
A Genetic Optimization Physical Planner for Big
Data Warehouses

Soumia Benkrid, Yacine Mestoui
Ecole nationale Supérieure d’Informatique (ESI)

Algeria

Ladjel Bellatreche
LIAS/ISAE-ENSMA

France

Carlos Ordonez
University of Houston

USA

Abstract—Workload-driven approaches for partitioning and
tuning traditional Parallel Database systems are well studied in
the literature. Unfortunately, in the context of new generation
“Big Data” warehouses, these approaches are not correctly
adapted to Business Intelligence 2.0, where the analyst is at the
heart of decision support systems. This “disconnect” situation
strongly impacts both data partitioning and fragment allocation
processes, which are essential to achieve good query performance.
To overcome this problem, recent studies proposed online data
partitioning and fragment allocation using AI techniques to
improve query performance with adaptive behavior. Nevertheless,
they have important limitations: they add significant overhead
and they tend to focus on the current workload, ignoring query
logs. With such motivation in mind, we first formulate the
problem of optimizing database partitioning subject to feasibility
constraints, based on a query workload. We then introduce a
proactive partitioning approach combining offline and online
processing phases, inspired by closed-loop control (used in
engineering disciplines) and genetic algorithms (from AI). We
present an experimental validation on a big data cluster that
shows promising results on typical OLAP workloads.

I. INTRODUCTION

Currently, business intelligence is not only a huge central
data store that holds historical data managed by an IT team
and shares predefined data reports and BI analysis. But, it is
also becoming a ”stack” of technologies that allows business
users to build their own data reports and to query the data
warehouse (DW) using a cluster of machines. The traditional
DW characterized by huge fact table(s) with millions of rows
and several dimension tables has been evolved to deal with
different aspects brought by Big Data Era. These tables have
become larger and evolving. Consequently, Big DW s require
advanced algorithms and advanced deployment infrastructure
to deal with these issues.

In the context of parallel deployment of a Big DW , the
effectiveness of the BI is dramatically sensitive to how the data
is partitioned. Basically, the selection of attributes that partic-
ipate in partitioning process (called partitioning attributes) is
workload-driven approaches [1], [2]. However, since the BI
joins the ”do-it-yourself” trend, it has become more difficult
for DBAs to tune and to achieve the best performance of the
DW . Therefore, making a parallel DW self-adaptive with
minimal human oversight is a crucial issue. The self-adapt
issue has been extensively studied by the database community
[3]–[14]. The first line of work uses open-loop learning
methods, where for a predefined workload and the deployment

typically remains relatively unchanged. Most commonly, if
the workload changes, the DBA must often intervene by
taking the entire DW offline for repair. The second category
of work uses external mechanisms to maintain a form of
closed-loop control. Most of these solutions yield promising
results. But at a price: they require significant time and energy
to explore a large search space. Moreover, reinforcement
learning approaches suffer from a lack of repeatability of
results, requiring significant trial and error tuning of their
meta-parameters. Consequently, overcoming the challenges
of self-adaptation with minimal human oversight requires a
”closed loop” control able to monitor its metrics and choose
adaptations to perform better against a given circumstance
within a reasonable response time and energy consumption.
To address this problem, we propose an approach that follows
the well-known five-components MAPE-K architecture [15].

In this paper, we focus on the planning (P) component,
which produces strategies to achieve a performance goal. Since
the self-adaptation for data partitioning is costly since almost
DBMS requires halting execution in order to apply a change
makes, the focus has mostly been on an offline planning
rather than online planning where queries are discovered
over time. To be effective, such as the robustness of the
offline step increases accurate estimation and decreases energy
consumption for the online step, our planner uses utility
theory to choose the best solution. We propose the use of
a genetic algorithm (GA) widely explored in centralized DW
[16]. GA is particularly suitable for reinforcement learning
(RL) problems because it engages artificial decision-making
agents acting in an environment to accomplish a specific
objective [17]. Also, it showed its efficiency for solving NP-
hard problems and less energy-consuming compared to other
Machine Learning and RL algorithms.

