
Fast Machine Learning in Data Science with a
Comprehensive Data Summarization

Sikder Tahsin Al-Amin, Carlos Ordonez
Department of Computer Science

University of Houston
USA

Abstract—Machine learning algorithms must be able to handle
large volume in big data. Nowadays, data science languages
such as Python and R, are widely popular to compute machine
learning models. Unfortunately, model computation can be slow,
especially when the data set does not fit in the main memory or it
needs to be iteratively analyzed. With these motivations in mind,
we present theory and algorithms to produce a multidimensional
data set summary. We show our data summaries preserves
essential statistical properties of the data set and it can be
computed with an accelerated Gramian matrix multiplication.
That is, our data summaries represents a lossless compression
and we accelerate the expensive Gramian matrix multiplication
in Python with C++ code. Our solution also works for a subset
of the original data set obtained by variable selection without
much loss on accuracy and without recomputing all intermediate
matrices. We also consider parallel processing aspects leveraging
our recently introduced low-cost parallel architecture. Our exper-
imental evaluation shows that our Gramian matrix multiplication
mechanism is superior to Python and it can work beyond RAM
limitations. On the other hand, our computation of the machine
learning model is competitive with the Python and R on a single
machine, but it outperforms Spark in parallel machines.

Index Terms—Machine Learning, Matrix Multiplication, Data
Science, Parallel Processing, Data Summarization

I. INTRODUCTION

Machine learning (ML) is at the heart of data science. Data
nowadays is growing at a speed that has never been seen
before. Machine learning algorithms must be able to handle
this increased volume of data. Data science practitioners use
various tools and programming languages to analyze data
or build a machine learning model. For example, Python,
R, JavaScript, Matlab are frequently used in data science
nowadays. These languages offer huge library support and they
are easy to learn. Moreover, portability, strong community,
and easy integration feature with other languages have made
them the “go-to” choice for machine learning or data analysis.
However, processing large data sets in these languages remains
a bottleneck especially when the processing is done in a single
machine with limited memory. Though big companies can
move the processing to the cloud with larger memory and
faster processing speed, it is not the case for average data
science practitioners, mostly due to budget limitations. They
have to rely on their single machine with limited memory to
handle the large data sets. Hence, it is important to analyze
these large data sets or apply machine learning models, and
get the results back as soon as possible.

On the other hand, matrix multiplication is a common
technique that has been used in many areas to perform certain
operations [16]. Many research has been conducted to optimize
the matrix multiplication techniques and use it in the desired
applications. One of the dominant uses of matrix multiplication
is in data summarization [5], [8]. Despite being a common and
essential computation, most data science languages become
slow when the matrices are large, or fail when they are bigger
than the main memory. With these motivations in mind, here,
we present a technique to accelerate the computation of several
machine learning models by computing data summaries from
large data sets in data science languages (e.g. Python). And
our data summaries are computed using our efficient Gramian
matrix multiplication mechanism.

Our contributions are the following: (1) We present an
efficient way to generate data summaries for large data sets
using fast Gramian matrix multiplication. (2) We discuss
several ways to store the multiple data summaries and provide
an innovative way to store them. (3) We explore and present
a wide variety of machine learning algorithms whose compu-
tation can be accelerated using our method. (4) We also show
how our solution can accurately work with a variable selection
method without recomputing everything. In this paper, we use
Python as our choice of data science language, combined
with C++ to escape the limitations of Python and provide
an efficient and scalable solution. Experimental evaluation
shows our solution is competitive with current state-of-the-art
solutions both in a single machine and parallel platforms.

This is the organization of our paper. In Section 2, we give a
brief overview of the mathematical definitions we used for this
paper. Section 3 discusses our theoretical contribution where
we present our approach. Section 4 presents experimental
evaluation where we compare our method with current state-
of-the-art libraries and tools. We discuss closely relation work
in Section 5. Conclusions and directions for future work are
discussed in Section 6.

II. DEFINITIONS

A. Mathematical Definitions

We represent our input data set as matrix X , where X =
{x1, ..., xn}, a set of n column vectors. We represent Θ as
a statistical or a machine learning (ML) model (e.g. Linear
Regression, Naı̈ve Bayes, and so on), and all the models take
a d × n matrix X as input. In the case of predictive models,



we augment X with a (d + 1) dimension: an output variable
Y for regression, or discrete attribute G for the classification
(most commonly binary), making X a (d+ 1)×n matrix and
we call it X. And, we define Z as X augmented with an extra
rows of n 1s, making Z a (d+ 2)× n matrix.

