
Programming Languages in Data Science:
a Comparison from a Database Angle

Carlos Ordonez, Xiantian Zhou
University of Houston, USA

Abstract—In a typical Data Science project the analyst uses
many programming languages to explore and build mathematical
models on big data. Data sets come from diverse data sources in-
cluding databases, logs, text and even images. A major challenge
is managing and pre-processing so much data, with potentially
inconsistent content, significant redundancy, in diverse format,
with varying data quality. Database systems research has tackled
such problems for a long time, but mostly on relational databases.
With such motivation in mind, this paper compares strengths and
weaknesses of popular languages used nowadays from a database
system angle: Python, R and SQL. We focus on performance
and functionality. We discuss the entire analytic pipeline, going
from data integration, cleaning and pre-processing to model
application and tuning. From a general perspective, we present
a comprehensive survey of storage mechanisms, data processing
algorithms, external algorithms, runtime memory management
and essential optimizations. From a database systems angle, we
consider programming abstraction, flexibility, processing speed,
main memory limitations, consistency, and parallel processing.

I. INTRODUCTION

The big data analytics revolution was born with data mining
[2], which optimized machine learning statistics and pattern
detection algorithms to analyze large data sets. Data min-
ing research focus on scalability implied efficient processing
beyond RAM limits, leaving parallel processing as a sec-
ondary requirement. Around the same time data warehousing
[2] was born to analyze databases with demanding queries
in so-called On-Line Analytical Processing [1]. During the
last decade Data Warehouses evolved and went through a
disruptive transformation to become Big Data Lakes, where
data exploded in the three Vs: Volume, Velocity and Variety.
The three Vs brought new challenges to data mining systems.
So data mining and queries on Big Data lakes morphed into a
catch-all term: Big Data Analytics [3]. This evolution brought
faster approaches, tools and algorithms to load data, querying
beyond SQL considering semantics, mixing text with tables,
stream processing and computing machine learning models
(broadly called AI). A more recent revolution brought two
more Vs: Veracity in the presence of contradictory information
and even Value, given so many development and tool options
and the investment to exploit big data. Nevertheless, having
so much information in a central repository enabled more
sophisticated exploratory analysis, beyond multivariate statis-
tics and queries. Over time people realized that managing so
much diverse data required not only database technology, but
also a more principled approach laying its foundation on one
hand in mathematics (probability, machine learning, numerical
optimization, statistics) and on the other hand, more abstract,

highly analytic, programming (combining multiple languages,
pre-processing data, integrating diverse data sources), giving
birth to Data Science (DS). This new trend is not another
fad: data science is now considered a competing discipline to
computer science and even applied mathematics.

We survey programming languages widely used in Data
Science: Python, R, and SQL. We contrast storage, data
manipulation functions, processing and main analytical tasks
across diverse systems including their intractive runtimes, the
Hadoop [5] stack and parallel DBMSs [1]. We discuss their
strengths and weaknesses, making clear there is no single
winner and therefore they will have to coexist in the foreseable
future.

II. SYSTEM INFRASTRUCTURE

A. Programming Language

The importance of the specific programming language
used for analytic development cannot be overstated: it is
the interface for the analyst, it provides different levels of
abstraction, it offers different data manipulation mechanisms
and it works best with some specific analytic task. There are
two main families: interpreted and compiled. DS languages
are interpreted, but the systems evaluating them have compiled
languages behind, mostly C++ (and C), but also Java (Hadoop
stack). Given the need to provide high performance the DS
language offers extensibility mechanisms that allow plugging
in functions and operators programmed in the compiled lan-
guage, but which require expertise on the internals of the
runtime system. The average analyst does not mess with the
compiled language, but systems researchers and developers do.
Finally, SQL is the established language to process queries in a
database and to compute popular machine learning models and
data mining techniques. In a similar manner to DS languages,
it is feasible to extend the language with advanced anlytic
capabilities with UDFs programmed in C++/C and a host
language (Java, Python).

B. Data Set Storage Mechanisms

In this section identify the main storage mechanisms used
today in most programming languages: arrays, data frames
and tables. Notice each programming language offers such
mechanisms in different flavors with varying features and
limitations, but most of them are 2-dimensional. We should
emphasize tensors (high dimensional numeric arrays) can be
”sliced” into matrices.

