
Efficient Graph Analytics in Python for
Large-scale Data Science

Xiantian Zhou and Carlos Ordonez

University of Houston, Houston, TX 77204, USA

Abstract. Graph analytics is important in data science research, where
Python is nowadays the most popular language among data analysts. It
facilitates many packages for graph analytics. However, those packages
are either too specific or cannot work on graphs that cannot fit into
the main memory. Moreover, it is hard to handle new graph algorithms
or even customize existing ones according to the analyst’s need. In this
paper, we develop a general graph C++ function based on a semiring
algorithm including two math operators. The function can help solve
many graph problems. It also works for graphs that cannot fit in the main
memory. Our function is developed in C++, but it can be easily called
in Python. Experimental comparison with state-of-art Python packages
show that our C++ function has comparative performance for both small
and large graphs.

Keywords: Graph Analysis · Data Science · Python · Template Algorithm

1 Introduction

Graph analytics remains one of the most computationally intensive tasks in data
science research mainly due to large graph sizes and the structure of the graphs.
On the other hand, Python is the most popular system to perform data analysis
because of its ample library of models, powerful data transformation operators,
interpreted and interactive language. However, Python is slow to analyze large
data sets, especially when data cannot fit in RAM. Many research progress on ef-
ficient analytic algorithms working on graph analytics engines, which frequently
needs data exporting and importing [3, 4]. But exporting data sets from or to
a graph engine is slow and redundant. Even though many libraries in Python
enable graph analytics, these libraries require time to learn, or users need re-
programming existing functions, which limits their impact [1, 5, 6]. Moreover,
graph functions provided by Python packages are too specific. If a user needs a
new graph algorithm or customizes existing ones, none of the Python packages
can be helpful. Graph analytics highly depends on the APIs that packages pro-
vide. However, graph analytics is a rapidly developing research field, in which
there are many new graph metrics and algorithms appearing.

In this paper, we prove that it is possible to identify a general graph C++
function that can solve lots of graph algorithms. we develop the C++ function



2 Xiantian Zhou, Carlos Ordonez

which is the most computationally intensive part in many graph analytics with
C++. The function is light-weighted and can be easily called in Python. Also, it
can efficiently work for both small and large graphs which cannot fit in the main
memory. Moreover, it is convenient to customize a graph algorithm or program
a new one with our function.

2 Related Work

Graph analytics in Python is becoming more important in data science research.
However, it is challenging because of large graph size and complex patterns em-
bedded in the graph. There are many graph packages developed recently. Sciki-
network is a package based on SciPy, and it provides state-of-the-art algorithms
for ranking, clustering, classifying, embedding and visualizing the nodes of a
graph [1]. Python-iGraph is a library written in C++, which provides an inter-
face to many graph algorithms [5]. The graph-tool is also an efficient package
that is developed in C++ and it can works in multi-threads. GraphBLAS is
another popular packages, but it needs much time to learn [2, 6]. Most of those
libraries cannot work for graphs that can not fit in the main memory. Also,
they provide too specific interfaces that we can not modify or customize graph
algorithms.

3 Definitions

Let G = (V,E) be a directed graph with n = |V | vertices and m = |E| edges,
where V is a set of vertices and E is a set of edges. An edge in E links two vertices
in V , has a direction and a weight. The adjacency matrix of G is a n×n matrix
such that the entry i, j holds 1 when exists an edge from vertex i to vertex j. In
sparse graph processing, it is preferable to store the adjacency matrix of G in
a sparse form, which saves spaces and CPU resources. There are many different
sparse formats, such as compressed sparse row, compressed sparse column, and
coordinate list, and other data structures. In our work, the input and output are
represented as a set of tuples (i, j, v) where i and j represent the source and the
destination vertex, and v represents the value of edge (i, j). The set of tuples
can be sorted by j or i. We denote Ei is a set of tuples sorted by i and Ej is
sorted by j. Since entries where v = 0 are not stored, the space complexity is
m = |E|. In sparse matrices, we assume m = O(n).

4 A Graph Analytics function Based on a Semiring

We start by explaining classical graph problems, from which we derived the
general graph analytics function which is an algorithm of a semiring including
two math operators. Then, we introduce the architecture of the function. Finally,
we use it to implement different graph algorithms and show the function can solve
many graph problems.



Efficient Graph Analytics in Python for Large-scale Data Science 3

4.1 A General Graph Analytics Function

Graph metrics are about either local information or global information of a
graph. Some graph metrics such as in-degree and out-degree are about local in-
formation. Many other graph metrics such as PageRank, centrality, reachability,
and minimum spanning tree are about global information. Those graph metrics
require a part or full traversal of the graph. There are different ways to obtain
local information of a graph, and adjacent matrix-matrix or matrix-vector oper-
ations [8] is one of the most commonly used solutions. For example, the matrix
product E ·S, where S is an n-dimensional vector, helps finding the vertices with
highest connectivity. E · E is used to find paths whose lengths are two.

