
Monitoring Networks with InsightfulQueries
Quangtri Thai

University of Houston
Carlos Ordonez
University of Houston

Omprakash Gnawali
University of Houston

ABSTRACT
Monitoring networks requires efficiently detecting abnor-
mal events and summarizing connection information in big
volumes of packet-level data. Some of these tasks can be ac-
complished with network and operating system utilities, but
questions should be relatively simple and data pre-processing
should be kept at a minimum. Another requirement is to be
able to process data, both in a centralized and decentralized
manner given the dynamic nature of TCP-IP packet flow.
On the other hand, database systems can answer complex
questions phrased as queries, provided data is in the right
format and is quickly loaded. Having such motivation in
mind, we propose to monitor a network with queries, run-
ning on a traditional DBMS (i.e. not a custom-built system
programmed in C or C++). Thus, queries can be processed
in a central manner in a traditional database server or in a
distributed fashion with edge computing. A brief experimen-
tal evaluation shows queries can indeed be used to monitor
the network with low latency and reasonable delay.

1 INTRODUCTION
Over the last decade, researchers have increasingly adopted
the use of testbeds to bring realism in their wireless network
experiments. The use of testbeds have led to the development
of technologies that are more feasible in real world settings.
Roofnet was an early example of such a city-scale testbed
and is followed by numerous wireless testbeds including a
large number of low power wireless testbeds [2]. Lately, the
rise of low cost computing devices such as Raspberry Pi has
allowed these testbeds to be built at a large scale in many
places around the world. Such testbeds allow administrators
to capture a large volume of somewhat realistic data traces
from the network, but many of these testbeds do not provide
a powerful, flexible, and practical network data analysis tool.
Such lack of tools have led to the researchers using either
basic network diagnostics tools (e.g., derivatives of ping,

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
WiNTECH’20, September 21, 2020, London, United Kingdom
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8082-9/20/09.
https://doi.org/10.1145/3411276.3414695

traceroute) or roll out their own custom tools leading to
inefficiency in testbed based wireless networking research.

The availability of testbeds and instrumentation data from
realistic environments are evidence of progress the research
community has made, but we also observe a general lack of
standard and flexible data analysis capability to fully take
advantage of these powerful testbeds. For example, tools
such as ping and traceroute are adequate for certain near-
real time network data analysis, but these tools may find
historical data processing a bit harder and is often not as
flexible apart from their given task. While there are more
sophisticated tools developed by researchers [1, 4], they are
unable to provide a flexible way to allow custom, real-time
queries that the user may want to run.

Our solution to this problem is informed by two principles.
First, leverage the common model used by these testbeds
to export data to the researchers. We do not want to re-
quire the testbeds to significantly change the export data
format or require the researchers to perform complex data
pre-processing. Second, rather than reinvent yet another
data processing framework, leverage existing technologies
that are known to be effective in other domains with similar
data properties.
Combining the use of SQL to store and analyze network

streams from a tool like tshark is a fast and flexible option
when compared to the standard tools provided by Linux, al-
lowing for historical data processing. Using SQL will provide
more custom and complex queries, while keeping it simple,
flexible, and scalable [3]. Streams will be captured in small
batches, then added and analyzed in the database to give a
historical analysis of the data. While using custom Python/R
code for data analysis can provide further specialized queries,
this come with the price of being much harder to implement
and is much more of a hassle to change and specialize to
different tasks. Our solution will allow more interactive and
flexible exploration of network data by the researchers. Fur-
thermore, our evaluation shows that it is feasible to run
this system on modern edge devices like the Raspberry Pi,
thereby allowing the researchers to use the same analyti-
cal tools on the testbed nodes or on their desktops/laptops,
leading to significant reuse of analysis code.
In this paper, we study how viable it is to monitor and

analyze a network stream through the use of SQL. We then
study the feasibility of implementing a query system directly
on the edge device, such as a Raspberry Pi, and run it rea-
sonably efficiently for both near real time and historical data

https://doi.org/10.1145/3411276.3414695

WiNTECH’20, September 21, 2020, London, United Kingdom Quangtri Thai, Carlos Ordonez, and Omprakash Gnawali

analysis. We will continuously capture the network stream
and process it on the Raspberry Pi, while measuring how
long each step takes. This poses a challenge of having to
handle the large volume and velocity from the stream. This
will be done in both a centralized and distributed manner
to compare and contrast the different methods. Intensive
analysis will be ran on the data captured and timed to see
how viable it is on such a small device. We look to under-
stand how much resource and time is being required to store
and analyze these large streams of data, how usable these
analysis are, and how well it scales with increasing stream
size and devices.
Our contributions are: (1) Modeling the network instru-

mentation as streaming data processing using SQL. (2) For-
mulating different streaming queries that are relevant for
network monitoring within a time window. (3) Implementing
and evaluating a light-weight DB and the SQL-based network
instrumentation system on an edge device in centralized and
distributed configurations.