B. Matrix Multiplication in Data Science Languages

Matrices are represented in different ways across popular
data science languages. As for Gramian matrix multiplication
(a matrix multiplied by itself), there is no dedicated operator
in any language. The most traditional way to compute it in any
language is to use nested loops which is not efficient and has
high time complexity when the matrix size is large. In Python,
NumPy library is widely used for matrix multiplication while
R provides a built-in matrix multiplication operator (”%∗%”).
Also, JavaScript’s math.js library provides ‘math.multiply()’
function to multiply two matrices. Though the methods dis-
cussed above are sufficient for regular size matrices, they must
work in RAM and begin to fail when the matrix size is larger,
or they do not fit in the main memory. In the next section, we
discuss how our method of Gramian matrix multiplication can
be efficiently incorporated with these languages beyond RAM
limitation to accelerate the computation of ML models.

III. THEORY AND ALGORITHM

In this section, we give an overview of computing the data
summaries and propose how we can compute a wide range of
machine learning models exploiting our data summaries. Later,
we discuss how our solution works in more technical details
and present the parallel processing aspects of our solution.

A. Matrix Multiplication to Compute Data Summaries

1) Compute Data Summaries: Here, we first review the
data summaries (single and multiple) and present an efficient
way to store the multiple data summaries. We represent the
data summaries as a matrix, commonly known as summa-
rization matrix. Our summarization matrix, named Gamma
(Γ) [3], [5] is computed based on sufficient statistics. From
[5], we define n, L, Q as: n = |X|, L =

∑n
i=1 xi, and

Q = XXT =
∑n

i=1 xi · xTi , where X is the input data set, a
d× n matrix, n counts the total number of points in the data
set, L is the linear sum of xi, and Q is the sum of vector outer
products of xi. Now, the Gamma matrix (Γ) is defined below
in Eq. 1. The size of this matrix is (d+ 2)× (d+ 2).
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 n LT 1T ·Y T

L Q X YT

Y ·1 Y XT Y YT

 =

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i


(1)

Now, we define multiple data summaries (k-Gamma, Γk)
[5], where the major difference between the two forms of
summarization matrix is that we do not require parameters
off the diagonal in Γk. Here, we need only a few parameters

out of the whole Γ, namely, n,L, LT , diag(Q). The multiple
data summaries or Γk is presented in Eq. 2.

Γk =

[
n LT

L Q

]
, where Q =

 Q11 0... 0
0 Q22... 0
0 0... Qdd


(2)

We use Gramian matrix multiplication to compute both the
aforementioned summarization matrices efficiently. Notice that
X is defined as a d × n matrix, and Z is defined as a (d +
2) × n matrix (X augmented with extra row of n 1s). From
[5], our data summaries can be computed in the two ways: (1)
matrix-matrix multiplication i.e., ZZT . (2) sum of vector outer
products i.e.,

∑
i zi ·zTi . So, in short, the Gamma computation

can be defined as: Γ = ZZT =
∑n

i=1 zi·zTi . Here, we evaluate
the later one (more discussion on Section III-D).

2) Storage Mechanism of Multiple Data Summaries: Mul-
tiple data summaries are mostly needed for a classification
or clustering model [5]. There are several ways to store
the multiple data summaries on memory or disk. The naive
approach will be storing one matrix for each class/cluster
(k). However, as given in Eq. 2, Q is diagonal, and off the
diagonal elements are zero. So, we have to store a lot of
unnecessary zeroes for this approach. Another approach to
store the multiple data summaries is to store everything in
a single matrix [2]. That is, for each class/cluster, we store
the L and Q in two separate columns, and the matrix size
will be d × 2k. For example, for k = 2, the matrix columns
will be {L1, Q1, L2, Q2}. Though it saves space compared to
the previous approach, it becomes less user-friendly when d
is high and it can not represent multi-dimensional data.

