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Abstract

Nowadays, data science analysts prefer “easy” high-level languages for machine
learning computation like R and Python, but they present memory and speed
limitations. Also, scalability is another issue when the data set size grows.
On the other hand, acceleration of machine learning algorithms can be
achieved with data summarization which has been a fundamental technique
in data mining. With these motivations in mind, we present an efficient
way to compute the statistical and machine learning models with parallel
data summarization that can work with popular data science languages. Our
summarization produces one or multiple summaries, accelerates a broader
class of statistical and machine learning models, and requires a small amount
of RAM. We present an algorithm that works in three phases and is capable
to handle data sets bigger than the main memory. Our solution evaluates a
vector-vector outer product with C++ code to escape the bottleneck of the
high-level programming languages. We present an experimental evaluation
section with a prototype in the R language where the summarization is
programmed in C++. Our experiments prove that our solution can work on
both data subsets and full data set without any performance penalty. Also,
we compare our solution (R combined with C++) with other parallel big
data systems, Spark (Spark-MLlib library), and a parallel DBMS (similar
approach implemented with UDFs and SQL queries). We show our solution
is simpler and mostly faster than Spark based on the storage of the data set,
and it is much faster than a parallel DBMS regardless of the storage of the
data set.

Keywords: Machine Learning, Parallel Computation, Statistics, Data
Summarization.
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1. Introduction1

The computation of most machine learning algorithms is heavily impacted2

by the volume of data being processed. Data volumes rise at a much higher rate3

than the processing speeds. Hence, scalability has become an issue as the data4

set size grows. Mathematical systems like Python, R provide comprehensive5

libraries for machine learning and statistical computation. However, they are6

not designed to scale to large data sets and the single machine is challenging to7

analyze the large data sets [1]. Accelerating machine learning algorithms does8

not always mean adding new hardware and memory. Therefore, processing and9

analyzing large volumes of data becomes non-feasible using a traditional serial10

approach and parallel processing has emerged to solve the problem. Among11

parallel systems, Hadoop systems like Spark, Hive, Cassandra, have gained12

popularity for storing and processing big data. Other parallel systems like13

parallel DBMSs (e.g. Vertica, Teradata) have also been used for processing big14

data in some cases [2], [3], [4]. Though the parallel systems offer ample storage15

and processing power, the execution time can be slower. These systems also16

suffer from the absence of efficient native support for matrix-form data and17

out-of-box sophisticated mathematical computations.18

Data summarization is fairly popular among data scientists to accelerate19

machine learning algorithms [2], [5], [4]. The aforementioned parallel systems20

are not a good choice for data summarization as they have scalability limita-21

tions. Also, summarization in parallel DBMSs is hard due to the portability22

of UDFs (user defined functions) and Spark is even slower than parallel23

DBMSs for a few processing nodes [2]. Moreover, the complex set up of these24

parallel systems makes it even harder for average data analysts to begin with.25

On the other hand, data science languages like Python and R are popular26

among analysts but they do not work in parallel by default. Although they27

provide parallel libraries, the analysts are limited by the functionality of28

these libraries. With these motivations in mind, we present a technique to29

accelerate statistical and machine learning models exploiting a summarization30

matrix that can work in parallel and perform as fast as popular existing31

parallel big data systems.32

Here, our contributions are the following: (1) We present a technique33

to accelerate statistical and machine learning models exploiting summariza-34

tion matrix/matrices. (2) Our summarization is a three-phase generalized35

algorithm that can work in a parallel cluster (or a remote cluster in the36

cloud). (3) We present how to compute descriptive statistics and perform37
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statistical tests in addition to computing machine learning models utilizing38

our summarization matrix. (4) For each machine learning model, we discuss39

how to compute it for new data points. In our work, we used R as our choice40

of data science language combined with C++ to develop our algorithms, but41

it can be applied to other analytic platforms like Python. Here, we used a42

local parallel cluster to perform the experiments but our research applies to43

both a local parallel cluster and a remote cluster in the cloud. Experimental44

evaluation shows our generalized summarization algorithm works efficiently45

in a parallel cluster, scalable and faster than Spark and parallel DBMS. This46

article is a significant extension and deeper study of [5], where parallel data47

