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Abstract. Nowadays Parallel DBMSs and Spark SQL compete with
each other to query Big Data. Parallel DBMSs feature extensive experi-
ence embodied by powerful data partitioning and data allocation algo-
rithms, but they suffer when handling dynamic changes in query work-
load. On the other hand, Spark SQL has become a solution to process
query workloads on big data, outside the DBMS realm. Unfortunately,
Spark SQL incurs into significant random disk I/O cost, because there
is no correlation detected between Spark jobs and data blocks read from
the disk. In consequence, Spark fails at providing high performance in
a dynamic analytic environment. To solve such limitation, we propose
an adaptive query-aware framework for partitioning big data tables for
query processing, based on a genetic optimization problem formulation.
Our approach intensively rewrites queries by exploiting different dimen-
sion hierarchies that may exist among dimension attributes, skipping ir-
relevant data to improve I/O performance. We present an experimental
validation on a Spark SQL parallel cluster, showing promising results.

Keywords: Multidimensional Partitioning, Spark-SQL, Utility maxi-
mization, Adaptive Query Processing, Big data, dimensional hierarchies.

1 Introduction

In the last decades, the digital revolution is evolving at an extreme rate, enabling
faster changes and processes, and producing a vast amount of data. In this
context, companies are turning urgently to data science to explore, integrate,
model, evaluate and automate processes that generate value from data. Beyond
actual tools and data details, massive parallel processing is required for providing
the scalability that is necessary for any big data application. Indeed, to result in
linear speed-up, the DBA may often increase the resource in the cluster by adding
more machines to the computing cluster. Furthermore, this requires additional
costs which may be not available in practice.

A promising parallel processing approach requires three main phases: (1)
data partitioning and allocating partitions, (2) running processing code on each
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partition, and (3) gathering or assembling partial results. However, the efficiency
of the database parallel processing is significantly sensitive to how the data is
partitioned (phase 1). Basically, the partitioning scheme is chosen in a static
(offline) environment where the design is done only once and that design can
persist. Most commonly, when the change is detected, the DBA must often in-
tervene by taking the entire �, offline for repair. The problem is getting bigger
and more difficult because the data system has become large and dynamic. Thus,
carrying out a redesign at each change is not entirely realistic since the overload
of the redesign is likely to be very high. Figure 1 illustrates the time needed
to adapt a fragmentation schema among the size of the database. Accordingly,
making an adaptive partitioning schema with minimal overload is a crucial issue.
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Fig. 1: Fragmentation Schema Adaptation according the database size

The adaptive issue has been extensively studied by the database community.
The first line of works [22, 20, 4, 8, 10] focuses on changes in the workload, pe-
riodically or when a change occurs, an incremental design is performed. These
workload-driven solutions yield promising results, but they require significant
time to adapt a fragmentation schema. The second category of works uses Query
Adaptive Processing [1, 16, 14, 24, 12] that use runtime statistics to choose the
most efficient query execution plan during query execution. However, these Data-
driven approaches can incur in non-negligible overhead.

As though HDFS stores the data by creating a folder with partition column
values, altering the partition schema means the change of the whole directory
structure and data. To overcome the problem, Spark SQL a big data processing
tool for structured data query and analysis tailored towards using a Data-driven
approach that uses runtime statistics to choose the most efficient query execution
plan during query execution. Hence, the Spark SQL system is currently leading
to serious random disk I/O costs since there is no correlation between the spark
jobs and the data to be read from the disk.

In this paper, we introduced a new dynamic SQL framework for Apache
Spark. Our novel approach relies on the intuition that multi-dimensional par-
titioning could accelerate the spark SQL since thereby it supported fewer I/O
operations and effective prefetching. Our SQL framework is based on our Genetic
Optimization Physical Planner [6] and relies on the intuition that a query should
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leverage knowledge available in the reference partitioning schema to Spark as
much as possible. Specifically, our SQL optimizer (1) uses reference partitioning
to enable efficient data processing by avoiding unnecessary read; (2) leverages
dimensional hierarchies’ information to maximize the benefit of the partitioning
schema. The goal of our work is to show that by combining efficient workload-
driven approaches and adaptive execution processing, the performance of Spark
SQL can be significantly increased.