Here, we propose an efficient way to store the multiple data
summaries. Our novel approach uses two tensors, one tensor
each for L and Q. Tensors can be represented as a multi-
dimensional array and they are dynamic. That is, tensors will
transform when interacting with other mathematical entities
(e.g. matrices, vectors) which can be leveraged to compute
the ML models efficiently. In our case, each tensor will have
the L and Q for each class respectively and will be a size of
d× k. This way, we can easily access the respective L and Q
even if the d is high. As our tensors are two-dimensional, we
represent (store) them with matrices. For example, for k = 2,
we will have L = [[L1], [L2]], and Q = [[Q1], [Q2]].

B. ML Model Computation from Data Summaries:

Now, we give a brief explanation of computing several
machine learning models using our data summaries. However,
not all the ML models can be benefited from our solution like
HMM, time series algorithms and so on. Here, we explore a
variety of ML models beyond our previous work [5]. First, we
compute the ML models on the full data set where each data
set is represented as matrix X , of size d× n.

a) Regression Analysis: Regression is one of the most
common models in machine learning. One of the basic regres-
sion models, Linear regression, involves the use of a best-fit
line. It can be computed using the least-squares estimation



technique. We can utilize our data summaries to compute the
regression coefficients (β̂) [5] as given in Eq. 3.

β̂ = (XXT )−1(XY T ) = Q−1(XY T ) (3)

However, if there is a high correlation between independent
variables, a regularization technique is often introduced to
reduce the complexity by adding a penalized estimation. Here,
we also explore how Ridge regression can be computed using
our data summaries. Eq. 4 shows how to compute the ridge
coefficients (β̂ridge) utilizing our summarization matrix. A
penalty term (λI) is added to compute the coefficients with
linear regression. Here, λ > 0 is the penalty parameter and I is
a d×d identity matrix. The value of λ varies for each data set
and is often determined using the cross-validation technique
which is beyond the scope of this paper.

β̂ridge = (XXT + λI)−1(XY T ) = (Q+ λI)−1(XY T ) (4)

b) Principal Component Analysis (PCA): First, we com-
pute the correlation matrix (ρ) as ρ = UD2UT = (UD2UT )T

utilizing our data summaries [5]. We express ρ in terms of our
summarization matrix as given in Eq. 5. Then we compute
PCA from the ρ by solving SVD (SV D(ρ)) on it.

ρab = (nQab − LaLb)/(
√
nQaa − L2

a

√
nQbb − L2

b)

where a = 1, .., d and b = 1, .., d
(5)

c) Naı̈ve Bayes (NB): As mentioned above, for classifi-
cation/clustering models, we need the multiple data summaries
or k-Gamma matrix. First, we compute nG, LG, QG for each
class from our k-Gamma matrix [5]. The output of the model
is: mean (C), variance (R), and the prior probabilities (W ),
which is computed for each class in Eq. 6.

WG =
nG
n

; CG =
LG

nG
; RG =

QG

nG
− diag [LGL

T
G]

n2G
(6)

d) Linear Discriminant Analysis (LDA): LDA can be
used as a linear classifier. Here, we focus on LDA for two
classes. Our assumption is that each attribute in data follows
a normal distribution and has the same variance. Similar to
Naı̈ve Bayes (NB), we use k-Gamma matrix to compute
nG, LG, QG for each class. Now, we compute mean (C) as
given in Eq. 7. As for variance (R), it is computed across all
classes, unlike NB. Though, in theory, the denominator part
subtracts k to get an unbiased estimator, we omit it here as
n >> k in our case - the difference becomes negligible.

CG =
LG

nG
; R =

k∑
G=1

(
QG∑
nG
− diag [LGL

T
G]

(
∑
nG)2

) (7)

C. ML models on Projection of Data Summaries from Variable
Selection

Variable selection model is useful when data set dimension
is high. The data set may contain variables that are redundant,

or they may have low predictive accuracy. The search for the
best subsets of explanatory variables that are good predictors
of Y is called variable selection. In this work, we represent
the set of selected variables as a d-dimensional vector p ∈
{0, 1}d, such that pi = 1 if the variable is selected and pi = 0
otherwise. We present p as an index to project matrices on
selected variables such as Γp or βp. Below we discuss variable
selection for regression analysis.

a) Regression Analysis: The input is a d × n matrix X
as mentioned before. For selecting the variables, we compute
the correlations between each dimension and Y . To adapt this
with our data summaries, we consider Y as another dimension
and compute our summarization matrix (Γ). Now to get the
correlation between each Xi and Y , one way to do it is
by computing the full correlation matrix using Eq. 5, and
extracting the relevant row from there. Here, we reduce the
complexity (from O(d2) to O(d)) by computing only the
correlations with Y as given in Eq. 8.

