests it. Depending on the
problem, the partial outputs can be merged, added, multiplied,
and so on. We get the final output (Θ) from these merged
outputs or doing further computations on it.

C. Instance of Our Architecture: Machine Learning

Here, we discuss an instance of our architecture, Ma-
chine Learning. Machine learning is essential to big data
analytics. Within big data, data summarization has received
much attention among the machine learning practitioners.
Summarizing large data sets to accelerate the machine learning
models can be done in parallel. Here, we take the data
summarization technique to compute a summarization matrix
and then compute supervised and unsupervised ML models
exploiting the summarization matrix as an example to illustrate

how we can integrate the proposed architecture in Section III-B
with ML problems.

Let us assume the input matrix as D (Sec II), an n × d
dense matrix, which is stored in the master node. Here, for
ML problems, D has d columns and we assume d < n. We
partition D as n/N (defined in Section III-B) and send the
partitioned data sets to the processing machines. We partition it
this way so that each machine has all the d columns. Next, we
compute a summarization matrix in each machine locally. The
goal is to get a final summarization matrix on the entire data
set and compute machine learning models exploiting this. We
should emphasize that this summarization can be any summary.
In other words, here summarization matrix is an instance of
our architecture.

A detailed discussion on how to compute a summarization
matrix, called Gamma (Γ) is presented in [2]. As mentioned,
we can compute one summarization matrix or k-summarization
matrices depending on the model. Each machine locally
computes the summary where data is processed one block
at a time, with intermediate results updated for each block.
When all the data is processed, we get the summary (partial
output, SI ) for that machine. This is much smaller than
the original data set D, and can be maintained in the main
memory. The size of the summarization matrix mentioned
in [2] is d × d and k-summarization matrix is d + 1 × 2k,
where d is the number of columns and k is the number of
classes/clusters. As, both matrices are small in size compared
to the data set D, they can be easily sent over the network
to the master node. The master node collects all the local
summarization matrices (ex: S1, S2, ..., SN ) and perform a
simple matrix addition to compute the final summarization
matrix (ex: S = S1 + S2 + ... + SN ). Based on this final
summarization matrix, we can compute the ML models (Θ)
on the master node. We can compute models like Linear
Regression (LR), Principal Component Analysis (PCA), Naı̈ve
Bayes (NB), and so on. However, we will show the LR as a
representative model in Section 4. We emphasize that we are
not computing partial models in each machine. Also, we are
not mentioning the programming aspects of the problem as
that is not in the scope of this paper. A detail explanation can
be found in [2].

D. Instance of Our Architecture: Graphs

Graph analytics is a field that is increasing its importance
every day. Many graph algorithms are computationally in-
tensive. On the other hand, graph data sets are becoming
unexpectedly large as real-world information sources become
more diverse and rich. Thus, a distributed system is better for
processing graph problems. Partitioning the graph data sets to
achieve work balance and process data in parallel becomes
an essential problem. Single-source reachability is a core and
fundamental computation task in graph analytics because it
is the fundamental and representative problem, its solution
is a guideline to solve many other harder graph problems
such as transitive closure, shortest paths, connectivity, page
ranks and so on. However, the single-source reachability (SSR)

3



problem remains one of the most computationally intensive
and challenging tasks due to the large graph size.

Suppose a graph G has n vertices and m edges. The
adjacency matrix of G is a n× n matrix such that the cell i, j
holds 1 when exists an edge from vertex i to vertex j, while
the cell i, j holds 0 when there is no edge from i to j. Each
row of the adjacent matrix is stored as a record in the input
file. we can also use an adjacency list to represent the graph
since most real graph data sets are sparse. Each list describes
the set of neighbors of a vertex in the graph. And each list is a
record in the input file. Reachability from a source vertex s is
the problem aimed to find the set of vertices S such that i ∈ S
iff exists a path from s to i. In a mathematics perspective, S
can be a vector where S[i] = 1 if exists a path between the
source vertex and i, otherwise S[i] = 0.

Recall that we partition the data as n/N where N is the
number of worker nodes in the parallel system and n is the
number of rows. Note that no matter the input file is in dense
graph format or sparse graph format, each row (or record)
has the source vertex and all its neighbors. we partition the
n complete rows evenly across the distributed system, each
working node has all neighbors of those vertices partitioned
into it. After partition, we send a partition DI to each working
node and perform the SSR algorithm.