Our paper is organized as follows: Section 2 provides the
formulation of our studied problem. Section 3 introduces a
novel planner for data partitioning based on genetic optimiza-
tion. Section 4 presents experiments evaluating the quality
of database partitioning, query evaluation time, and parallel
speedup. Related work is discussed in Section 5. Section 6
summarizes our main findings.

II. DEFINITIONS AND PROBLEM FORMULATION

In this section, we formulate the problem of optimizing an
adaptive big DW . Specifically, we study how to select an op-

timal data partitioning schema to enhance the performance of
a workload combining fixed (predefined) and ad-hoc queries.

Data partitioning is usually static and it is computed offline
by analyzing a predefined workload. In general, a robust
adaptive data partitioning needs to factor in some uncertainty
to avoid a disruptive online adaptation. However, it is diffi-
cult to develop successful strategies without exploiting prior
knowledge, which can reduce large search space and can help
to reduce the consumption of computing resources.

This study models the problem of determining a robust
and efficient partitioning planner as a robust optimization
problem, with the aim of maximizing the usefulness of the
data partitioning schema for predefined and ad-hoc queries.
The planner is first used to precompute and generate an ideal
data partitioning schema to handle predefined queries. This
solution enables a fast and correct response to known queries,
but it cannot handle exceedingly difficult ad-hoc queries
performance needs. In the case of violation of performance
metrics, the planner must be triggered at the query run-time
to dynamically generate a new data partitioning schema that
can adapt quickly to ad-hoc queries needs at a potential cost
of suboptimality.

Intuitively, the problem can be formalized as follows: Given
a Big data warehouse DW , a workload Q, a cluster DBC,
and a utility threshold u. The objective of our problem is
to select partitioning and allocation schemes that minimize
the overall execution time of our dynamic workload while
maintaining the desired utility threshold of u and satisfying
the maintenance constraint.

In the next Sections, we present all ingredients to solve our
database optimization problem.

A. Preliminaries

A DW Partitioning: In this paper, we reproduce the tradi-
tional methodology to partition relational DW to Big DW .
More concretely, we partition some/all dimension tables using
the predicates of the workload defined on their attributes, and
then partition the fact table based on the partitioning schemes
of dimension tables. To illustrate this fragmentation, let us
suppose a relational warehouse modelled by a star schema with
d dimension tables and a fact table F . Among these dimension
tables, G tables are fragmented (g ≤ d). Each dimension
table Di (1 ≤ i ≤ g) is partitioned into mi fragments:
{Di1, Di2, ..., Dimi}, where each fragment Dij is defined as:
Dij = σclij (Di), where clij and σ (1 ≤ i ≤ g, 1 ≤ j ≤ mi)
represent a conjunction of simple predicates and the selection
operator, respectively. Thus, the fragmentation schema of the
fact table F is defined as follows: Fi = F n D1j n D2k n
.. n Dgl, (1 ≤ i ≤ mi), where n represents the semi join
operation.

Utility of Big DW Partitioning Schema: The utility of a
Partitioning schema our Big DW seeks to maximize profit
(throughput) of a query, generally, over two consecutive times
two periods t and t+1. This utility over a query q is a metric
that measures the reduction in the evaluation cost of q under

SF .

DEFINITION1. We posit that if the period t+1 begets a new
query qi, its utility is given by

U(SF, qi) =
CostFSt+1

(qi)

CostFSt
(qi),

(1)

where CostFSt+1
(qi) (∀i ∈ {0, 1}) denotes the evaluation

time of qi under the adapted fragmentation schema FS
obtained at the instant t+ i.

B. Problem Formulation

We have all ingredients to formalize our problem: Given:
• A cluster machine DBC with M nodes N =
{N1, N2, . . . , NM};

• A relational DW RDW under a star schema and com-
posed of one fact table F and d dimensional tables
D = {D1, D2, . . . , Dd}.