The remainder of this paper is organized as follows. Related works are dis-
cussed in Section 2. Section 3 provides the formulation of our studied problem.
Section 4 introduces a novel planner for data partitioning based on genetic opti-
mization. Section 5 presents experiments evaluating the quality of our solution.
Finally, Section 6 summarizes our main findings.

2 Literature Review

Data partitioning has attracted plenty of research attention. Before 2013, re-
searchers typically assume that the query workload is provided upfront [21, 1, 25,
7, 18, 8] and try to choose the best partitioning schema in offline (static) mode
using mainly some optimization search techniques such as branch-and-bound
search [25, 18], genetic algorithms [18], and relaxation/approximation [7]. Nev-
ertheless, it is difficult to maintain the usefulness of the offline data partitioning
schema in a dynamic context. In fact, there have been two main directions of
research, depending on how to select data to be migrated. We can further dis-
tinguish between two different categories. 1) Workload driven techniques, which
focus on the workload changes and 2) data driven techniques, which work with
the optimizer.
Workload-driven adaptive approaches. The most recent works focus on studying
how to migrate data based on the workload change [19], and the data items
that are affected [22, 20, 4]. E-Store [22] is a dynamic partitioning manager
for automatically identifying when a reconfiguration is needed using system and
database statistics. It explores the idea of managing hot tuples separately from
cold tuples by designing a two-tier partitioning method that first distributes
hot tuples across the cluster and then allocates cold tuples to fill the remaining
space. Simultaneously, the research community has sought to develop additional
design techniques based on machine learning, such as view recommendation [11],
database cracking [3], workload forecasting [17], cardinality estimation [13] and
Autonomous DBMS [2, 23, 5], by which multiple aspects of self-adaptive can
be improved. However, only a few works have recently focused to tune data-
partitioning by using reinforcement learning (RL) [8] and deep RL [10]. Hilprecht
et al. [10] propose an approach, based on Deep Reinforcement Learning (DRL),
in which several DRL agents are trained offline to learn the trade-offs of using
different partitioning for a given database schema. For that, they use a cost
model to bootstrap the DRL model. If new queries are added to the workload or
if the database schema changes, the partitioning agent is adapted by progressive
learning. However, to support a completely new database schema, a new set of
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DRL agents must be trained.
Data-driven adaptive approaches. The data driven adaptive approaches consist
of improve the execution performance by generating a new execution plan at
runtime if data distributions do not match the optimizer’s estimations. Kocsis
et al. [14] proposed HYLAS, a tool for optimizing Spark queries using seman-
tic preserving transformation rules to eliminate intermediate superfluous data
structures. Zhang et al. [24] propose a system that dynamically generates execu-
tion plans at query runtime, and runs those plans on chunks of data. Based on
feedback from earlier chunks, alternative plans might be used for later chunks.
DynO [12] and Rios [15] focus on adaptive implement by updating the query
plan at runtime.
Recently, we have proposed a two-step approach based on genetic algorithms
to improve the performance of dynamical analytical queries by optimizing data
partitioning in a cluster environment[6]. Although this effort put on the query
optimizer, it is still in the infant stage for Spark SQL optimizer. This is mainly
due to the Parquet storage format, the HDFS block size is much larger, indexes
and buffer pool. In this paper, we characterized the effectiveness of the query
optimization in the aim of enhancing Spark SQL optimizer with detailed parti-
tioning information. Indeed, our solution aims to filter out most of the records in
advance which can reduce the amount of data in the shuffle stage and improve
the performance of equivalent connections.

3 Definitions and Problem Formulation

In this section, we present all ingredients that facilitate the formalization of our
target problem.

3.1 Preliminaries

Range Referencing Partitioning. In this paper, we reproduce the tradi-
tional methodology to partition relational �, to HDFS �, . More concretely,
we partition some/all dimension tables using the predicates of the workload de-
fined on their attributes, and then partition the fact table based on the parti-
tioning schemes of dimension tables. To illustrate this partitioning, let us sup-
pose a relational warehouse modelled by a star schema with 3 dimension tables
(�1 , �2 , ..., �3) and a fact table �. � is the largest table, used on every BI query.
Among these dimension tables, 6 tables are fragmented (6 ≤ 3). Each dimension
table �8 (1 ≤ 8 ≤ 6) is partitioned into <8 fragments: {�81 , �82 , ..., �8<8 }, where
each fragment �8 9 is defined as: �8 9 = �2; 8