An array is a data structure provided by a programming
language and it is arrangement of elements of the same data
type. An array can represent a table as an array of records
and a matrix as a 2-dimensional array of numbers. In most
programming languages, like C++ or Java, the array is a data
structure in main memory, although there exist systems (SciDB
[7]) which allow manipulating arrays on disk. The data frame
is another data structure in main memory, somewhat similar
to an array. Data frame was introduced in the R language,
allowing to assemble rows or columns of diverse data types,
which has made its way into Python in the Pandas library. It
has similarities to a relational table, but it is not a relational
table. When the data type of all entries is a number data frames
resemble a matrix, but they are not a matrix either. However, it
easy to transform a data frame with numbers into a matrix and
vice-versa. An SQL table is a set of rows (aka tuples), which is
internally stored stored as arrays or lists in main memory or as
blocks (small arrays) on disk. By adding a primary key (PK)
constraint a flat table becomes a relational table [1]. An SQL
table is a data structure on secondary storage (disk, solid state),
allowing manipulation with SQL, without worrying abut row
by row or block by block access, in contrast with DS languages
like Python. A record is generally understood as physical
storage of a tuple, followimg a specific column order and each
value taking fixed space. Thus, by design and architecture, a
relational table is significantly different from a data frame.
Data frames and arrays are somewhat similar, but data frames
are more general: they can track row and column names and
they do not require contiguous storage in main memory.

C. File Access Mechanisms

In this section we discuss the main access mechanisms,
depending on data set storage.

All systems can process text and binary files, but tend to
favor one. DS languages generally work on text files, which
can be easily transferred and exchanged with other analytic
tools (spreadsheets, editors, word processors). DBMSs use
binary files in specific formats, doing a format conversion
when records are inserted by transactions or when they are
loaded in batch from files. Hadoop system use a combination
of both, ranging from plain files to load data to transforming
data into efficient block formats as needed in a subsystem.

The I/O unit is an important performance consideration to
process a large data set, which varies depending on the system:
line by line or an entire file for a data frame. one line at a
time for text files, one record or block of records for tables.
DS systems and libraries vary widely on how they read, load
and process data sets. Arrays vary according to their content;
in 2-dimensional format of numbers they are read in one pass,
as one block for a small array or multiple blocks for a large
array. Large arrays are generally manipulated with block-based
access on binary files, where each block is an array. Blocks
for dense matrices are generally squared. Few systems attempt
to provide subscript-based access on disk because it requires
adding special functions and constructs in the programming
language.

Data frames are generally loaded with one scan on the
input text file, but there exist libraries that allow block by
block access (called chunk to distinguish them from database
blocks). Therefore, the access is sequential.

Each programming language and system incorporate differ-
ent access operators, but here we provide a broad classification.
In a DS language these are the most common operators in
main memory: scan (iterator), sort, merge. Iterators come from
object-oriented programming. The merge operator is similar
to a relational join, but more flexible to manipulate dirty data.
DBMSs feature database operators combining processing in
main memory and disk: scan, sort, join; filters are processed
with a full scan when there are no indexes, but they can be
accelerated with indexes when possible. Sorting can be used
at many stages to accelerate further processing.

III. PROCESSING IN DATA SCIENCE: A DATABASE
SYSTEMS PERSPECTIVE

A. A Flexible and Comprehensive Processing Architecture

It is difficult to synthesize all different DS pipelines into
a single system architecture. We use a database architecture
as a foundaion, generalizing it to diverse data sources and
relaxing its strict structure and consistency requirements. Here
we list the most common elements: diverse data sources, a data
repository, an analytic computer or cluster. The tasks: load-
ing, cleaning, integrating, analyzing, deploying. Data sources
include: databases, logs, documents, perhaps with inconsistent
and dirty content. The data repository can be a folder in
a shared server or a data lake in parallel cluster. Cleaning
and integrating big data is generally done combining Hadoop
and DBMSs: it just depends where the bulk of information
is. Some years ago the standard was to process big data in
a local parallel cluster. Cloud computing [8] has changed
the landscape, having data lakes in the cloud, which enables
analysts to integrate and clean data in the cloud. In general a
data set for analysis is much smaller than raw big data, which
allow analysts to process data locally, in their own workstation
or server.

B. Integrating Data Sources

Data science languages (Python, R) provide significant
freedom to integrate data sets as needed. They have libraries
to merge data sets by a common columns(s), behaving in a
similar manner to a relational join. Python is more flexible than
R to manipulate text (words, sentences). R provides better de-
fined operators and functions to manipulate matrices [4]. In the
absence of columns with overlapping content, data integration
is difficult. In a Hadoop system there exist text manipulation
libraries that can match records by content, which is especially
challenging with strings. The best principled approaches come
from the database world, where records can be matched by
columns or by content, but they are generally restricted to
tabular data (i.e. relational tables).