• a set of L (L = |PQ|) star join queries PQ =
{q1, q2, . . . , qL}, being each query ql characterized by an
access frequency fl (1 ≤ lŁ (related to its importance);

• A fragmentation maintenance threshold W representing
the maximal number of fact fragments that the designer
considers relevant;

• A target profit of u which represents the minimum
acceptable utility.

Our problem consists in selecting the best fragmentation
schema SF ∗ such that:

minimize
|PQ|∑
i=1

CostDBC(FS
?, qi)

subject to |FS?| ≤ W,

|PQ|∑
i=1

U(FS?, qi) ≥ u.

(2)

III. PLANNER BASED ON GENETIC OPTIMIZATION

Figure 1 illustrates the global architecture of our planner
(called SmartPlan) in charge of finding a robust and the best
data partitioning scheme. This implies identifying the right
fragmentation schema (set of sub-domains) that yields a a high
”utility” for the given workload. To this end, we propose two-
phases approach that incrementally selects the partitioning at-
tributes: (1) exploration (offline) and (2) exploitation (online).
A genetic algorithm is utilized in the offline stage to overcome
the complexity of expensive global searches, thereby obtaining
a solution in a reasonable time. When the worst scenarios
come up, the online stage is called to find a robust solution by
using again the genetic algorithm. The online stage plays the
role of the adaptation manager of our target deployed RDW .

Our key insight is that the same set of experiences generated
by the genetic population in the offline stage is exploited in
the online stage in order to improve the genetic algorithm
learning ability. Recycling the same data enables optimal
information usage leading to much lower energy consumption
and execution time.

To the best of our knowledge, we are the first to propose
an adaptive solution for database partitioning based on evo-
lutionary methods applied on queries. In the next subsections
we explain our proposed solution in technical detail.

Fig. 1: The flowchart of our proposed approach.

A. Initialization

The optimization algorithm needs to start from some initial
solutions in the population. In some approaches, the population
is usually initialized by randomly that generates a predefined
number of chromosomes. However, random initialization has
shown its limit. To efficiently produce several initial solutions,
a heuristic based on workload clustering is designed to gener-
ate a special population in which the chromosomes represent
the predefined and ad-hoc queries.

Workload clustering serves as a bridge between the pre-
defined workload and unknown queries. It consists in split-
ting a given workload into a number of sub-workloads such
that queries in the same groups are related to each another.
Specifically, when a new query occurs, it is assigned to the
best group by calculating the similarity of the new query with
existing groups. The group that fully matches the query is the
one with the highest similarity.

To tackle the aforementioned challenge, the given workload
is segmented into multiple query clusters using workload
clustering algorithms. Our workload clustering consists of the
following steps:
• Feature Extraction: It refers to the process of identifying

relevant features that can best represent the workload and
contains fewer parameters. Three types of features are
used to represent queries: (1) lexical [18], (2) physical
[19] and (3) arrival rate history [7]. In order to increase
the correlation between predefined workload and ad-
hoc queries, we propose the usage of common sub-
expressions among queries as features (called ”lexico-
semantic”). A common sub-expression represents sub-
sequences that occur frequently together in the workload.
The selection of the common sub-expressions among
queries is equivalent to finding frequent itemsets (largely
studied in Data Mining field), where the queries play
the role of transactions, whereas the selection and join

predicates represent the items. To identify these itemsets,
we first extract the selection and join predicates from our
workload. Then, we represent each query by a binary
vector indexed by the above predicates. If a predicate pj
is used by a query qi then its corresponding cell is set
to 1, otherwise 0. Table I gives an example of vector
representation by considering 4 queries involving two
selection predicates (year = 2020 and nation = ’Algeria’)
and one join predicate (S.year id = D.id). The above
coding is used by the Apriori algorithm to select the
frequent itemset to find the best frequent patterns. [20]

TABLE I: Workload encoding.

year = 2020 nation = ’Algeria’ S.year id = D.id

q1 0 1 1
q2 1 0 1
q3 0 1 0
q3 1 1 0

• Queries Representation: Each query is characterized by a
binary vector representing the presence-absence selected
frequent patterns.