ρaY =
nQaY − LaLY√

nQaa − L2
a

√
nQY Y − L2

Y

where a = 1, .., d

(8)

Now, we sort these correlations based on their absolute
value and select the top values based on our needs. These
values (p) tell us which variables are the good predictors of
Y . Based on these values, we get our projected summarization
matrix Γp from the original Γ. We emphasize that we do
not have to recompute the full summarization matrix, rather
a projection operation on the original Γ matrix gives us the
projected Γp with fewer dimensions. Finally, utilizing this Γp,
we can compute the regression coefficients for linear (β̂p) and
ridge (β̂ridgep ) regression from Eq. 3 and Eq. 4 respectively.
Later, we show in Section 4 that our variable selection method
is accurate, and has marginal accuracy loss.

p(xih|G) =
1√

2πσ2
Gh

exp[− (xih − µGh)2

2σ2
Gh

] (9)

D. Integration with a Data Science Language

Here, we discuss how our approach can be integrated with
a data science language. We use Python as our choice of the
data science language. Python is widely popular among data
scientists, mostly due to its huge library support, intuitive
syntax, and ease of use. We structure our computation into
two main phases:

1) Phase 1: Computation of the data summaries, and
2) Phase 2: Computation of the ML models utilizing the

data summaries.
1) Processing Mechanism: The processing mechanism in

a single machine can be shown in Algorithm 1. We use
Python combined with C++ to compute the data summaries
and the ML models. For Phase 1, as mentioned above, we
are computing the data summaries using matrix multiplication.
The main computation is given in Eq. 10. That is, we are
computing the matrix multiplication using the sum of vector
outer products.



Γ = Γ + zi · zTi (10)

In our solution, Phase 1 must work in C++ (or C). The sum
of vector outer products must be computed block by block in
C++, not in the host language. Computing zi · zTi in a loop
in any other analytic language is slow, usually one-row-at-a-
time. Computing Z ·ZT with traditional matrix multiplication
is slow due to ZT materialization, even in RAM. Initially, our
algorithm reads the data set X into a fixed size of blocks
(Algo. 1, line 1). We assume there are total of m blocks
(X = X1, X2, ...Xm) and |m| << n. After each block is
read, our algorithm performs the matrix multiplication using
Eq. 10 to compute the partial summarization matrix for that
block and add it to the previously computed summarization
matrix (Algo. 1, line 3-4). When all the blocks are read, we
get the final summarization matrix. Reading the data set by
blocks can be beneficial especially when the data set size is
larger than the main memory. As block size (usually log(n)
or
√
n) is much smaller than the total size, each block of data

easily fits into the main memory. Due to the additive feature
of our summarization matrix, partial results from each block
are easily added with the previously computed portions. This
way, we are escaping the main memory limitation and as our
summarization matrix is O(d2), it easily fits in the RAM. Also,
after each block is processed, the matrix is updated without
any extra memory requirement. So, the time complexity of
Phase 1 is O(d2n), and the space complexity is O(d2) for
Gamma and O(kd) for k-Gamma matrix.

On the other hand, Phase 2 computes the machine learning
models utilizing the data summaries computed in Phase 1
(Algo. 1, line 6). These model computations can be efficiently
done in any host data science language which is Python in
our case. We use the available standard functions offered by
Python and its libraries (e.g. NumPy) to compute the ML
models efficiently. It would be too difficult and error-prone to
reprogram all the ML models. Instead, our solution requires
just changing certain steps in each numerical method, rewriting
their equations based on the data summaries as discussed
in Section III-B. Computing ML models this way requires
less amount of code, easily understandable, and have faster
processing.

Algorithm 1 Processing Steps (Single machine).

1: Read X into m (X1, X2, ..Xm) blocks.
2: for each block b = 1...m do
3: Compute data summary on the block b (Γb).
4: Add it to the global data summary, Γ =Γ + Γb

5: end for
6: Compute the ML model (Θ) based on Γ.

So, Phase 1 is exploiting C++ while Phase 2 uses the Python
language “as is”. The detail of how we combine Python with
C++ is discussed later. In general, our solution applies to any
language that can call C++ via library or API.