SSR can be solved with a Depth-first search (DFS) from
the source vertex s, a Breadth-first search (BFS) from s, or
via matrix-vector multiplications. In [4], the authors explain
that a BFS starting from s can be done using a sparse vector
S (initialized as S[s] = 1, and 0 otherwise), and multiplying
iteratively D by S, as shown in the following. Note that we
perform the matrix-vector multiplication by updating the input
vector S.

S = (DT )k · S = DT · · · (DT · (DT · S)) (1)

where · is the regular matrix multiplication and S is a vector
such that: S[i] = 1 when i = s, and 0 otherwise.

The result of matrix-vector multiplication is also a vector.
We can assume the vector fits in main memory since its size is
O(n). S is replicated on each worker node. Note that we cannot
assume the partition DI fits in main memory. Each DI is stored
in disk. When performing the matrix-vector multiplication, the
DI is read from the disk while the vector S is updated in main
memory in each node. And each working node gets the partial
result of reachability.

SI = DT
I · S, I ∈ 1...n (2)

Then, all nodes send the partial result SI to the master node
and the master node computes the global reachability by
summarizing the partial result, S = S1 +S2 · · ·+Sn. Since the
result is a binary vector, a bitwise OR operator can be used to
do the summary efficiently. After summarizing, the new S is
sent to each working node to perform the next matrix-vector
multiplication. The parallel matrix multiplication is shown in
Figure2. In general, each step can be done in parallel without
message transferring between nodes since S is replicated on
each node. And S is updated in main memory in each node.

The solution of reachability problem is multiple steps of matrix-
vector multiplication.

Fig. 2: Parallel computation of matrix-Vector multiplication.

IV. EXPERIMENTAL EVALUATION

Here, we present an experimental evaluation, focusing on
time performance. First, we introduce the parallel systems and
input data sets. We perform benchmarking for machine learning
problems where we compare our solution with other popular
big data analytic systems: Spark and parallel DBMS.

A. Experimental Setup

The system used for the experiments is a parallel cluster with
8 machines where each machine has Pentium(R) Quadcore
CPU running at 1.60 GHz with Linux Ubuntu as the operating
system. The system has 8 GB of RAM and 1 TB of storage
space. For parallel processing, we have total 64 GB of RAM
and 8TB of disk space. The master node has also the same
configuration as the other machines and it is not a part of
parallel processing. It is only used to partition the data set at
the beginning and finally gather the partial outputs from the
processing nodes to form the final output.

TABLE I: Base data sets description.

Data set n Description Model
synthG1M 1M directed graph Graph
synthG10M 10M directed graph Graph
YearPredictionMSD 515K predicts if rain or not LR
Creditcard 285K raise in credit line NB

The data sets used to perform the experiments are summa-
rized in Table I. For graph problems, we used synthetic graphs
And for ML, we used the YearPredictionMSD and Creditcard
data set, both obtained from UCI machine learning repository.

B. Benchmarking: Machine Learning

Here, we compare our prototype solution with a machine
learning problem. We compute the linear regression model
and the Naı̈ve Bayes model as mentioned in [5]. We perform
the partitioning and processing as discussed in Section III-B.
We use simple UNIX commands (ex: split, scp) to partition

4



TABLE II: Time (in Seconds) to compute the Linear Regression model using our solution (N = 8 nodes), in Spark (N = 8
nodes), and in a parallel DBMS (N = 8 nodes) (M=Millions).

Our solution (N=8) Spark (N=8) Parallel DBMS (N=8)
Data set n d Partition Compute LR Total Partition Compute LR Total Partition Compute LR Total
Year- 1M 10 9 12 21 7 41 48 29 9 38
Prediction 10M 10 23 29 52 17 286 303 141 32 173

100M 10 317 218 535 181 1780 1961 1711 380 2091

TABLE III: Time (in Seconds) to compute the Naı̈ve Bayes model using our solution (N = 8 nodes), in Spark (N = 8 nodes)
(M=Millions).

Our solution (N=8) Spark (N=8)
Data set n d Partition Compute NB Total Partition Compute NB Total
Credit Card 1M 10 11 13 24 7 Crash Crash

10M 10 23 36 59 25 Crash Crash
100M 10 335 252 587 231 Crash Crash

and transfer the partitioned data sets to N machines. As
mentioned in III-B, the partitioned data sets are stored in
the file system. First, we load them to the host programming
language. Then we compute the local summarization matrix
for each partitioned data set in parallel as discussed in Section
III-C. The partial outputs are sent to the master node and
they are combined to get the final summarization matrix (S).
The ML model (Θ) is then computed exploiting this final
summarization matrix. We compare our solution with Spark
and a parallel columnar DBMS (Vertica). Spark is a data
processing engine developed to provide faster and easy-to-use
analytics than Hadoop MapReduce.