• Query Clustering: To generate groups of queries, we use
the K-modes algorithm that extends the k-means principle
to categorical data, and binary data in particular. Then k
is varied in 1-step increments using the Elbow method
[21].

On each so-generated workload cluster, we then obtain a
partitioning schema using existing heuristics [2], [22]. After-
ward, their outputs are represented as a chromosome of the
initialized population. Each chromosome is represented as a
multidimensional array that models the partitioning domain of
a fragmentation attribute.

B. Generating Adaptive Solutions

This phase consists in combining the candidate solutions
of the population to continuously generate adaptive solutions
(i.e. which can survive multiple generations), while bringing
a potential improvement in performance. To achieve this, the
genetic operators such as crossover and mutation are applied to
all individuals in order to aggregate over the data partitioning
schemes to form the most efficient one. In other words, our
partitioning approach builds multiple partitioning schemes and
merges them together using genetic operators to get a more
accurate and stable schema.

In this work, the crossover operator combines two solutions
with a single chromosome. This operator involves exchanging
parts of the solution with another in chromosomes. The main
role is to ensure the fusion of solutions will increase the
usefulness of the final solution for all queries classes. On the
other hand, the mutation represents random changes of parts
of a solution to increase the diversity of the population and
thus provides portability of the solution for ad-hoc queries.
The mutation operator is also applied to each child solution
resulting from the crossover operation.

C. Fitness Evaluation of Candidates

Each individual in the population is considered a candidate
solution. To evaluate candidacy it is necessary to estimate the
quality of an individual using an “adaptivity” fitness function.
This way, the approach can contrast different configurations
and choose the best one w.r.t the objective function. The fitness
function f assigns a numerical quality value to determine the
performance of the chromosome.

In this study, the fitness function is defined as a penalty-
based formulation where the objective is written as:

f(FS) = (1 + µ)

|PQ|∑
i=1

CostDBC(FS, qi), (3)

where µ � 0 is the penalty parameter that reinforces the
constraints. To get µ, we use the following basis metric:

µ =
1

(|FS| −W) ∗ (
∑|PQ|

i≥1 U(FS, qi)− u).
(4)

We notice that the so-generated fragments are allocated using
hash placement.

D. Adaptive Plans

Our planner takes advantage of past knowledge, by con-
stantly monitoring performance metrics. When a violation of
performance constraints occurs, the new queries causing the
failure are integrated into the fragmentation scheme.

Our genetic algorithm is called again to select the best
accommodating plan. First, a starting population of adaptation
strategies is created based on the last exploration phase popu-
lation of the genetic algorithm as well as adaptation strategies
for the updated offline classes with ad-hoc queries. Then these
adaptation strategies are iteratively improved by applying a
combination of mutation and crossover operators, with the
most efficient plans being more likely to pass to the next
generation. It is expected that this iterative process increases
utility over time, thereby reducing average query evaluation.

We emphasize that by reusing exploration candidates we
reduce the number of evaluations of the fitness function to
choose the best solution.

IV. EXPERIMENTAL RESULTS

This section reports the results of an experimental evaluation
of our proposed approach. We, first, describe our infrastruc-
ture, dataset and query workloads. Then, we present our
important results.

System setup: We evaluate our approach using Postgres-
XL1, a scalable open-source PostgreSQL-based database clus-
ter. All the experiments are run on an XL architecture with
one GTM, one coordinator (master), and 8 data nodes. Each
node has a 3.2GHz quad-core Intel CPU i5 − 4460 with
8GB of RAM. Network speed is 100Mb/s. The adaptive
generated fragments are allocated with Hashing over the M
cluster nodes.

1https://www.postgres-xl.org/

Workload: Regarding the datasets, we used the star schema
benchmark (SSB)2 with a scale factor of 100.

In our experiments, we generate randomly 100 queries based
on the original 13 queries of the SSB benchmark. Most of
these queries contain at least two join operations.