2) Calls from the Host Language: In general, the syntax to
call our solution for any ML model from any language is:

theta = f (dataset)

Here, f is the function name based on the ML model, dataset
can be any numerical data set with CSV file, and the final
model will be stored in theta. As mentioned before, we are
combining Python, our choice of data science language with
C++. There are two ways we can do it for our solution: (1)
we can expose the summarization matrix computed in C++
(Phase 1) to Python (for Phase 2), or (2) call the C++ functions
from Python prompt to execute Phase 1. Here, we explore the
second one. For this, we use the Python SWIG library to call
the C++ functions from the Python interpreter. We call the
respective C++ function (for Gamma or k-Gamma) based on
the model to compute the summarization matrix, with the data
set as the input parameter. Our C++ code load the data set in
blocks and compute the summarization matrix as mentioned in
Algorithm 1. This way, we can use plain C++ code to compute
Phase 1 without any overhead introduced by the library. After
the summarization matrix is computed, we return it to the
host language. We convert the object returned by C++ to a
NumPy array using SWIG library. However, we can also store
the matrix as a CSV file and load it as a NumPy array in
Python interpreter to reuse, which has almost no overhead due
to Gamma being O(d2). Finally, based on the summarization
matrix, the respective ML model is computed in Python as
discussed in Section III-A. An example of Python source code
is shown in Listing 1 to compute the LR model.

Listing 1: Python source code to compute the LR model.
import numpy

def LRmodel(X):
#Call C++ Gamma function
gm = GammaMatrix(X) #instantiate an object
gamma = gm.execute()#returns summarization matrix

#Compute the LR model from Gamma
d = len(gamma) #dimensions
Q = gamma[1:d-1,1:d-1] #[row,column]
XYT = gamma[1:d-1,d-1]
invQ = numpy.linalg.inv(Q)
beta = numpy.matmul(invQ, XYT)

return beta

#Call from Python interpreter
theta = LRmodel("X.csv")

E. Parallel Processing Aspects

It is understood that not all the models can be computed in
parallel using our proposed solution, especially the iterative
models. Our parallel solution is inspired by our 3-phase
parallel architecture presented in [9]. The pseudocode of our
parallel solution steps is presented in Algorithm 2. Here, we
introduce a new phase (Phase 0) before computing Phase 1
presented in Sec III-D. For parallel processing, we assume
the processing is done in N machines, where d << n and
N << n. Our data summaries computation part presented



TABLE I: Baseline data sets description.

Data set d n Description Model
CreditCard 30 285K raise in credit line NB
YearPredictionMSD 90 515K rain or not LR, PCA

in Eq. 10 can be easily parallelized as we can compute this
on partial data sets in each machine and then add them on
the master node to get the final data summary. In phase
0, we split the data set X(X1, X2, ...XN ) and transfer the
partitioned data sets to the N processing machines (Algo.
2, Line 1). We use row-based partitioning mechanism as all
d columns must be presented in each machine. Then, for
phase 1, we compute the local data summary (Γ1,Γ2, ..ΓN )
on each machine as mentioned in Section III-D1 based on the
partial data set (Algo. 2, Line 2-4). So, the time complexity
of this phase is O(d2n/N). After this phase, each machine
will have a local summarization matrix which we store as
a file on the disk. Finally, in phase 2, we send all the local
summarization matrices to the master node. We use sequential
transfer technique to send all the partial data summaries which
has a time complexity of O(d2N). Then in the master node, we
perform a single matrix addition to get the final summarization
matrix, i.e. Γ = Γ1 + Γ2 + .. + ΓN (Algo. 2, Line 5). Based
on this Γ, we can compute the ML models using Python as
mentioned before (Algo. 2, Line 6). We emphasize that only
computing Eq. 10 is parallelized as we can compute this on
partial data sets on each node and then add them on the master
node. And as mentioned previously, if the model is iterative,
and needs to recompute the data summaries in each iteration,
our proposed parallel solution will not work, and it is a scope
for future work.

Algorithm 2 Parallel Processing Steps.

1: Split and transfer X into N (I = 1..N ) machines.
2: for each machine I in parallel do
3: Compute local data summaries on partitioned XI .
4: end for
5: Transfer and combine all the partial data summaries on

the master node
6: Compute the ML model (Θ).