C. Input Data File Format

In general the input file is in either text or binary format,
where the most common input file format are text files, with
CSV format being a de facto standard. The CSV format allows
representing matrices, relational tables and data frames with
missing values and strings of varying length. Binary formats
are more common in HPC and specific science systems
(physics, chemistry, and so on)i and in the case of DBMSs they
are proprietary. Streams come in the form of ever growing log
files (commonly CSV), where each log record has a timestamp
and records that can vary in structure and length. JSON, a
new trend, is a more structured text format to import data,
which can represent diverse objects, including documents and
database records.

D. Copying Files vs Loading Data into Tables

In most DS languages there is no specific loading phase:
any file can be analyzed directly by reading it and loading
in the storage mechanisms introduce above in main memory.
Therefore, copying plain files (e.g CSV files) to the DS server
or workstation is all that is required. On the other hand, this
phase represents a bottleneck in a database system and a
more reasonable compromise in Hadoop systems. In a Hadoop
system it can range from copying text files to formatting
records in a specific storage format (key-value, Hive, Parquet).
In a database system input records are generally encoded into a
specific binary format, which allows efficient blocked random
access and record indexing. A key aspect in a parallel system,
is partitioning the input data set and distributing it, explained
below.

E. Serial vs Parallel Processing

This is the norm in data science languages. It is easier
to develop small programs without worrying about low-level
details such as multicore CPUs, threads and network com-
munication. In general, each analyst runs in their own space,
without worrying about shared memory. In a large project,
data integration and preparation is assumed to have been take
care of before.

Parallel processing is the main strength of Big Data Hadoop
systems and parallel DBMSs, which complement each other
[6]. In most systems parallel processign requires three phases:
(1) partitioniong data records and distributing them into
chunks/blocks across nodes; (2) running processing code on
each data partition; (3) gathering or assembling partial results
for further computation or getting final results. Phase 1 may
require sorting, automatically or manually and hashing records
by a key. The main requirement is to process each partition
independently, minimizing node or process coordination (an
overhead). Given hardware evolution and cloud computing,
there is a dilemma between going for scaleup (more cores,
more RAM) or scale out (more machines, less RAM on
each). In DS languages there is automatic parallelism in the
object code which is optimized for modern multicore CPUs.
Multicore CPUs, larger RAM and SSDs favor doing analysis
in one beefy machine. On the other hand, big data, especially

”Volume” support distributed processing to overcome the I/O
bottleneck. Streams, being sequential data, lead to distributed
filtering and summarization, but commonly centralized pro-
cessing of complex models. Hadoop and DBMSs offer a
parallel version of scan, sort and merge/join. However, Hadoop
systems trail DBMSs on indexing and advanced join process-
ing, but the gap keeps shrinking. When there are indexes,
either in main memory or secondary storage filtering, joining
and aggregations can be accelerated.

F. Enforcing Data Integrity and Consistency

In Data Science languages, like Python and R, there is a
vague notion of ACID properties, which tends to be ignored,
especially with text data (documents, web pages). When there
are significant data additions or changes, the data preparation
pipeline is re-executed and the analytical tasks repeated with
a refreshed data set. Hadoop systems have been gradually
strengthened with more ACID properties, especially to explore
data sets interactively. It is noteworthy ACID properties have
gradually subsumed eventual consistency. DBMSs provide the
strongest ACID guarantees, but they are generally considered
a second alternative after Hadoop big data systems to analyze
large volumes of data with machine learning or graph algo-
rithms. DBMSs forte is query processing. In general, most
DBMSs propagate changes on queries recomputing material-
ized views. As there is more interest in getting near real-time
(active) results, but maintaining consistency, the underlying
tables are locked or maintained with MVCC.

G. Fault Tolerance

There are two main scenarios: fault tolerance to avoid data
loss and fault tolerance during processing. This is a contrasting
feature with data science languages, which do not provide
fault tolerance either to avoid data loss or to avoid redoing
work when there are runtime errors. In many cases, this is
not seen as a major limitation because analytic data sets
can be recreated from source data and because code bugs
can be fixed. But they represent a time loss. On the other
hand, Hadoop systems provide run-time fault tolerance during
processing when one node or machine fail, with automatic data
copy/recovery from a backup node or disk. This feature is at
the heart of the Google file system (proprietary) and HDFS
(open source). Parallel DBMSs provide fault tolerance to avoid
losing data, going from secondary copies of each data block to
the internal log, where all update operations are recorded, It is
generally considered that continuously appending the recovery
log is required for transactions, but an overhead for analytics.