A. Quality Partitioning by the Genetic Algorithm

Here we study the data partitioning performance of our
genetic based-approach. We focus our analysis on the ex-
ploitation (online) stage. For that, we generated randomly a
set of 20 ad-hoc queries and we stressed the genetic based-
approach performance under two different scenarios based
on the initial population. According to the first scenario,
the genetic algorithm has been performed by considering a
random initial population. Whereas in the second one, the
initial population has considered the workload clustering as
described in section III.A. Figure 2 (a) presents the results
obtained. They show that the workload clustering improves
significantly the performance of ad-hoc queries as most of the
effective characteristics of queries are taken into consideration.
We also compare our data partitioning proposal against the
classical hash partitioning in which all tables are hashed
according to their primary key. As shown in Figure 2 (b), the
query performance of approach reaches the best score because
allocating the so-generated partitions (by multi-attribute range
partitioning manner) using hash placement decreases the local
data processing and increases the load balancing processing.
In addition, it should be noted that it is quite important to
carefully choose the utility desired rate (u). Figure 2 (c)
clearly reports that increasing the value of u decreases the
performance of ad-hoc queries. A high utility rate favors
predefined queries.

We proceed to compare the performance of our genetic-
based approach against Q-learning based approach by ana-
lyzing time and energy performance. Precisely, the partition-
ing schema-based Q-learning is defined using the approach
proposed in [14]. Figure 3 summarizes the results of this
comparison. Overall, the reported results show that the genetic-
based approach outperforms the Q-learning one. As shown
in Figure 3 (a), in most cases, the genetics-based approach
greatly exceeds the performance provided by the Q-learning
approach for predefined queries. This follows the fact that the
genetic algorithm uses efficient reward-directed exploration.
In addition, for online stage 3 ((b)(c)), our genetic-based
approach reduces effectively the adaptation time and ad-
hoc queries processing time, on average, 50% slower than
Q-learning based approach. These results demonstrate the
importance of the process of selecting the right sampling
for stochastic policy. Also, the genetic algorithm is much
faster than Q-learning in the exploration and exploitation
steps. Another interesting result that has to be highlighted
concerns the energy consumption of our proposal. As shown
in figure 3 (d), the genetic-based approach reduces up to 40%
of energy consumption compared to Q-Learning. Our proposal

2https://github.com/electrum/ssb-dbgen

 0

 500

 1000

 1500

 2000

 2500

Smart Initial Population Random Initial Population

R
un

tim
e

(s
)

(a) Initial Population

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Our Partitioning Hash Partitioning

R
un

tim
e(

s)

(b) hash distribution

 0

 20

 40

 60

 80

 100

50% 60% 70% 90%

u
(%

)

(c) utility rate

Fig. 2: Genetic based approach Performance.

satisfies two fundamental nonfunctional requirements in Big
Data applications which are: query performance and energy
consumption of our deployment platform.

B. Impact of Fragmentation Threshold

We study the effect of the fragmentation threshold W
(maintenance constraint) on the performance of our utility-
based partitioning approach. For 8 query groups and 8 pro-
cessing nodes, we vary the fragmentation threshold in the
interval [100−500] and we calculate the throughput workload
execution. As depicted in Figure 4, it clearly follows that
increasing the value of W decreases the query performance
significantly, as the hash distribution of the fragments allows
more local processing and communication costs. This result
confirms the importance of choosing the right number of final
fragments to generate and online re-partitioning may defer
further degrade performance. In the rest of the experiments,
we fix the fragmentation threshold (W) to 200.

This result confirms the importance of choosing the right
number of the target final fragments. Ignoring this threshold
in the global formalisation and then in the data partitioning
algorithm will contribute in degrading the overall query perfor-
mance. In the rest of the experiments, we fix the fragmentation
threshold (W) to 200.

