Matrix Multiplication with SQL Queries for Graph
Analytics

Xiantian Zhou"
University of Houston®
USA

Abstract—Analyzing large data sets are challenging. Most data
analytics research has proposed parallel algorithms that outside
a DBMS because SQL is considered inadequate for complexity
computations. R and Python are popular analysis systems that
provide a vast collection of mathematical models and functions.
However, they are limited by main memory and single computer.
Recently, parallel DBMSs have significantly improved query
processing performance. Moreover, SQL queries are elegant
and efficient. This paper introduces a novel system architecture
integrating a popular analysis system and parallel DBMSs, which
has the matrix multiplication involving a large matrix evaluated
inside a parallel DBMS and complex mathematical computations
are done in R or Python. Many graph problems can be solved
by matrix multiplication. In this paper, we show optimized
queries which perform matrix multiplication in DBMSs to solve
two fundamental graph problems, single-source reachability and
transitive closure.

Index Terms—Matrix Multiplication, SQL Queries, Graph
Analysis

I. INTRODUCTION

Big data analytics is a major challenge, characterized by
volume, variety and velocity of data, gaining interest in data
warehousing research. And Graph analytics remains one of
the most computationally intensive tasks in big data analyt-
ics. DBMSs are the main data management platform, while
R and Python are the most popular systems to perform data
analysis due to their ample library of models, powerful data
transformation operators, interpreted and interactive language.
Many research progress on efficient analytic algorithms work
outside a DBMS on flat files, which frequently are exported
from a DBMS. However, R and Python are slow to analyze
large data sets, especially when data do not fit in RAM.
Moreover, exporting data sets from a DBMS is slow and
redundant. Even some packages in R or Python enable the
parallel processing, but they generally require re-programming
existing functions and operators, which limits their impact.
More importantly, they cannot compete with a DBMS in
speed, parallel speedup and robustness when data size exceeds
RAM. On the other hand, columnar DBMSs can largely
improve SQL queries’ performance involving joins and aggre-
gations used for matrix multiplication. Many graph algorithms
can be expressed as matrix multiplication or their solution can

$Department of Computer Science, University of Houston, Houston TX
77204, USA
Contact author:xiantianzhou@gmail.com

Carlos Ordonez
University of Houston®
USA

be derived or approximated from matrix multiplication. Thus,
we present a system that combines popular systems such as R
and Python with DBMSs. While the data fitting in RAM are
processed in Python or R, the large matrix multiplication are
evaluated by operators optimized for the underlying DBMS
architecture.

In our system, the matrix multiplication of large graphs,
which is the most computationally intensive part of many
graph algorithms, is done in a DBMS instead of using R or
Python libraries. We also study how to do matrix multiplica-
tion and matrix-vector multiplication using queries. Moreover,
we analyze how to optimize those queries.

II. DEFINITIONS

Let G = (V, E) be a directed graph with n = |V vertices,
where V' is a set of vertices. The adjacency matrix of G is
a n X n matrix such that the cell ¢, 7 holds 1 when exists an
edge from vertex ¢ to vertex j, while 0 otherwise. From a
database perspective, graph G is stored in a table E as a list
of edges (adjacency list). Let table E be defined as E (i, j, v)
with primary key (i, j) representing the source and destination
vertices and v representing a numeric value e.g. cost/distance.
In this work, we solve graph analytics via matrix multiplication
with E.

III. MATRIX MULTIPLICATION IN SQL

Our system’s main idea is to compute matrix multiplication
inside a parallel DBMS if there is a matrix product involving
a large matrix. The structure of our system is shown in
Fig.1. This idea is to provide a valuable guideline to split
computations between R and a DBMS. It also helped us decide
where to optimize algorithms. The DBMS is a parallel system

Partition 1 Partition 2

Partition n

Documents,
Web pages,
Files

DBMS clients

Graph || result

Data Analysis
System R or Python

Fig. 1. An overview of our system

with N nodes under a shared-nothing architecture. The data
analysis system runs on a separate server or one of the N
nodes, under the assumption that any computation involving
a large matrix is always evaluated inside the DBMS using
queries. That is, a large matrix is not exported. Numerically
intensive matrix numerical methods are solved in R or Python,
but on the result matrix. As explained before, optimized SQL
queries that are used to perform matrix multiplication are sent
to the DBMS and the result matrix is stored in the DBMS.
Then another query fetches a subset of the result matrix from
the DBMS to R or Python, leaving it in RAM. A program at
the client computer connects to the DBMS and it maintains a
reference (table name) to each matrix in the DBMS. Then,
the program has the ability to evaluate matrix multiplication
with its syntax. In general, the large data set is stored with
the native storage mechanism of the parallel DBMS, whereas
small matrices that can fit in RAM are transferred to R for
further processing.