summarization with analytic languages (R) was initially proposed.48

This is the outline for the rest of the article. Section 2 introduces the49

definitions used throughout the paper and our parallel cluster architecture.50

Section 3 presents our theoretical research contributions where we present51

our technique to accelerate statistical and ML models. Section 4 presents an52

extensive experimental evaluation. We discuss closely related work in Section53

5. Conclusions and directions for future work are discussed in Section 6.54

2. Definitions55

This section presents the mathematical definitions and symbols used56

throughout this paper. Also, parallel cluster architecture is discussed.57

2.1. Mathematical Definition58

We define the input matrix as X, a set of n-column vectors. X can be59

defined as X = {x1, ..., xn} with n points, where each point xi is a vector60

in Rd. Intuitively, X is a wide rectangular matrix. We augment X with an61

output variable Y , making X a (d+ 1)× n matrix and we call it X. In short,62

X has the independent variables (input dimensions) and Y is the dependent63

variable. We define Z as X with an extra row of n 1s, a (d+2)×n dimensional64

matrix.65

We use Θ to represent a machine learning model or a statistical property66

in a general manner. Thus Θ can be any ML model like Linear Regression67

(LR), Principal Component Analysis (PCA), Näıve Bayes (NB), K-means68

(KM), or any statistical property like mean, variance, or correlation. Table 169

shows the basic symbols and their description used throughout the paper.70
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Table 1: Basic symbols and their description

Sym. Description Sym. Description
X Data set d Number of columns in X
XI Partitioned data set Γ Gamma Summarization Matrix
X X with Y Γk k-Gamma Summarization Matrix
Y Dependent Variable Θ ML/Statistical model
Z X with 1s and Y N Number of processing nodes
n Number of rows in X b Blocks to read data
L Linear sum µ mean
Q Quadratic sum σ variance

2.2. Parallel Cluster Architecture71

We define the number of machines (processing nodes) as N . Each node72

has its CPU and memory (shared-nothing architecture) and it cannot directly73

access another node’s storage. Therefore, all processing nodes communicate74

with each other transferring data. Also, data is stored on a disk, not in virtual75

memory. All the necessary programming languages and libraries are installed76

in each machine.77

3. Theory and Algorithm78

This section presents our main technical contributions. First, we give an79

overview of the original data summarization technique proposed previously.80

Then we present how to compute the statistical and ML models utilizing the81

summarization matrix. Finally, we discuss how we can integrate our proposed82

solution to popular data science programming languages.83

3.1. Data Summarization84

Here, we review our summarization matrix, named Gamma (Γ) introduced85

in [6], [2]. The matrix Γ (Gamma), contains an accurate, yet complete,86

summary of the data set, and therefore it represents a fundamental matrix in87

our research. As given in Section 2, if we consider X as the input data set, Y88

is the dependent variable, n counts the total number of points in the data89

set, L is the linear sum of xi, and Q is the sum of vector outer products of90

xi (quadratic sum), then from [2], the Gamma summarization matrix (Γ) is91

defined below in Eq. 1. We first define n, L, Q as: n = |X|, L =
∑n

i=1 xi, and92

Q = XXT =
∑n

i=1 xi · xTi . Here, L and Q are complementary, they cannot93
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be added or multiplied with each other. We will use these n, L, and Q to94

compute the ML and statistical models later in this Section.95

Γ =

 n LT 1T · Y T

L Q XY T

Y · 1 Y XT Y Y T

 =

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i

 (1)

As mentioned Section 2, X is defined as a d× n matrix, and Z is defined96

as a (d+ 2)×n matrix. From [2], we can easily understand that Γ matrix can97

be computed in the two alternative ways: (1) matrix-matrix multiplication98

i.e., ZZT , or (2) sum of vector outer products i.e.,
∑

i zi · zTi So, the Gamma99

computation can be done as ZZT or the sum of outer products presented in100

Eq 2. Here, in this paper, we evaluate the later one.101

Γ = ZZT =
n∑
i=1

zi · zTi (2)

The Γ matrix presented above does not work for classification/clustering102

models. To solve these kinds of models, we introduced k-Gamma matrix103

(Γk) in [6] named Diagonal-Gamma matrix, given in Eq. 3. The major104

difference between the two forms of summarization matrix is, we do not105

require parameters off the diagonal in Γk as in Γ. Also, the complexity of106

Gamma is higher than k-Gamma which is explained in Section 3.5.107

Γk =

 n LT 0
L Q 0
0 0 0

 , where Q =


Q11 0 0....... 0
0 Q22 0....... 0
0 0 Q33..... 0
0 0 0........ Qdd

 (3)