9
(�8), where 2; 8

9
and � (1 ≤ 8 ≤ 6, 1 ≤

9 ≤ <8) represent a conjunction of simple predicates and the selection operator,
respectively. Thus, the fragmentation schema of the fact table � is defined as
follows: �8 = � n �19 n �2: n .. n �6; , (1 ≤ 8 ≤ <8), where n represents the semi
join operation.
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Benefit of a partitioning schema for a query. Using a partitioning schema
to answer a query has a significant benefit since it can reduce overall disk perfor-
mance. Data partitioning decomposes very large tables into smaller partitions,
and each partition is an independent object with its own name and its own stor-
age characteristics. The benefit can be calculated by the difference of query cost
with/without using the partitioning schema. Which is defined as below.

Definition 1 Benefit : Given a query q and a partitioning schema SF, the
cost of executing @ is 2>BC(@), the cost of executing @ using (� is 2>BC(@ |(�),
and the benefit is �@,(� = 2>BC(@) − 2>BC(@ |(�). A fragemtation schema should
ensure a positive benefit (�@,(� > 0)

Utility of Fragmentation Schema. Given a query q and a partitioning
schema (�, we need to compute the utility of using SF for q. The utility of
a partitioning schema (� seeks to maximize the benefit of a query, generally,
over two periods C and C + 1. The utility of a partitioning schema (� over a
query @ is a metric that measures the reduction threshold in the cost of @ by
(�. Thus, we define *((�, @) as follows.

Definition 2. We suppose that if the period C + 1 transmits a new query @,
its utility is given by:

*((�, @) = �@,(�′(@, C + 1)/�0,(�(@, C) (1)

where �@,(�′(@, C + 1) (∀8 ∈ {0, 1}) denotes the benefit of @ under the partitioning
schema (� define at time C+ 8 and (�′ is the partitioning schema generated after
the consideration of @ in the predefined workload.

3.2 Problem Statement

We now describe the formulation of our problem: Given:

– A SPARK-SQL cluster DℬC with " nodes N = {#1 , #2 , . . . , #"};
– A relational data warehouse ℛDW modeled according to a star schema and

composed by one fact table ℱ and 3 dimensional tablesD = {�1 , �2 , . . . , �3}.
– a set of star join queries Q = {&1 , &2 , . . . , &!} to be executed over DℬC,

being each query &; characterized by an access frequency 5; ;

– A fragmentation maintenance constraint , that the designer considers rel-
evant for his/her target partitioning process

– A target profit D which represents the minimum desired utility.

The optimization problem involves finding the best fragmentation schema
(�∗ such that



6 S. Benkrid et al

maximize

!∑
8=1

�&8 ,(�★

subject to |(�★| ≤ W ,∑
8≥1
U((�★, &8) ≥ D.

(2)

4 System Architecture

Figure 2 illustrates the global architecture of our framework. It contains two
main parts. Partitioning schema selection and controller. First, given a query
workload, we determine the best data partitioning schema. Next, the controller
interacts with Spark SQL to rewrite queries, launch new configurations, and
collects performance measurements. Precisely, the decision-adaptive activity can
be regarded as an analysis form that it is trying to choose which adaptation
strategy should be started at the current time to maximize the overall utility
that the system will provide during the remainder of its execution. Later, we
rewrite queries using some highly beneficial of the partitioning schema. As last
step, we execute the rewritten workload. Next, we discuss the details these two
parts.

Fig. 2: The overview of system framework.

4.1 Partitioning schema selection

The main idea of our partitioning approach, is to build several data partitioning
schemes and merge them together to get a more accurate (having high utility)
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and dynamic global data partitioning schema. Precisely, once the data partition-
ing schema for each sub-workload is selected, an algorithm is used to aggregate
over the data partitioning schemes to form the most efficient data partitioning.