Table II represents the time to compute the linear regression
model for our solution, Spark, and DBMS in parallel (N = 8)
machines. For Spark, we use HDFS to partition the data set, and
for DBMS, we are partitioning the data set using the default
”load” (COPY) command provided by the DBMS. Both have
complicated algorithms behind which is hard to understand
and almost difficult to tune for any average analyst. On the
other hand, our method with UNIX commands are simple,
straightforward and easy to understand. Then in Spark, we
run the algorithm using Spark-MLlib library. For DBMS, we
compute the summarization matrix using UDF and SQL queries
which we adapted from [11]. We perform the experiments with
varying n = 1M, 10M, 100M rows and a fixed d=10 columns
to demonstrate how large data sets perform on both. We can
see from Table II that the time to partitioning and transferring
the data set (column ’partition’) is almost similar in both our
solution and Spark for n = 1M, 10M . But parallel DBMS is
much slower as it has a complicated algorithm behind data
loading into the DBMS. On the other hand, computing LR part
is much faster using our method than both methods as we are
optimizing the data summarization and computing models as
mentioned in [2]. For n = 100M , our method is a bit slower
for partitioning than HDFS but the overall time is faster as
we are doing the parallel execution much faster. In case of
DBMS, our solution is faster in both cases. HDFS is faster
in partitioning this case because we are partitioning the data
set first and then transferring the data set over the network.
This is a bottleneck and it can be addressed by building the

partition in the main memory and send them to the processing
nodes as mentioned in Section III-B.

Similarly, Table III shows the time to compute the Naı̈ve
Bayes model with our solution and in Spark. We compute
our solution following the same procedure mentioned above.
However, we used k-summarization matrix instead of sum-
marization matrix to compute NB where k is the number of
classes in D. As there is no previous implementation of the
k-summarization matrix in a parallel DBMS, we do not include
the comparison here. We can see that the partitioning has the
similar time as before. However, computing the NB in Spark
crashes as the Spark-MLlib implementation does not support
negative values in the data set.

C. Benchmarking: Graph Algorithm

As explained in Section , we need to partition and send the
data across the system before processing the SSR algorithm.
Our proposed system is compared against popular analytic
platforms, including a fast columnar DBMS and Spark which
uses HDFS to partition the data set. The column-oriented
DBMS could achieve magnitude performance improvement
than a row-oriented DBMS [1], [3]. And it has been proved
columnar DBMSs could provide significant accelerations in
some queries[10]. So we use a columnar DBMS to do the
comparison. We will compare the partition time of our solution
with those two popular analytic platforms.

Table IV shows the comparison results. As can be seen, the
partition time of our system can compete with other two popular
analytic platforms. The parallel DBMS is the fastest one, but it
is considered inadequate for complicated graph algorithms. Our
solution is a faster than Spark which use HDFS to partition
the data. So, the simple low cost parallel architecture works
for graph problems. We do not include the processing times
for SSR because they require significant programming effort
in C++ combined with R/Python.

V. RELATED WORK

Parallel processing is very common and many systems have
been proposed for processing large data sets. Here, we discuss
some of the closely related and popular systems. However,

5



TABLE IV: Time (in Seconds) to partition the graph data set
using our solution (N = 8 nodes), in Spark (N = 8 nodes),
and in a parallel DBMS (N = 8 nodes).

Data set n m Our solution Spark Parallel DBMS
synthG1M 1M 10 8 8 3
synthG10M 10M 10 33 35 30

there have been some research that focuses on data partitioning
on a specific problem [8], [15], [14].

HDFS [13] is the primary storage system used by Hadoop
applications that allows a user to store huge data files across
multiple nodes while keeping the image of a centrally located
file. However, the installation procedure is complex and it does
not suit well for small data. On the other hand, HBase [9] is a
noSQL distributed database developed on top of HDFS which
enables faster search and retrieval of the data.

Spark [16] is another distributed data processing framework
that can work on very large data sets. Some researches have
been done in Spark for data partitioning [7], [6]. Also, Spark
has an extensive library for graph and machine learning models
where it can outperform Hadoop. Similar to ours, Spark works
in main memory. However, as discussed in Section IV-B, we
compared our solution against Spark libraries and gained an
edge in some cases.

Parallel DBMSs are also used for big data analytics in many
cases [3], [17], [11]. They improve the performance of data
processing by parallelizing loading, indexing, and querying
data. The parallel DBMS implements the concept of horizontal
partitioning by distributing parts of a large relational table
across multiple nodes. This is essential to obtain scalable
performance of SQL queries.