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our solution with some existing
data sets, and compare the performance with Python and R
in a single machine, as well as with Spark and a DBMS in
parallel machines.

A. Experimental Setup

We used Pentium(R) Quadcore CPU machine running at
1.60 GHz, 8 GB RAM, 1TB storage running on Linux OS
for our experiments. Data sets used for the experiments are
summarized in Table I, obtained from the UCI machine
learning repository. As the large data sets are hardly available
to public, we sampled and replicated the existing data sets

from Table I to get varying n (data set size) and d (dimensions)
as mentioned in [5]. We programmed our solution combining
Python with C++. For comparison purposes, we used the
existing libraries and functions available in the languages. All
the time performance experiments were performed 3 times and
we report the average time here.

B. Accuracy with Variable Selection

Fig. 1: Mean Squared Error (MSE) of LR model using variable
selection with our solution and Python scikit-learn.

We have already showen in [5] that we can get more
than 99% accurate model from “original” data sets using
our summarization mechanism. Here, we present the accu-
racy evaluation with the variable selection method for linear
regression. As mentioned in Section 3, we select the top
variables based on our need and compute the ML model based
on the projected summarization matrix. Figure 1 shows the
mean squared error (MSE) of the linear regression model for
different d and fixed n (n = 515K) with our solution and
Python. First, we use the original data set (d = 90), and split
it into train and test set in a 70%−30% fashion. For both cases,
we train the model on the train data set and test the prediction
using the test data set. We use the built-in routine available
in Python scikit-learn library to train in Python. We compute
the MSE based on the test data set using both methods and
plot it in Figure 1. Similarly, we compute the MSE selecting
20% of the variables (d = 18) and 10% of the variables
(d = 9) following the same procedure. In each case, we can
see that although there is some difference for d = 90 using
our solution and Python, the error gap is much smaller when
we are selecting variables. It is sometimes hard to interpret
the data having high d (like d = 90), but if we can reduce
the d (like d = 9, or even lower) without compromising much
accuracy as we did here, we can interpret the data in a much
easier way.

C. Time Performance Comparison on a Single Machine

First, we compare the computation of the data summaries
using our solution with Python. We want to justify that our
approach with vectorized outer products in Python and C++
is much faster and more efficient than Python itself. For this,



TABLE II: Computing the summarization matrix using matrix
multiplication: Our solution vs Python (Time in Seconds, M
= Millions).

Matrix n d Our solution Python
Gamma 1M 9 17 217
Gamma 10M 9 164 2151
Gamma 10M 90 979 Stop
k-Gamma 1M 9 21 115
k-Gamma 10M 9 195 789

we implement our solution using Eq. 10 both in Python and
C++ as mentioned in Section III-D. For Python, we follow the
same steps with NumPy and Pandas library. We read the data
set using Pandas library as a data frame and then convert it to
NumPy array for further processing. We use the Pandas library
to give Python a fair chance as reading CSV files using a plain
file reader or CSV reader is much slower in Python. Table
II shows the time to compute the Gamma and k-Gamma for
varying n and d matrix using our solution and Python. We see
that our solution utilizing C++ is much faster than Python itself
and can handle large data sets. The main reason behind that is
we are escaping the bottleneck by computing the vectorized
outer product in C++ as loops are much slower.When the data
set size is bigger, Python could not finish the computation in
1 hour and we put “Stop” in the table. Also, naturally, Python
cannot maintain a large array or matrix in the main memory
when its size is bigger than the RAM itself, which is not the
case for our approach.

Now, we compare our solution with the built-in ML models
in Python and R. We use a popular Python machine learning
library, scikit-learn, to compute the ML models in Python.
We read the data set as a DataFrame using Pandas library and
convert it to NumPy array before feeding it to the model. Also,
we use the default functions available in R to compute the ML
models. Table III shows the time to compute the ML models
using our solution in Python and C++, our previous solution
in R [5], and in Python and R itself. We see that our solution
with Python is almost similar to our previous solution in R.
We put N/A for LDA as we did not explore the model before
with R. For LR and PCA, our solution computes the data
summaries in C++ and then computes the model in Python
using NumPy library as mentioned in Sec III-D. For any n
and d, the computation of the data summaries part is the same
for all models. And, computing the actual models from the
summarization matrix in Python is fast and is done in less
than 1 second. So, the overall time to compute the models is
almost constant regardless of the model and number of records,
n. For Python scikit-learn library, it works better when d and
n both are small. When d and n get bigger, especially d, it
suffers from high dimensionality and our solution eventually
performs better. On the other hand, R works much slower than
any of the other methods mostly due to reading the data set
and higher data volume. We put “Fail” when Python or R
could not finish the computation in 20 minutes.