C. Impact of Workload Clustering on Query Throughput

Finally, we focus our attention on workload clustering. The
aim of this experiment is to show that our query clustering
improves the proposed approach. First, we vary the number
of query classes in the interval [4 − 16] and we calculate
the throughput workload execution. The results illustrated
in Figure 5 (a) show that a very large or very small k
degrades overall workload performance. This mainly impacts
the aggregation of schemes to have the best schema that will
be useful for the maximum number of queries. Secondly, we
fix the number of classes to 8 and we compare the efficiency
of our semantic features against logical features. To this end,
we observed the performance of 10 OLTP queries under a
fragmentation schema generated for the predefined workload
with 100 OLAP queries in both features (lexical and lexico-
semantic). The results are given by figure 5 (b).
The obtained result shows also that the query performance

obtained by the workload clustering with lexico-semantic
features is twice as good as that obtained by lexical features.
This is obviously because lexico-semantic features capture
more similarities between predefined and ad-hoc queries. This
is done by the means of common sub-expressions that describe
the interaction between queries via joins and selections used
as features.

This experimental result shows the importance of carefully
selecting features and query groups number for workload
clustering.

D. Parallel Speedup

For a partitioning threshold of 200 and a workload cate-
gorized into 8 query clusters, we vary the number of data
nodes from 1 to 8. For each value, we calculate the speed
up. As shown in Figure 6(a), our approach scales linearly,
but it is not ideal. This is due to the imbalanced dataload.
To determine the source of this processing skew, we analyze
the data distribution. As sketched in Figure 6(b), our data
placement is skewed because we use a multi-level partitioning
based on the splitting of the attribute’s domain.

V. RELATED WORK

Designing Parallel DW is mainly related to data placement
problem that studies how to find the best data distribution
of the database. The data placement is a rich field including
the conventional data placement (round-robin, hash placement,
and range placement) deployed on top of parallel platforms.
Then, the data placement policy includes data partitioning and
data allocation. Both problems have the merit to be largely
studied, in an isolated way, overall database generations [13],
[23], [24]. Recently, some research efforts [25] recommended
combining some phases of the partitioning and allocation in
order to get benefit from the interaction between these phases.

The automatic data partitioning problem has been largely
investigated in many alternative variants. the majority of
existing work assumes the static environment and formulated
the data partitioning problem as a constraint optimization
problem [3], [4]. Mathematical programming techniques have
been widely used to identify the optimal partitioning strategy.
However, SCHISM [2] is a tool that offers a new approach
to automate database partitioning. To this end, the authors

 0

 100

 200

 300

 400

 500

 600

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

R
u
n
ti
m

e
(s

)

GA-based QL-based

(a) Execution time before adaptation.

 0

 100

 200

 300

 400

 500

 600

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

R
u
n
ti
m

e
(s

)

GA-based QL-based

(b) Execution time before adaptation.

 0

 500

 1000

 1500

 2000

GA-based QL-based

R
un

tim
e(

s)

(c) Adaptation needed time.

 0

 50

 100

 150

 200

GA-based QL-based

E
ne

rg
y

co
st

 (
x1

03 k
J)

(d) Energy.

Fig. 3: Genetic-based approach against Q-Learning based approach.

 60

 65

 70

 75

 80

100 200 300 400 500

R
un

tim
e

(m
in

)

Fragmentation threshold W

Fig. 4: Effect of the Fragmentation Threshold W on the Query
Performance.

 0

 20

 40

 60

 80

 100

 120

4 5 6 8 10 12 14 16

R
un

tim
e

(m
in

)

Query groups number

(a) Effect of query groups number

 0

 5

 10

 15

 20

 25

 30

Lexico-semantic Features Lexical Features

R
un

tim
e

(m
in

)

(b) Performance of lexico-semantic features against lex-
ical features

Fig. 5: Impact of Workload Clustering.

represent a database and its workload as a graph, where tuples

 1

 2

 3

 4

 5

 6

 7

 8

2 4 6 8

S
pe

ed
-U

P

Number of Processing Nodes

Our speed-up
Ideal speed-up

(a) Speed-up

 1.645

 1.646

 1.647

 1.648

 1.649

 1.65

 1.651

 1.652

N1 N2 N3 N4 N5 N6 N7 N8

D
at

a
S

iz
e

(x
10

8 tu
pl

es
)

Data Nodes

(b) Data Placement Distribution

Fig. 6: Speed-up.

are represented by a vertex and an edge indicates that the two
tuples are co-accessed together in a transaction; it then applies
a graph partitioning algorithm to produce k balanced partitions
so that the number of distributed transactions is minimized.
On the other hand, some works propose online data migration
according to the change in the workload. For a database pre-
partitioned into a set of static fragments, E-STORE [26] is
a dynamic partitioning manager for automatically identifying
when a reconfiguration is needed using system and database
statistics. It explores the idea of managing hot tuples separately
from cold tuples by designing a two-tier partitioning method
that first distributes hot tuples across the cluster and then
allocates cold tuples to fill the remaining space.