To obtain the global information, we can repeat the matrix-matrix or matrix-
vector multiplication process. For example, the matrix product E ·E ·E can be
used to get all triangles in G, which has been identified as an important primi-
tive operation. The iteration of E · E, multiplying E k times( k up to (n − 1))
gets all paths with length k, from which we can filter the shortest/longest ones
by different aggregation operators and count them. Also, it gets all the inter-
mediate vertices on those paths in order, which is essential for path analysis,
such as betweenness centrality. Finally, E · E · ...E (n − 1 times) until a par-
tial product vanishes is a demanding computation returning G+, the transitive
closure (reachability) of G which gives a comprehensive picture about G connec-
tivity [7]. Besides connectivity and paths, other graph metrics such as PageRank,
closeness can also be computed as powers of a modified transition matrix. Note
that although we express those graph algorithms as matrix multiplication, they
are different semirings according to different graph algorithms. Semirings are
algebraic structures defined as a tuple s(R,⊕,⊗, 0, 1) consisting of a set R, an
additive operator ⊕ with identity element 0, a product operator ⊗ with identity
element 1. The regular matrix multiplication is defined under (R,+,×, 0, 1). A
general definition of matrix multiplication expands it to any semiring. For exam-
ple, (min, add) is used to solve shortest paths problem where min is the additive
operator, and add is the product operator. The boolean semiring, with ∨ (logical
OR) as the additive operator and ∧ (logical AND) as the product operator, is
frequently used in linear algebra to represent some graph algorithms. We use
⊕,⊗ to denote the additive and product operator in a semiring.

Input: E, V,⊕,⊗
Output: R

1 n← |V |;
2 for i← 1 to n do
3 for j ← 1 to n do
4 for k ← 1 to n do
5 R[i, j] = R[i, j] ⊕ (E[i, k] ⊗ E[k, j])
6 end

7 end

8 end
Algorithm 1: General graph algorithm



4 Xiantian Zhou, Carlos Ordonez

We can see that all algorithms mentioned above can be expressed as a matrix-
vector or matrix-matrix operation or an iteration of such operations under dif-
ferent semirings. The general algorithm is shown in Algorithm 1. We show it
based on a dense matrix multiplication to represent our general graph algo-
rithm. The number of loops can vary according to different graph algorithms.
Based on this mathematical foundation, we develop a general graph C++ func-
tion s(E,⊕,⊗,K) in Python which takes E as input and performs computation
according to two operators (⊕,⊗) of a semiring. For some graph algorithms, we
only want to traverse parts instead of the entire graph, especially when the graph
is large. So we use K to specify the maximum number of iterations. Intermediate
vertices are needed for graph metrics such as betweenness centrality, K-step be-
tweenness centrality. In contrast, they are not required for other graph metrics
such as reachability and connectivity. So we add an optional boolean parameter
h which indicates whether intermediate vertices on paths need to be recorded or
not. The default value of h is false.

Input: s(E,⊕,⊗,K)
Output: R

1 k ← 0, i← 1, j ← 1, Ei ← E sorted by i, Ej ← E sorted by j
for k < K do

2 while not end of Ei and not end of Ej do
3 read a block Rb if k 6= 0 ;
4 read a column block Bj from Ej with j maximum index is jB ;
5 read a row block Bi from Ei with i maximum index is iB ; while

it < iB, jt < jB do
6 foreach pair it = jt do
7 Rb[i, j] = Rb[i, j] ⊕ ( Bi[i, jt] ⊗ Bj [it, j]);
8 end

9 end
10 periodically write the Rb[i, j] into disk;

11 end
12 Merge all Rb[i, j] into R;
13 k ← k + 1

14 end
Algorithm 2: The database algorithm of our graph C++ function

Now we show how to do graph analytics with our function. By specifying
the function as s(E,min, add, n), we can calculate shortest paths, where K = n
because of traversing the full graph. Similarly, the reachability of all vertices
can be calculated with s(E,∨,∧, n). Using s(E, add,mul, n), we can obtain the
number of paths between each pair of vertices. If we want to calculate K-step
betweenness centrality which is not included in many Python packages, we can
use s(E,min, add,K, h = true) get all shortest paths in K steps with interme-
diate vertices along them. Even for many other graph metrics other than paths
and connectivity, such as PageRank and closeness, the C++ function can also
be used to calculate the most computation intensive part. The function trig-
gers computation in a C++ environment. The results are written to disk. The
architecture of the function is discussed in the following section.