D. Comparison with Parallel Big Data Systems: Spark and
parallel DBMS

For parallel processing, we compare our solution with
Spark-MLlib library - Spark’s scalable machine learning li-
brary to compute ML models, and Vertica - a parallel DBMS.
We used the available functions in MLlib and programmed
the models using Scala for Spark, and we used our previously
computed version of Gamma with SQL and UDFs for parallel
DBMS [2]. Table IV compares our solution with Spark-
MLlib and Vertica in parallel N = 8 machines. Here, we
are comparing with two representative models from each
data summary: linear regression (for Γ matrix), and Naı̈ve
Bayes (for k-Gamma matrix). All the machines have the same
configuration as mentioned in Sec IV-A. Here, we are taking
data sets with varying n(1M, 10M, 100M ), and d = 10 to
demonstrate how large data sets perform on both.

As the landscape of big data has changed in recent years,
we assume data can be either in the disk (file system),
in the cloud (ex: HDFS), or already partitioned among the
processing machines. If the data is in the file system, we need
to partition the data first and then compute the ML models
as mentioned in Sec III-E. As for the cloud (HDFS), we
need to export the data first to a local machine, and then
transfer it to the processing machines. And, if the data is
already partitioned, we can compute the ML models directly.
From Table IV, the ‘partition’ column shows the time to split
the data set and transfer it to the N processing machines.
Following our previously proposed parallel architecture [9],
we used the standard and fastest UNIX commands to perform
this operation. The ‘HDFS Export’ column shows the time
to export X to a local machine. And, ‘Γ + Θ’ column is
the time to compute local data summaries in each machine,
transfer them to the master node, get the final summarization
matrix, and compute the ML models from it. To get the local
summarization matrices from each machine in the master node,
we use the Python ‘subprocess’ library which transfers the
files efficiently. From Table IV, despite HDFS being faster to
partition the data sets, the time to compute the ML models
(Θ) is much slower in Spark. The reason behind that is,
Spark trains LR model using Stochastic Gradient Descent
which solves least square regression formulation and results in
slower execution of the model. And for NB, Spark implements
multinominal NB that suffers from having negative values in
the data set, which is the case for our CreditCard data set here.
On the other hand, our SQL solution with DBMS is slow in
all cases mostly due to the parallel JOIN operation which is
the bottleneck. There was no k-Gamma proposed for DBMSs,
so we put ‘N/A’ for Naı̈ve Bayes. However, it is understood
that if there are hundreds of machines, Spark’s performance
will become better.

V. RELATED WORK

Accelerating the computation of machine learning (ML)
models for large-scale data sets does not always mean adding
new hardware and GPUs. Many techniques have been pro-
posed to optimize the ML algorithms, and some of them have



TABLE III: Time (in Seconds) to compute the ML models with our solution, Python, and R (One machine) (M=Millions).

Θ Python R
(Data set) n d Our solution Python Prev. solution R
LR 1M 9 18 5 15 24
(Year- 10M 9 165 41 153 285
Prediction) 1M 90 87 88 105 630

10M 90 980 Fail 1054 Fail
PCA 1M 9 18 5 15 21
(Year- 10M 9 165 38 153 205
Prediction) 1M 90 87 105 127 575

10M 90 980 Fail 1054 Fail
NB 1M 9 23 9 26 29
(creditcard) 10M 9 196 62 243 281
LDA 1M 9 23 13 N/A 112
(creditcard) 10M 9 196 124 N/A 487

TABLE IV: Big data benchmark to compute the ML models (parallel) (Time = Seconds; N = 8 nodes; M=Millions).