Our system takes care of translating matrix multiplication
in the data analysis systems into SQL queries for the relational
DBMS. In the end, the result matrix is imported back into the
data analysis system. Our queries are standard SQL queries,
they can be used in any parallel DBMS.

Many graph algorithms can be expressed as matrix mul-
tiplication or their solution can be derived or approximated
from matrix multiplication (Dijkstra’s shortest path, minimum
spanning tree, maximum flow) [3]. For example, the matrix
product E - 1, where 1 is an n-dimensional column vector,
helps finding the vertices with highest connectivity (i.e.hubs
in a network). The matrix product F- E - E can be used to get
all triangles in G, which has been identified as an important
primitive operation to solve many more complex graph prob-
lems. The iteration E/- E ... E, multiplying E k times gets all
paths of length k, from which we can filter the shortest/longest
ones and count them. Finally, £'- E'-...F (n — 1 times) until a
partial product vanishes is a demanding computation returning
G+, the transitive closure (reachability) of G, which gives a
comprehensive picture about G connectivity [2].

A. Matrix-Vector multiplication

Graph problems such as single-source reachability can be
solved by multiplying a sparse vector S iteratively by FE, as
shown in the following [1].

Sp=(ET)k. Sy =ET...(ET - (ET-S))) (1)

The - is the regular matrix multiplication and Sy is a vector
such that: Sp[i] = 1 when ¢ is the source vertex, and 0
otherwise. Accordingly, the SQL queries for this problem is
shown in the following:

/*single—-source reachabilityx/
SELECT E.j as j, sum(E.v * S.v)
FROM E JOIN S AS E.i=S.i

GROUP BY E.j;

as v

Optimization: For the matrix-vector multiplication, we can
replicate the vector S on each working node in the DBMS

system, since the size of S is O(n), which is small. But we
need to partition the table E across the DBMS system. Since
S is copied to each node, no message passing is required when
performing the query. But, if we need to iterate the query, the
vector .S is summarized and repeated across the DBMS system
after each join.

B. Matrix-Matrix multiplication

Matrix-matrix multiplication can also solve many graph
problems. The E- R can be expressed as a join and aggregation
query as shown below.

SELECT DISTINCT (E.i AS i,R.7j AS J)
FROM E JOIN R AS E.j=R.i
GROUP BY E.i, R.7J;

Similarly, you can also use the operator sum(), min(),
or aggregations in the queries according to different graph
algorithms.

Optimization: To optimize this query, we need to do an
identical partition. Implementing an identical partition allows
joins to occur locally on each node, thereby helping to reduce
data movement across worker nodes during query processing.
We partition table I and R by the join key. In the query we
presented, the edges having the same destination vertex in ta-
ble E' are partitioned in the same node with the corresponding
vertices in R since the join condition E.j = R.i. Thus, no
data movement is required to perform the query. If the graph
algorithm needs to repeat the join query, the temporal result
table needs to be re-partitioned across each node.

Based on the optimized queries, we can solve many graph
algorithms that can be expressed as matrix multiplication or
their solution can be derived or approximated from matrix
multiplication by using the queries we presented together with
sum(), min() or distinct.

In general, we present a system that combine popular data
analysis languages R and Python with DBMSs. While the
small data that can fit in RAM are processed in Python or
R, the large matrix multiplication is evaluated by queries
optimized for the underlying DBMS architecture. SQL will
remain the main DB query language. And queries are short
and elegant. Moreover, columnar DBMS enables fast multi-
plication of sparse matrix with no RAM limitation. We can
split computations between R or Python and DBMSs SQL
queries, without mess the analysis system with query plans.
For the future work, we will combine the C++ with Python.
The matrix multiplication is processed with C++ language in
a distributed system, the further and complicate analysis is
performed in Python.

REFERENCES

[1] Cabrera, W., Ordonez, C.: Scalable parallel graph algorithms with matrix-
vector multiplication evaluated with queries. Distributed and Parallel
Databases 35(3-4), 335-362 (2017)

[2] Ordonez, C., Cabrera, W., Gurram, A.: Comparing columnar, row and
array dbmss to process recursive queries on graphs. Information Systems
(2016)

[3] Zhou, X., Ordonez, C.: Computing complex graph properties with SQL
queries. In: 2019 IEEE International Conference on Big Data. pp. 4808—
4816 (2019)