IV. ANALYTICS

A. Mathematical Objects

We introduce definitions for the main mathematical objects
used in data science. We use matrix, graph and relational table
as the main and most general mathematical objects. Graphs
can represent cubes and itemsets as a particular case.

The most important one is the matrix, which may be square
or rectangular. A matrix is composed of a list of vectors.

A tuple is an n-ary list of values of possibly diverse types,
accessed by attribute name. A specific tuple in a relational
table is accessed by a key. Finally, bags and sets contain
any kind of object without any pre-defined structure, where
elements are unioque in sets and there may be repetitions in
bags.

It is important to emphasize these mathematical objects
are different. A matrix is different from a relational table.
In a matrix elements are accessed by subscript, whereas in
a relational table by key and attribute name. In an analagous
manner, a vector is different from a tuple. Relational tables
are sets of uniform objects (tuples), but sets in general are not.
Then bags represent generic containers for anything, including
words, files, iamges and so on. We will argue different systems
tend to be better for one kind of object, requring significant
effort the other two.

A graph G = (V,E) consists of a set of vertices V and
a set of edges E connecting them. Graph size is given by
n = |V | and m = |E|, where m = O(n) for sparse graphs
and m = O(n2) for dense graphs, with a close correspondence
to sparse and dense matrices. A graph can be manipulated as
a matrix or as a list of edges (or adjacent vertices).

B. Data Exploration

A data set is commonly explored with descriptive statistics
and histograms. These statistical mechanisms and techniques
give an idea about data distribution. When a hypothesis comes
up it is common to run some statistical test whose goal is to
reject or accept a user-defined hypothesis. In general, these
analyses are fast and they scale reasonably well on large data
sets in a data science language, especially when the data sets
fits in RAM. Together with statistics Data Science systems
provide visualization aids with plots, mesh grids and his-
tograms, both in 2D and 3D. When interacting with a DBMS,
analysts explore the data set with queries, or tool that generate
queries. In general queries are written in SQL and they
combine filters, joins and aggregations. In cube processing and
exploration, one query leads to another more focused query.
However, the analyst commonly exports slightly pre-processed
data sets outside the DBMS due to the ease of use of DS
languages (leaving performance as a secondary aspect). Lately,
data science languages provide almost equivalent routines to
explore the data set with equivalent mechanisms to queries.
Out of many systems out there, the Pandas library represents
a primitve, but powerful, query mechanism whose flexibility
is better than SQL, but lacking important features of query
processing.

C. Graph Analytics

The most complex exploration mechanism is graphs, which
are flexible to represent any set of interconnected objects.
Nowadays, they are particularly useful to represent social
networks and interconnected computers and devices on the
Internet. Their generality allows answering many exploratory
questions, which are practically impossible to get with descrip-
tive statistics. Even though graphs represent a mathematical

model they can be considered descriptive models rather than
predictive. Nevertheless, many algorithms on graphs are com-
putationally challenging, with many of them involving NP-
complete problems or exponential time and space complexity.
Well-known problems include paths, reachability, centrality,
diameter and clique detection, most of which remain open
with big data. Graph engines (Spark GraphX, Neo4j) lead,
followed by parallel DBMSs (Vertica, Teradata, Tigergraph)
to analyze large graphs. DS language libraries do not scale
well with large graphs, especially when they do fit in main
memory.

D. Computing Machine Learning Models

Machine learning and statistic are the most prominent math-
ematical models. We broadly classify models as descriptive
and predictive. Descriptive (unsupervised) models are a gen-
eralization of descriptive statistics, like the mean and variance,
in one dimension. For predictive (supervised) models there is
an output variable, which makes the learning problem signif-
icantly harder. If the variable is continueous we commonly
refer to it as Y , whereas if it a discrete variable we call it G.
Nowadays machine learning has subsumed statistics to build
predictive models This is in good part due to deep neural
networks, which can work on unlabeled data, on text and on
images. Moreover, deep neural networks have the capability
of automatically deriving features (variables), simplifying data
pre-processing. Generally speaking these computation involve
iterative algorithms involving matrix computations. The time
complexity goes from O(dn) to O(2dn) and O(dn2) in prac-
tice. But it can go up to O(2dn) for variable/feature selection
or Bayesian variable networks. The number of iterations is
generally considered an orthogonal aspect to O(), being a
challenge for clustering algorithms like K-means and EM.
Data science language libraries excel in the variety of models
they and the ability to stack them. Models range from simple
predictive models like NB and PCA to deep neural networks.
It is fair to say Python dominates the landscape in neural
networks (Tensorflow, Keras Scikit-learn) and R in advanced
statistical models. Hadoop systems offer specialized libraries
to compute models like Spark MLlib and Mahout. The trend
has been to build wrappers in a DS language, where Python is
now the dominant DS language Spark, leaving Scala for expert
users. DBMSs offer some algorithms programmed via SQL
queries and UDFs, fast cursor interfaces, or internal conversion
from relational to matrix format, but they are difficult to use,
and they cannot be easily combined and they require importing
external data.