Θ Our solution (N=8) Spark (N=8) DBMS (N=8)
(Data set) n d Partition HDFS Export Γ + Θ HDFS Partition Θ Partition Γ
LR 1M 10 9 6 10 7 41 10 28
(Year- 10M 10 23 13 23 17 286 32 141
Prediction) 100M 10 317 96 201 161 1780 381 935
NB 1M 10 11 6 12 7 Fail 11 N/A
(credit- 10M 10 28 17 29 25 Fail 38 N/A
card) 100M 10 335 125 229 231 Fail 405 N/A

gained more attraction. One such technique, data summariza-
tion, has been proposed in many research [1], [8], [14], [17].
The basic idea is to create a summary of the original data
set that is much smaller in size but preserves the original
statistical properties. Despite being explored by the research
community, computing the ML models using data summaries
in Python has not been done before. Python is widely popular
among data science practitioners for data analysis and machine
learning [12], [13], [15]. The scikit-learn library [11] of Python
integrates a wide range of state-of-the-art machine learning al-
gorithms for medium-scale supervised and unsupervised prob-
lems. However, the library does not work in parallel and most
models suffer from high dimensionality. Here, we compare our
solution with scikit-learn and achieve competitive performance
for both accuracy and speed. Also, James et. al [6] proposed
two libraries (Dask and Numba) to optimize Python code for
numerical processing by translating it to machine code. Dask
is an open source library for parallel computing in Python
and Numba translates subset of Python and NumPy code
into fast machine code. Similar to these approaches, we are
computing the summarization part in C++ to achieve higher
speed. To integrate Python with C++, we use SWIG [4], which
compared to other available libraries, is easier to port interface
to C/C++ and both Python and C++ code can be kept clean. As
mentioned above, our solution computes the data summaries
part using Gramian matrix multiplication in C/C++ and the
model computation part is done in Python. Optimizing the
matrix multiplication has been proposed both in sequential
[7] and parallel [10] manner. However, they mostly work on
the main memory. Sebastian et. al [16] explored if server-
less computing is a feasible and beneficial approach to big
data processing using matrix multiplication as example. Unlike
these techniques, our Gramian matrix multiplication technique

can work beyond RAM limits and works both in a sequential
and parallel manner.

Computing data summaries to accelerate the computation
of ML models has been proposed before for the R language
in both sequential [5] and parallel [3] manner. Similar to
our approach here, R utilizes C++ with its Rcpp library to
accelerate Phase 1, and Phase 2 is computed in R. Unlike R,
we used plain C++ code here while we used Rcpp code before.
We used to read data in blocks in R using R libraries and
pass it to Rcpp. Here, we are loading data directly in C++ in
blocks, minimizing the overheads introduced by the libraries.
Moreover, we explored more ML models compared to the
previous ones, like Ridge regression and LDA. We proposed
variable selection method that can compute the ML models on
a subset of the original data set. We presented experimental
evaluation that proved we can get accurate model with variable
selection without much compensation on accuracy. Also, we
proposed an innovative and efficient way to store multiple data
summaries using tensors.

VI. CONCLUSIONS

We presented an efficient way to compute a wide spectrum
of machine learning models for large data sets in both single
and parallel machines. Our solution leveraged a fast Gramian
matrix multiplication to compute data summaries. Based on
these data summaries, machine learning models are computed
with high accuracy, high speed, and without main memory
limitations. We showed that our solution can compute the ML
models on the whole data set utilizing the full data summaries,
as well as on the subset of the data set (from variable selection)
utilizing the projected data summaries without much compen-
sation on accuracy. We discussed in depth how high speed is
achieved by computing the summarization part in C++, which
is available to Python via an external library. Main memory



limitation is tackled by reading the data set in blocks and the
additive feature of our data summaries. Also, to be competitive
within the big data space, we presented the parallel version
of our solution. As for experimental evaluation, we presented
interesting experiments to evaluate the time performance.
Our solution performed much faster to compute the data
summaries than Python NumPy following the same algorithm.
To compute the ML models, we had similar performance as
our previous solution in R, and was competitive with Python
scikit-learn library, especially for large data sets. Furthermore,
our parallel approach outperformed Spark and was able to
handle larger data sets.

Our research proves that we can get a good performance
computing ML models in Python beyond RAM limits. How-
ever, as for future work, we want to explore more models
like Logistic Regression and Support Vector Machine. We
also want to compare our solution with Stochastic Gradient
Descent, the fundamental optimization in machine learning
nowadays. Moreover, we plan to explore best ways to compute
data summaries on sparse matrices.
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