Another direction is taken for the development of adaptive
partitioning using Reinforcement Learning. Although not a
novelty, there have been many types of research in solving

database problems with Machine Learning [5]–[8], [10], [12].
Hilprecht et al. [14] propose an approach, based on Deep
Reinforcement Learning (DRL), in which several DRL agents
are trained offline to learn the trade-offs of using different
partitioning for a given database schema. For that, they use a
cost model to bootstrap the DRL model. If new queries are
added to the workload or if the database schema changes, the
partitioning agent is adapted by progressive learning. However,
to support a completely new database schema, a new set of
DRL agents must be trained.

VI. CONCLUSION

We presented novel AI-inspired techniques to help in auto-
mated database physical design, having a Big Data computing
environment in mind. In order to enhance previous findings
on database partitioning, we combined online re-planning
with offline workload analysis by improving upon open-
loop learning pipelines. By deeply examining the literature,
we identified limitations of existing approaches to design
DW in the B2.0 (big data) era characterized by its ad-
hoc queries. The integration of this aspect in the physical
database design is commonly ensured by adaptive techniques.
To that end, we introduced a comprehensive framework based
on a proactive planner to dynamically partition a big DW
running on a parallel cluster. Our genetic-inspired planner
is enabled by genetic optimization algorithms adapted to
improve data partitioning based on close to optimal fragment
allocation. An offline workload analysis step significantly
improves the physical database design because it captures
hidden performance knowledge of a set of OLAP queries.
This set of queries is clustered based on the current partition
and discovered clusters are used to re-partition the big DW
by shuffling clustered fragments over the nodes of a parallel
computer cluster. Thereafter, when a new query is submitted,
it is assigned to the best group by calculating its similarity
with existing query groups (i.e. clusters). When a violation of
performance constraints occurs, the online step is called, in
a dynamic manner to redistribute table fragments. Extensive
experiments evaluate partition quality, impact of parameters
and parallel efficiency, with encouraging results. We believe
genetic algorithms combined with online techniques show
promise to analyze dynamic workloads with ad-hoc queries
in modern big data environments.

Even though our experimental results are encouraging,
this work opens several perspectives for future work: (i)
further improvement of the adaptive allocation by using other
AI techniques, (ii) integration with NoSQL systems capable
of evaluating OLAP queries, (iii) performance comparison
with static workload approaches, (iv) tuning cross-over and
mutation of table fragments at each iteration, (v) exploring
other aspects of a big data warehouse, beyond horizontal
partitioning, which can benefit from AI techniques.

REFERENCES

[1] S. Agrawal, V. R. Narasayya, and B. Yang, “Integrating vertical and
horizontal partitioning into automated physical database design,” in ACM
SIGMOD, 2004, pp. 359–370.

[2] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” Proc. VLDB
Endow., vol. 3, no. 1-2, Sep. 2010.

[3] R. Nehme and N. Bruno, “Automated partitioning design in parallel
database systems,” in ACM SIGMOD, 2011, pp. 1137–1148.

[4] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in ACM SIGMOD,
2012, pp. 61–72.

[5] A. Jindal, K. Karanasos, S. Rao, and H. Patel, “Selecting subexpressions
to materialize at datacenter scale,” Proc. VLDB Endow., vol. 11, no. 7,
pp. 800–812, Mar. 2018.

[6] I. Alagiannis, S. Idreos, and A. Ailamaki, “H2o: a hands-free adaptive
store,” in ACM SIGMOD, 2014, pp. 1103–1114.