This part contains three components: workload clustering selector, Partition-
ing Schema detector and partitioning schema selector. At first, we use workload
clustering selector to divide the given workload to a number of sub-workloads
such that queries in the same groups are related to one another. Later, we use
partitioning schema builder to build a fragmentation schema for each query
group. Once the partitioning schemes of the workload clusters have been gen-
erated, their outputs must be combined into a single partitioning schema. The
Partitioning Schema selector merges them together to get a more accurate and
stable data partitioning schema. In particular, we use our genetic planner [6]. Fi-
nally, the data allocator place the so-generate fragments over Spark-SQL cluster
using hash distribution.

4.2 Controller

This part contains two components: utility estimator and adaptive schema se-
lector. Every query issued by users first goes to the utility estimator to compute
the utility *((�, @). For that, we design a cost model to calculate the cost of
executing a query on a given fragmentation schema. First, utility estimator calls
partitioning schema builder in order to build un fragmentation schema by con-
sidering the new query. After that, we can compute the benefit �@,(� and the
utility *((�, @).

When a violation of performance constraints occurs, the new queries causing
the failure are integrated into the fragmentation scheme. Our genetic algorithm
is called again to select the best partitioning plan. First, a starting population of
adaptation strategies is created based on the last exploration phase population
of the genetic algorithm, as well as adaptation strategies for the updated offline
classes with ad-hoc queries. Then these adaptation strategies are iteratively im-
proved by applying a combination of mutation and crossover operators, with
the most efficient plans being more likely to pass to the next generation. It is
expected that this iterative process increases utility over time, thereby reducing
average query evaluation. We emphasize that by reusing exploration candidates,
we reduce the number of evaluations of the fitness function to choose the best
solution.

4.3 Query rewritten

The query rewritten component will extract the dimensions and predicates from
the query, and then search the partitioning attribute for any predicate which
can provide the data source needed by the query. Upon finding a qualified par-
titioning attribute, the engine will add/replace the original predicate with the
new predicate and then use Spark SQL to execute the query.

In order to reduce the reading of the data, we not only use the fragmenta-
tion attributes, but we also use the hierarchy dimension structure [9, 21]. We
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can distinguish the following two main cases for which such an improvement is
possible.

Case 1: Queries on ”lower-level” attributes of the fragmentation dimension.
In fact, each value of an attribute belongs to a low level in the hierarchy corre-
sponds exactly to one value of the fragmentation attribute. If the query references
all fragmented dimensions, it requires loading a single fragment to run, other-
wise multiple fragments will be loaded. Thus, a rewrite is necessary by adding
predicates on the partitioning attributes to load only the valid tuples needed.

Case 2: Queries on ”higher-level” attributes of the fragmentation dimension.
Queries defined on attributes belonging to a high level in the fragmentation

attribute hierarchy also benefit from the fragmentation scheme. This is because
the number of fragments to load will be greater than the previous cases, since
each value of the attribute has several associated values of the fragmentation
attribute. Thus, the number of fragments increases if, and only if, certain di-
mensions of fragmentation are involved.

Obviously, all queries defined on fragmented dimensions will also benefit from
the partitioning schema, as in the case of Case 1 and Case 2. Thus, all queries
referencing at least one attribute of a fragmented dimension table benefit from
fragmentation by reducing the number of fragments to be processed.

5 Experimental Results

Our experiments were conducted on a Hadoop parallel cluster with 9 nodes,
configured as 1 HDFS NameNode (master node) and 8 HDFS DataNodes (work-
ers), the nodes were connected through 100 Mbps Ethernet. All cluster nodes
had Linux Ubuntu 16.04.1 LTS as the operating system. On top of that, we
installed Hadoop version 3.1.0, which provides HDFS, and Yarn, and Hive 2.0.0,
with MySQL database (MySQL 5.5.53) for Hive metadata storage. Separately,
we installed Spark 3.1.0 and we configured Spark SQL to work with Yarn and
Hive catalog. The overall storage architecture is based on HDFS. First, we load
the large amount of data on Hive tables in Parquet columnar format. Then, in
the interrogation step, we use Spark SQL to read the Hive partitioned tables We
use the well-known Star Schema Benchmark (SSB) to generate the test data set.
The size of the data set used is 100�.

In the first experiment, we focused the attention on the impact of fragmenta-
tion threshold. The aim of this experiment is to show the importance of choosing
the best number of fragment to improve the workload performance. For that, we
vary the fragmentation threshold in the interval [100−600] and we calculate the
throughput workload execution.