VI. CONCLUSIONS

We proposed a simplified parallel architecture that can be
applied the solve ML problems in big data analytics. Our
prototype is cheap and there is no need to install complicated
libraries like other platforms do. Rather we do it dynamically
running on commodity hardware and using the file system ”as
is”. We also proposed a generic parallel algorithm exploiting
our architecture that can work across multiple programming
languages and platforms. We then studied how our solution
can be used to solve machine learning problems, and what are
the drawbacks if we apply it to other complicated areas such
as graph algorithms. We justified why our solution is needed.
Experimental results proved that even if we did not achieve
superior performance than others in all cases, our prototype can
indeed compete with other parallel systems including Spark
and parallel DBMS. We believe easy set up, using the disk
file system, flexibility to add more number of machines, and
cheap architecture make our solution more attractive.

There are some shortcomings of our solution. The partitioned
data set in each machine needs to be loaded into the host
programming language to perform analysis. Also, there is no
fault tolerance. For our future work, we plan to build the
partition in the main memory and send them to the processing
nodes.

REFERENCES

[1] Abadi, D., Madden, S., Hachem, N.: Column-stores vs. row-stores: how
different are they really? In: Proc. ACM SIGMOD Conference. pp.
967–980 (2008)

[2] Al-Amin, S.T., Ordonez, C.: Scalable machine learning on popular
analytic languages with parallel data summarization. In: Big Data
Analytics and Knowledge Discovery - 22nd International Conference,
DaWaK 2020. vol. 12393, pp. 269–284 (2020)

[3] Al-Amin, S.T., Ordonez, C., Bellatreche, L.: Big data analytics: Exploring
graphs with optimized SQL queries. In: Proc.DEXA Conference. pp.
88–100 (2018)

[4] Cabrera, W., Ordonez, C.: Scalable parallel graph algorithms with matrix-
vector multiplication evaluated with queries. Distributed and Parallel
Databases 35(3-4), 335–362 (2017)

[5] Chebolu, S.U.S., Ordonez, C., Al-Amin, S.T.: Scalable machine learning
in the R language using a summarization matrix. In: Database and Expert
Systems Applications DEXA. pp. 247–262 (2019)

[6] Gounaris, A., Kougka, G., Tous, R., Montes, C.T., Torres, J.: Dynamic
configuration of partitioning in spark applications. IEEE Trans. Parallel
Distributed Syst. 28(7), 1891–1904 (2017)

[7] Han, D., Agrawal, A., Liao, W., Choudhary, A.N.: Parallel DBSCAN
algorithm using a data partitioning strategy with spark implementation.
In: IEEE International Conference on Big Data (2018)

[8] Mayer, C., Mayer, R., Bhowmik, S., Epple, L., Rothermel, K.: HYPE:
massive hypergraph partitioning with neighborhood expansion. In: IEEE
International Conference on Big Data. pp. 458–467 (2018)

[9] Mehul Nalin Vora: Hadoop-hbase for large-scale data. In: Proceedings
of 2011 International Conference on Computer Science and Network
Technology. vol. 1, pp. 601–605 (2011)

[10] Ordonez, C.: Optimization of linear recursive queries in SQL. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 22(2), 264–
277 (2010)

[11] Ordonez, C., Zhang, Y., Cabrera, W.: The Gamma matrix to summarize
dense and sparse data sets for big data analytics. IEEE Transactions on
Knowledge and Data Engineering (TKDE) 28(7), 1906–1918 (2016)

[12] Parhami, B.: Parallel processing with big data. In: Encyclopedia of Big
Data Technologies. Springer (2019)

[13] Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed
file system. In: IEEE 26th Symposium on Mass Storage Systems and
Technologies, MSST. pp. 1–10. IEEE Computer Society (2010)

[14] Singh, D., Mohan, C.K.: Projection-svm: Distributed kernel support vector
machine for big data using subspace partitioning. In: IEEE International
Conference on Big Data. pp. 74–83 (2018)

[15] Wang, Z., et al., Y.C.: Scalable data cube analysis over big data. arXiv
preprint arXiv:1311.5663 (2013)

[16] Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., Stoica, I.: Spark:
Cluster computing with working sets. In: HotCloud USENIX Workshop
(2010)

[17] Zhou, X., Ordonez, C.: Computing complex graph properties with SQL
queries. In: 2019 IEEE International Conference on Big Data. pp. 4808–
4816 (2019)

6