[7] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J.
Gordon, “Query-based workload forecasting for self-driving database
management systems,” in ACM SIGMOD, 2018, pp. 631–645.

[8] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Automatic database
management system tuning through large-scale machine learning,” in
ACM SIGMOD, 2017, pp. 1009–1024.

[9] T. Zhang, A. Tomasic, Y. Sheng, and A. Pavlo, “Performance of OLTP
via intelligent scheduling,” in ICDE, 2018, pp. 1288–1291.

[10] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. C.
Mowry, M. Perron, I. Quah et al., “Self-driving database management
systems.” in CIDR, vol. 4, 2017, p. 1.

[11] B. Zhang, D. Van Aken, J. Wang, T. Dai, S. Jiang, J. Lao, S. Sheng,
A. Pavlo, and G. J. Gordon, “A demonstration of the ottertune auto-
matic database management system tuning service,” VLDB Endowment,
vol. 11, no. 12, pp. 1910–1913, 2018.

[12] S. Benkrid and L. Bellatreche, “A framework for designing autonomous
parallel data warehouses,” in ICA3PP, 2019, pp. 97–104.

[13] G. C. Durand, M. Pinnecke, R. Piriyev, M. Mohsen, D. Broneske,
G. Saake, M. S. Sekeran, F. Rodriguez, and L. Balami, “Gridformation:
Towards self-driven online data partitioning using reinforcement learn-
ing,” in First International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management, 2018, pp. 1–7.

[14] B. Hilprecht, C. Binnig, and U. Röhm, “Towards learning a partitioning
advisor with deep reinforcement learning,” in Proceedings of the Second
International Workshop on Exploiting Artificial Intelligence Techniques
for Data Management, 2019, pp. 1–4.

[15] P. Horn, Autonomic computing: IBM’s Perspective on the State of
Information Technology. IBM, 2001.

[16] L. Bellatreche, K. Boukhalfa, and H. I. Abdalla, “SAGA: A combina-
tion of genetic and simulated annealing algorithms for physical data
warehouse design,” in 23rd British National Conference on Databases
(BNCOD), 2006, pp. 212–219.

[17] M. M. Drugan, “Reinforcement learning versus evolutionary com-
putation: A survey on hybrid algorithms,” Swarm and evolutionary
computation, vol. 44, pp. 228–246, 2019.

[18] J. Du, R. J. Miller, B. Glavic, and W. Tan, “Deepsea: Progressive
workload-aware partitioning of materialized views in scalable data
analytics,” in EDBT, 2017, pp. 198–209.

[19] A. Ghosh, J. Parikh, V. S. Sengar, and J. R. Haritsa, “Plan selection
based on query clustering,” in VLDB, 2002, pp. 179–190.

[20] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings
of the eleventh international conference on data engineering. IEEE,
1995, pp. 3–14.

[21] P. Bholowalia and A. Kumar, “Ebk-means: A clustering technique
based on elbow method and k-means in wsn,” International Journal
of Computer Applications, vol. 105, pp. 17–24, 2014.

[22] A. Boukorca, L. Bellatreche, and S. Benkrid, “HYPAD: hyper-graph-
driven approach for parallel data warehouse design,” in ICA3PP, 2015,
pp. 770–783.

[23] F. Akal, K. Böhm, and H.-J. Schek, “Olap query evaluation in a database
cluster: A performance study on intra-query parallelism,” in ADBIS,
2002, pp. 218–231.

[24] T. Stöhr, H. Märtens, and E. Rahm, “Multi-dimensional database allo-
cation for parallel data warehouses,” in VLDB, 2000, pp. 273–284.

[25] S. Benkrid, L. Bellatreche, and A. Cuzzocrea, “A global paradigm for de-
signing parallel relational data warehouses in distributed environments,”
TLDKS Journal, vol. 15, pp. 64–101, 2014.

[26] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga,
A. Pavlo, and M. Stonebraker, “E-store: Fine-grained elastic partitioning
for distributed transaction processing systems,” Proceedings of the VLDB
Endowment, vol. 8, no. 3, pp. 245–256, 2014.