Given DBMS rigid archicture, and learning curve, analysts
prefer DS languages over SQL, followed by Hadoop with
data volume forces the analyst to use such tool. In other
words, DBMSs have lost a lot of ground as an analytical
platform, being used today mainly for decision support queries
and in isolated cases to compute machine learning models.
In practice, most models can be computed on samples with
acceptable accuracy or they can be computed on pre-processed
data sets where d and n have been significantly reduced,

compared to raw (redudant) data. Building ML models on
big data remains an open problem, but it is a moving target,
gradually going deeper into DS languages like Python.

V. CURRENT TRENDS AND RESEARCH ISSUES

In Data Science Python and R are now the established
programming languages. Python and R are not the most
efficient programming languages, nor the ones that guarantee
data consistency and integrity, but they are flexible, easy to
learn and their libraries are getting bigger and faster. Among
both languages, Python adoption is growing faster, but R’s
vast statistical libraries (CRAN) will make it a competitor for
a long time. Neverheless, SQL s required to query databases
and extract and pre-process data sets coming from relational
databases. In the corporate world transactions remain an
important data source, but non-transactional data and non-
database data are growing faster. Data warehousing is now
an old concept, which has been replaced by so-called data
lakes. Cube processing and ad-hoc queries remain relevant in
specialized data warehouses, but such techniques have been
gradually subsumed by exploratory statistical analysis in big
data. Hadoop big data systems are still required, given their
scalability and flexibility to store and analyze big data, but
they face a competition from more powerful workstations
and containers and virtual machines in cloud computing (i.e.
the scaleup vs scaleout dilemma). Both Hadoop systems and
DBMSs interoperate with Python and R, at different levels
depending on the specific analytic system. CSV text files and
JSON are de-facto standard file formats to transfer big data,
leaving proprietary formats behind.

Research and technology in Data Science opens many
research issues, adapting and extending the state of the art
in database systems, programming languages, data mining
and parallel computing. Data Scientists and Data Engineers
require programming languages and associated tools that are
reasonably fast, intuitive and flexible (i.e. not necessarily
the faster, but flexible to develop analytics). More research
is needed to develop seamless mechanisms to convert data
formats into each other, and perhaps avoid it. Many researchers
and DS tool developers are moving away from the ”fastest
system” mentality, given hardware advances and the cloud,
and instead they are rethinking algorithms and techniques to
reduce development time and avoid mistakes. New analytic
algorithms and techniques must be developed such that they
can exchange data easily and they can interoperate, with more
relaxed structure assumptions compared to traditional DBMSs.

REFERENCES

[1] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database Systems: The
Complete Book. Prentice Hall, 2nd edition, 2008.

[2] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann, San Francisco, 2nd edition, 2006.

[3] C. Ordonez and J. Garcı́a-Garcı́a. Managing big data analytics workflows
with a database system. In IEEE/ACM CCGrid, pages 649–655, 2016.

[4] G. Ostrouchov, W.-C. Chen, D. Schmidt, and P. Patel. Programming with
big data in r, 2012.

[5] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In IEEE 26th Symposium
on Mass Storage Systems and Technologies, MSST, pages 1–10. IEEE
Computer Society, 2010.

[6] M. Stonebraker, D. Abadi, D.J. DeWitt, S. Madden, E. Paulson, A. Pavlo,
and A. Rasin. MapReduce and parallel DBMSs: friends or foes? Commun.
ACM, 53(1):64–71, 2010.

[7] M. Stonebraker, P. Brown, D. Zhang, and J. Becla. SciDB: A Database
Management System for Applications with Complex Analytics. Comput-
ing in Science and Engineering, 15(3):54–62, 2013.

[8] Y. Zhang, C. Ordonez, and L. Johnsson. A cloud system for machine
learning exploiting a parallel array DBMS. In Proc. DEXA Workshops
(BDMICS), pages 22–26, 2017.