Efficient Graph Analytics in Python for Large-scale Data Science 5

4.2 System Architecture for Function Processing

Our goal is to provide a general C++ function running on a simple architecture
to efficiently compute analytics on large graphs in a data science language. And
we divide the input files into blocks and process block by block when the com-
putation involves a large graph, so the function works for graphs that cannot fit
in the main memory.

Input and Output: The input graph G is stored on a CSV text file with each
edge in triple format (i, j, v). It can be in any text file format like .csv, .txt, and
so on. Before processing, we first sort the input by i, then by j. The output file
is also in (i, j, v) format and sorted by i.

Processing: When our general Python function an internal C++ is automati-
cally triggered. Such C++ function, with many parameters, reads the input file
from disk, efficiently performs computations in main memory and writes results
to a text file format. If the graph is too big to fit in the main memory, the C++
function will read and process input files block by block. The algorithm is shown
in Algorithm 2. Remember that Ei is sorted by i and Ej is sorted by j.

Fig. 1: An overview of our system

5 Experimental Evaluation

NumPy and SciPy are fast Python packages for processing matrices. SciPy has
a high performance and low memory use achieved through a mix of fast sparse
matrix-vector. Those two packages have the basic matrix-matrix multiplication
operator. Thus, we choose them to compare with our C++ function. The com-
puter used for the experiments has an Intel Pentium(R) CPU running at 1.6
GHz, 8 GB of RAM, 1TB disk, 224kb L1 cache, 2MB L2 cache and running
Linux Ubuntu 14.04. We use both synthetic and real graph data sets for ex-
perimental evaluation. The real graphs are from the Stanford SNAP repository.
The comparison results are shown in Table 1. If the running time is more than



6 Xiantian Zhou, Carlos Ordonez

one hour, we put a ”Stop” sign in the table. From Table 1, we can see that our
function is faster than NumPy, but it is slower than SciPy for small graphs. How-
ever, SciPy crashes for large graphs because it assumes data can fit in the main
memory. Moreover, our function can perform matrix operations under different
semirings while most other packages can only perform matrix multiplication.

Table 1: Summary of results(time in seconds).
Dataset Type n m NumPy SciPy Our C++ function

synthgraph1 Synthetic 1K 100K 12.0 0.2 1.0
synthgraph2 Synthetic 5K 2.5M Stop 14.0 162.0
wiki-vote Real 8K 103.6K Crashed 0.1 1.6
webgoogle Real 875K 5.1M Crashed Crashed Stop

6 Conclusions

In this paper, we developed a powerful, yet easy to use function based on a
semiring algorithm running on an efficient system architecture to process big
graphs in a data science language. The function can be easily called in Python,
and it can be used for programming, modifying and customizing most of existing
and new graph algorithms. Moreover, it works for large graphs that cannot fit in
the main memory. We compared the performance of our function with state of-
the-art graph analytic packages, exhibiting similar performance for small graphs
and better scalability for large graphs that cannot fit in the main memory.

For future work, we will study parallel processing, develop more efficient
algorithms when results fit in main memory (e.g. PageRank, Connected Compo-
nents). Finally, we plan to characterize which graph algorithms pattern fits our
semiring algorithm.

References

1. Bonald, T., de Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: Graph analysis
in Python. J. Mach. Learn. Res. 21, 185:1–185:6 (2020)

2. Chamberlin, J., Zalewski, M., McMillan, S., Lumsdaine, A.: PyGB: GraphBLAS
DSL in Python with dynamic compilation into efficient C++. In: IPDPS Workshops
2018. pp. 310–319 (2018)

3. Ghrab, A., Romero, O., Jouili, S., Skhiri, S.: Graph BI & analytics: Current state
and future challenges. In: DaWaK 2018. Lecture Notes in Computer Science, vol.
11031, pp. 3–18. Springer (2018)

4. Ho, L., Li, T., Wu, J., Liu, P.: Kylin: An efficient and scalable graph data processing
system. In: 2013 IEEE Big Data. pp. 193–198 (2013)

5. Ju, W., Li, J., Yu, W., Zhang, R.: iGraph: an incremental data processing system
for dynamic graph. Frontiers Comput. Sci. 10(3), 462–476 (2016)

6. Kumar, M., Moreira, J.E., Pattnaik, P.: GraphBLAS: handling performance con-
cerns in large graph analytics. In: 2015, ACM CF. pp. 260–267. ACM (2018)

7. Ordonez, C., Cabrera, W., Gurram, A.: Comparing columnar, row and array DBMSs
to process recursive queries on graphs. Information Systems (2016)

8. Zhou, X., Ordonez, C.: Computing complex graph properties with SQL queries. In:
2019 IEEE Big Data. pp. 4808–4816. IEEE (2019)