2 TECHNICAL CONTRIBUTION
We seek to monitor and analyze the network using SQL
commands on the edge devices in both a centralized and
distributed manner. We follow this approach because of the
many advantages and flexibility SQL would offer. This would
include practically unlimited storage, querying, and scala-
bility. While languages like Python/R can meet these needs,
it comes with the price of increased time and complexity to
implement and change these features to your needs. As such
we look at SQL to compress the data stream, summarize the
data, and analyze the data stream. SQL allows the user to
answer many complex questions with little programming
effort, providing insight not available in traditional network
tools and OS commands.

We want a data stream that has an intensive load, as well
as multiple connections from many users. This is to mimic
crowded, real world situations to try and push the limits of
our monitoring device in a realistic scenario. The stream is
loaded into a relational table L defined as L(ts,src,src_prt,dst,
dst_prt,prot,len,info), with the timestamp, ts, being the index.

Q1: Request/response protocol: The request/response proto-
col is a useful protocol that can be observed to find network
failures, checking if there is a response to all requests or
vice versa. The query works by selecting all rows where the
source and destination are switched, representing a response.
This is done on a time window between [𝑎, 𝑏).

SELECT src,dst FROM L /*Q1*/
WHERE (src,dst) NOT IN (
SELECT dst,src FROM L
WHERE a <= ts and ts <= b

) AND a <= ts and ts <= b;

Q2: Detecting co-occurring events:To detect all co-occurring
events within the table, we use a band join, a theta join with
inequalities. Band joins will allow us to determine what
happens around the same time between multiple streams, a
complicated task made simple with SQL. Our query give an
alias to table L as L1 and L2, then performs a band join on
both tables with a time window between [𝑎, 𝑏) and constant
±𝑐 . From there we can use an aggregation to give us more
information about the stream. This is shown as aggr() and
can represent sum(), max(), count(), or any other aggregate
function.

SELECT L1.src,L1.dst,aggr() FROM (/*Q2*/
L AS L1 INNER JOIN L AS L2
ON L1.ts-c <= L2.ts AND L2.ts <= L1.ts+c
AND L1.src != L2.src)

WHERE a <= L1.ts AND L1.ts <= b
AND a <= L2.ts AND L2.ts <= b

GROUP BY L1.src,L1.dst;

Preliminary experiments: To validate our ideas, we per-
formed preliminary experiments. We measured the delay
required to load and process the network and time it takes
for both queries to analyze the data. From our experiments,
we found the query to detect co-occurring events (band join)
and the query to analyze the response protocol (set contain-
ment) could return results in a few seconds for short time
windows (e.g. one minute or less).

Table 1: Query Times

Query Window Records Server Raspberry Pi
(secs) (secs) (secs)

Q1 10 6639 0.03 0.07
20 13422 0.06 0.14

Q2 10 9220818 38.47 15.11
20 18744282 167.47 30.96

REFERENCES
[1] Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick Feamster, Chris Mac-

Stoker, and Walter Willinger. 2016. Network monitoring as a streaming
analytics problem. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks. 106–112.

[2] David Johnson, Tim Stack, Russ Fish, Daniel Montrallo Flickinger, Leigh
Stoller, Robert Ricci, and Jay Lepreau. 2006. Mobile emulab: A robotic
wireless and sensor network testbed. In Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Computer Communications.
IEEE, 1–12.

[3] Carlos Ordonez, Theodore Johnson, Divesh Srivastava, and Simon Ur-
banek. 2017. A Tool for Statistical Analysis on Network Big Data. IEEE,
Lyon, France, 32–36. https://doi.org/10.1109/DEXA.2017.23

[4] Yifei Yuan, Dong Lin, Ankit Mishra, Sajal Marwaha, Rajeev Alur, and
Boon Thau Loo. 2017. Quantitative network monitoring with NetQRE.
In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication. 99–112.

https://doi.org/10.1109/DEXA.2017.23

	Abstract
	1 Introduction
	2 TECHNICAL CONTRIBUTION
	References