It clearly follows that since the value of , is smaller than 300, increasing
of the fragmentation threshold improves the query performance because by re-
leasing the fragmentation threshold, more attributes are used to fragment the
warehouse. Although when the value of W is relatively large that decreases the
query performance significantly, as HDFS is not appropriate for small data and
lacks the ability to efficiently support the random reading of small files because
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Fig. 3: Effect of the Fragmentation Threshold W on the Query Performance.

of its high capacity design. This experimental result confirms the importance of
choosing the right number of final fragments to generate and online repartition-
ing may defer further degrade performance.

In the rest of the experiments, we fix the fragmentation threshold (W) to
200. We have chosen to fix W to 200 and not to 300 and this to have a flexibility
for the adaptation/repartitionning step.

In the second experiment, we outlined the impact of the using of dimen-
sional hierarchies on query processing. Figure 4 shows the results obtained and
confirms that the use of the dimensional hierarchies improves significantly the
performance as most of the effective characteristics of queries are taken into con-
sideration. Precisely, our fine-grained rewritten allows many query to be confined
too few fragments, thereby reducing I/O. Our Extensive rewritten outperforms
Spark SQL optimizer by average 45% in terms of execution time.
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Fig. 4: Impact of using dimensional hierarchies.

To examine the quality of our genetic based approach, we compared our
genetic based approach with two others partitioning scheme aggregation ap-
proaches by running 100 queries.
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– Majority Voting. Rank sub-domains by the number of times they appear in
different partitioning schema

– SUKP-Partionning. Compute the utility of each sub-domains for each query,
and rank sub-domains by their maximum utility for the workload. This is
similar to the approach followed by [5].

As shown in 5 (a), the genetic approach outperforms the others two approaches.
Through the genetic operators (crossover and mutation) the approach gives rise
to better fragmentation patterns that promote the majority of queries.
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Placing partitions on nodes is essential to achieve good scalability. In order
to identify the best allocation mode, we compare the round robbin manner with
the hash placement. As depicted in figure 5 (b) the hash placement is an efficient
way to distribute data since the data of each partition can reside on all nodes.
This ensures that data is distributed evenly across a sufficient number of data
nodes to maximize I/O throughput.

Finally, in the fourth experiment, we focus our study on determining the
minimum threshold of utility for selecting the best adaptive partitioning. To do
this, we set the fragmentation threshold W at 200 (, = 200) and we varied
the utility threshold D from 40 to 80. For each value, we select a fragmentation
schema for each value of D, and we calculate the execution time of the 100
predefined workload and 10 ad-hoc queries. Then, we calculate the utility of the
fragmentation schema according to the obtained execution time and the best
fragmentation schema of each group of queries.

As depicted in Figure 6, too high or too low utility threshold can significantly
impact the performance of the predefined and ad-hoc queries. Precisely, a high
threshold may result in not obtaining a high utility fragmentation scheme for
ad-hoc queries, but it is sufficiently useful for the predefined workload. Though a
low threshold may result in a less meaningful schema for the predefined queries
and the schema is perfectly adequate for ad-hoc queries. In addition to this, it
should be noted that it is important of carefully choosing the utility desired rate
(u). The administrator must carefully choose the best utility threshold according
to the frequency of change in the workload.
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6 Conclusions

In this article, we have presented an external adaptive and workload-sensitive
partitioning framework for large-scale data. In this framework, we have addressed
several performance issues; these include the limitations of static workload-aware
partitioning, the overhead of rebuilding partitions in HDFS, and also irrelevant
data spark-SQL reads. We have shown that utility-based formalization and the
exploitation of partitioning attribute semantics (dimensional hierarchies) suc-
cessfully address these challenges and provides an efficient Spark-SQL query
processing framework. Extensive experiments evaluate partition quality, the im-
pact of parameters, and dimensional hierarchies rewritten efficiency, with en-
couraging results. We believe that leverages multi-dimensional partitioning with
Spark Adaptive Query processing shows promise to analyze dynamic workloads
with ad-hoc queries in modern big data environments.

Although the obtained results are interesting and encouraging, this work
opens several perspectives: (i) improvement of the adaption policy by using ma-
chine learning techniques, (ii) identifying automatically the best Spark SQL
configuration (dynamic cluster).
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