
Querying Big Source Code
Carlos Garcia-Alvarado

Autonomic LLC
Palo Alto, CA 94304, USA

carlos@autonomic.ai

Carlos Ordonez
Dept. of Computer Science

University of Houston
Houston, TX 77204, USA

carlos@central.uh.edu

Abstract—Software compliance, auditing, and maintainability
of large application repositories force organizations to rely on
source code analysis tools to identify code vulnerabilities, data
flows, technical debt, and bugs. We propose a novel method to
identify data flows within an application by analyzing the code
traces or ‘links‘ that exist between the code and the data. Our
application, SourceDB, leverages a relational database system as
the backend to perform such discovery and computations. Our
experiments show that SourceDB is able to process, analyze, and
query the data source, logs, and source code in seconds.

Index Terms—keyword search, source code analysis, SQL

I. INTRODUCTION

ISO compliance, certifications, auditing requirements, secu-
rity practices, and software maintainability force organizations
of all sizes to monitor their source code repositories. This is
especially challenging when the number and size of the code
bases is very large and the number of active projects keeps
increasing. As such, many companies have decided to rely on
the automation of source code analysis tools to expose security
vulnerabilities and technical debt, and reduce the risks of an
unintended faulty routine [9]. While there are many solutions
that perform static and dynamic source code analysis, there
are very few that focus on exploring the data flow of an
application.

The reason why most code analysis tools do not extract
the data flow is due to the fact that the abstraction layers
hide the “links” between the storage layer and the business
logic portions of the application, the difficulty of identifying
the underlying data source schema (schema and schema-
less sources), and the nature of the typing languages (static
and dynamic typing). In SourceDB, we focus on discovering
hidden links that exist between a set of source code files and
the physical model of a set of databases or log schemas.

Our approach exposes more additional information than that
of traditional source code analysis tools since it is possible
to follow the data flow via: a) an augmented source code
documentation (e.g. Javadoc or Doxygen); b) traversing the
recursive structure of the code; c) identifying critical/popular
tables and source code methods and classes; d) tracing which
source code functions use certain tables or columns; and e)
analyzing online application logs to trace data accesses in the
source code.

Source Code File

Schema

Store

Location Phone

Store

Link 1

State Telephone

Link 2

Company

Fig. 1. Discovered Links: Link 1 (Store:class, Store:table, store:keyword) and
Link 2 (Phone:field, Telephone:column, phone:keyword).

The closest related work is a static code analysis tool based
on ontologies and semantic analysis [1]. SourceDB does not
use priors (e.g. ontologies) and builds from our previous work
in [5] and [6] by introducing data flow tracing visibility via
Doxygen documentation, and especially log analysis.

II. SOURCEDB

SourceDB is a system that allows tracing data flows through
the discovery of links. It also provides the capabilities for
performing complex analysis of the resulting links via OLAP-
like aggregations and ranked searches. This approach was orig-
inally implemented to link semistructured data with structured
data in [7]. Later on, we extended this approach to perform
efficient approximate keyword matching inside the DBMS.
Our linking strategy and algorithms are fully explained in [3],
[4], [8]. For completeness, we provide a brief description of
our architecture and linking strategy.

We initially focus on keyword searches between a source
(e.g. DBMS schema or log file) S and a source code repository
C. Therefore a data trace or link li is defined as:

li : {Sp, Cq, k}

where p and q are approximate keyword matches to k (see
Figure 1). To power these features, our system is divided into
three modules. The expanded link extractor module focuses
on entity extraction (through keyword matching) and linking
between the code, logs, and other data sources. This module
generates and extends user Doxygen documentation (see Fig-
ure 2a). The link querying module allows data flow analysis
through link exploration and ranking (see Figure 2b). The third978-1-7281-6251-5/20/$31.00 ©2020 IEEE

a) Doxygen Extension. b) Assisted Exploration. c) Source Code View.
Fig. 2. SourceDB.

module presents an interactive view of the extracted links in
the code (see Figure 2c).

A. Link Extraction

Data traces or links are the result of keyword matches
between elements in the source code and the data source.
The first phase of link extraction gathers all the shared
keywords between the source code text files and the content
in the database, starting with the database schema. Since the
application’s logs do not have a formally defined schema, the
system performs a discovery process to infer the schema struc-
ture. Once the corresponding keywords have been identified,
SourceDB then performs an approximate keyword matching
to generate links between the sources. The result is triplets
containing both sources and the linking keyword. To enhance
the relationships among links, we also capture the mem-
bership relationships among the keywords. For example, if
the keyword ‘location‘ is contained within a class named
‘store‘, SourceDB will capture the membership relationship
(see Figure 1). The result of the link extraction phase is
a set of connected graphs, where each graph represents a
source, each node in the graph is a keyword, the relationship
between keywords in the same graph are memberships, and
the links between matched keywords are the discovered links.
In this work, we improved this module with log analysis and
documentation generation (Doxygen support).

1) Log Analysis: SourceDB takes previously generated logs
and performs a schema inference process. In order to do so,
SourceDB assumes a comma-separated type of log files (CSV),
then proceeds to sample the log files and extract the most
common keyword in each column. SourceDB will then take
this keyword as the element to match against the other sources.

2) Doxygen Extension: After all the sources have been
analyzed and all the links have been generated, our system
generates a Doxygen report that presents the extracted links
connecting keywords among the different sources. These ap-
pear in a section called ‘Discovered Links‘.

B. Exploration and Querying

This module explores the discovered links in three ways, by
1) allowing a boolean retrieval of all the links that approximate
match a given keyword, 2) ranking the results of the search
given the proximity of the match, and 3) providing OLAP-
like summarization of the keywords. As a result, SourceDB is

capable of answering analytical questions such as, “Which are
the columns with the maximum number of links?” or “What
is the column with the most links within a class?”

SourceDB is capable of querying and ranking the resulting
links efficiently by taking advantage of materialized views and
indexes. SourceDB reduces the number of string comparisons
by an efficient early pruning of approximate matches that
results in an integer key that is used to generate optimized
queries that exploit indexed tables. The interactive querying
and exploration mechanism exploits SQL queries and indexed
summarization tables to provide an efficient answer to our
users. Analytical queries are computed from materialized
views that support OLAP-like exploration of the links. Details
of the proposed OLAP algorithm are shown in [2].

C. Visualization
The visualization module is focused on simplifying the

interaction and exploration of the resulting graph. We provide
two main mechanisms for such exploration: 1) an interactive
source code view and 2) a simplified OLAP exploration
module with predefined queries. The first module renders each
source code file and allows the users to observe the matching
keywords and their sources. In other words, the users can
observe the data flow between the code and the data sources.
The second visualization mechanism presents a simplified
interface that allows the customer to obtain aggregation and
summarization on the links.

This exploration tool allows the user to query the links
interactively (shown as advanced querying) and in an assisted
form for obtaining basic summarizations and OLAP cubes
(e.g. drilling-up or down). Also, a simple rank of links can
be obtained by not selecting a function. The set of available
functions includes SUM, COUNT, MAX and MIN. The main
advantage of using assisted querying instead of the advanced
querying is that optimized SQL is generated automatically
by the application for efficient retrieval. On the other hand,
advanced querying allows interactive querying capabilities and
the possibility to extend the system through UDFs.

D. Implementation
Each of the described modules in SourceDB is implemented

entirely in C#. However, the link extraction and querying
modules are mostly driver code since the bulk of the compu-
tations and retrieval is performed in a DBMS. In other words,

the entire process of link extraction (with the exception of
log schema inference) and querying is performed within the
DBMS via SQL queries or the database’s extensibility features
such as User Defined Functions (UDFs) or Stored Procedures.

The log schema inference mechanism is implemented in
C# and the extracted keywords are stored in the DBMS
for link discovery. Once the links have been generated, the
user could choose to augment the Doxygen documentation
to include the newly discovered links information. For this
process, SourceDB groups all the corresponding links per
source code file and adds that information to the html file.

The visualization mechanism is the largest component im-
plemented outside the DBMS and allows for a user-friendly
exploration of the resulting links. The visualization module
presents a view of the source code and highlights the corre-
sponding links. A second screen allows assisted querying for
DOLAP-type of queries. In this view, the user could interact
with the system by just selecting pre-canned computations that
exploit the materialized views. The last view of this module
allows the user to perform interactive queries by using our
SQL interface.

III. EXPERIMENTS

We evaluated our system with four source code reposi-
tories of varying sizes and complexities. The source code
and sources, in this case, databases, are the following: 1) an
exploratory tool of the water quality of wells in the State of
Texas (WP), 2) the Sphider open source search engine (SE), 3)
an inventory system (PJ1), and 4) a CRM-like system (PJ2).
Table I and Table II contain the details of each repository and
schema. Our experiments were run on an Intel Xeon E3110
server at 3.00 GHz with 750 GB of hard drive and 4 GB of
RAM. The server was running an instance of a commercial
database management system. All the experiments are the
result of an average of 30 runs and all times are in seconds.

TABLE I
SOURCE CODE REPOSITORY.

Description WP SE PJ1 PJ2
Num. Files 52 44 119 316
Num. Classes 52 0 158 460
Avg. File Size (KB) 1,409 4,787 12,388 11,474
Lines of Code (LOC) 5,488 5,463 28,180 70,815
Avg. Num. Variables 8 29 19 35

TABLE II
SOURCES.

Description WP SE PJ1 PJ2
Num. Tables 52 25 21 95
Avg. No. Columns 7 4 6 5
Max No. Columns 110 12 15 29
Min No. Columns 1 2 2 2

SourceDB explored the largest source in less than 40
seconds and managed to process the rest in 20 seconds or less.
As part of our experiments, we observed that performance of

the link discovery phase is subject to two dominant operations:
I/O operations due to the loading of the source files, and the
approximate keyword matching. An important observation is
that the number of discovered links is not correlated to the size
of the source code repository but rather to the business logic of
the application. For example, CRM-type of applications that
perform a large number of insertions into a data store tend to
generate a larger number of links.

Since our system is backed by rich database optimizations
and materialized views, it is possible to perform complex
graph exploratory queries in less than 20 seconds for the
sources with the largest set of discovered links. Query per-
formance is dependent on the number of keywords to search
and their selectivity.

IV. CONCLUSION AND FUTURE WORK

In summary, our original approach allows users to simulta-
neously explore, query, and search databases, logs, and source
code repositories within seconds in order to understand their
data flows. This allows further debugging capabilities and
offers better guidance to software engineers for understand-
ing software vulnerabilities and application maintainability.
We believe that our main contribution is that our approach
augmented with log analysis can be used to present a different
view of traditional source code analysis tools.

Our future work will focus on further exploiting the ex-
tracted links from the application with some machine learning
and artificial intelligence algorithms in order to extract addi-
tional information from the dependencies within the legacy
program. In addition, we want to expand our log analysis tool
to provide a better data flow detection. Finally, we have also
identified that it is possible to parallelize our approach, or
even use cloud infrastructure, to reduce the link discovery time
significantly.

REFERENCES

[1] ATZENI, M., AND ATZORI, M. Codeontology: Querying source code in
a semantic framework. In Proc. of ISWC) (2017), pp. 4.

[2] GARCIA-ALVARADO, C., CHEN, Z., AND ORDONEZ, C. Olap-based
query recommendation. In Proc. of ACM CIKM (2010), pp. 1353–1356.

[3] GARCIA-ALVARADO, C., AND ORDONEZ, C. Keyword Search Across
Databases and Documents. In Proc. ACM SIGMOD KEYS Workshop
(2010), pp. 2.

[4] GARCIA-ALVARADO, C., AND ORDONEZ, C. Integrating and querying
web databases and documents. In Proc. ACM CIKM Conference (2011),
pp. 2369–2372.

[5] GARCIA-ALVARADO, C., AND ORDONEZ, C. Integrating and querying
source code of programs working on a database. In Proc. ACM SIGMOD
KEYS Workshop (2012), pp. 47–53.

[6] GARCIA-ALVARADO, C., ORDONEZ, C., AND BALADANDAYUTHA-
PANI, V. Querying External Source Code Files of Programs Connecting
to a Relational Database. In Proc. of ACM PIKM (2012), pp. 9–16.

[7] GARCIA-ALVARADO, C., ORDONEZ, C., AND CHEN, Z. DBDOC:
Querying and Browsing Databases and Interrelated Documents. In Proc.
ACM SIGMOD KEYS Workshop (2009), pp. 47–48.

[8] ORDONEZ, C., CHEN, Z., AND GARCÍA-GARCÍA, J. Metadata manage-
ment for federated databases. In ACM CIMS Workshop (2007), pp. 31–
38.

[9] TELEA, A., AND VOINEA, L. Interactive visual mechanisms for
exploring source code evolution. In Proc. IEEE VISSOFT Workshop
(2005), pp. 1–6.