Here we can see that we need only a few parameters out of the whole108

Γ, namely, n, L, LT , Q. That is, we require only a few sub-matrices from Γ.109

Also, in Γ, the Q is computed completely whereas, in Γk, the Q is diagonal.110

Here, both L and diag(Q) can be represented as a single vector and we do not111

need to store Q as a matrix. Hence, according to [5], Γk can be represented112

as a single matrix with L and diag(Q) of size d × 2k instead of multiple k113

matrices. We still need to store the value of n in a row, which makes the Γk114

as (d + 1) × 2k. So, we are using minimal memory to store Γk even if the115

value of k is large.116
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3.2. Statistical and Machine Learning Models Computation117

Here, we explain how we can exploit our summarization matrix to compute118

various data science computations. We present our contributions in three119

levels going an increasing level of mathematical complexity: (1) Descriptive120

statistics, (2) Statistical tests, and (3) Machine Learning models.121

3.2.1. Descriptive Statistics122

Descriptive statistics are common computations and they can tell a lot123

about the data. We can compute the descriptive statistics like mean, vari-124

ance, and correlation from our summarization matrix based on n, L, and125

Q. Variance is the average of the squared differences from the mean which126

tells the degree of spread in the data set. And correlation is the measure127

of the strength of a linear relationship between two quantitative variables128

(e.g. height, weight). These statistics can also be exploited to compute129

other models as they appear frequently in many statistical and ML models.130

We compute mean (µ), variance (σ), and correlation (ρ) directly from our131

summarization matrix (Γ) exploiting n, L, and Q in Equation 4, 5, and 6132

respectively. Later we will generalize and use these to compute machine133

learning models.134

µ =
L

n
(4)

σ =
Q

n
− LLT

n2
(5)

ρab =
nQab − LaLb√

nQaa − L2
a

√
nQbb − L2

b

(6)

Our summarization matrix can also work on the subsets of data. That135

is, we can separate the data set into multiple data subsets based on gender136

or age (more discussion on Section 3.4). Then we can compute the descrip-137

tive statistics on each subset exploiting our summarization matrix. These138

computations help to understand the data set better before applying any139

machine learning or statistical models. We can rewrite Eq 4, 5, 6 based on140
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data subsets (j) as:141

µj =
Lj
nj

σj =
Qj

nj
−
LjL

T
j

n2
j

ρabj =
njQabj − LajLbj√

njQaaj − L2
aj

√
njQbbj − L2

bj

(7)

3.2.2. Statistical Tests142

Statistical tests are used in hypothesis testing and are different kinds143

of computations than descriptive statistics or machine learning models. A144

statistical test can be used to determine whether there is enough evidence145

to “reject” the null hypothesis. This is important for medicine, surgery, and146

clinical trials. For statistical tests, we present a parametric test comparing147

means µ1, µ2 from two disjoint data subsets, where the size of each data subset148

is n1, n2. Our summarization matrix does not apply to all the statistical149

tests. Here, we are discussing a popular test that is compatible with our150

summarization matrix. Each data subset can be obtained from the original151

data set based on some filters as mentioned previously. We assume each data152

subset is independent and it has small cardinality. Otherwise, statistical tests153

using our summarization matrix are not possible. The null hypothesis H0154

states that µ1 = µ2 and we need to find the group pairs where H0 can be155

rejected with high confidence 1 − p, where the threshold of p is generally156

p ∈ 0.01, 0.05, 0.10. The so-called alternative hypothesis H1 states that157

µ1 6= µ2. When H0 can be rejected the test will return the significance level p;158

such outcome will allow us to provide strong statistical evidence supporting159

H1 : µ1 6= µ2. We use a two-tailed test which allows finding a significant160

difference on both tails of the Gaussian distribution to compare means in any161

order (µ1 < µ2 or µ2 < µ1). The statistical test relies on Eq. 8 to compute a162

random variable v with probability distribution function (PDF) N(0, 1):163

v =
|µ1 − µ2|√

σ2
1/n1 + σ2

2/n2

(8)

Here, µ and σ2 are the estimated mean and standard deviation respectively164
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which can be computed from our summarization matrix as follows:165

µj =
Lj
nj

σ2
j =

√
diag(

Qj

nj
−
LjLTj
n2
j

)

(9)

When both groups are large, we can use our summarization matrix. The v166

value just needs to be compared with vp/2 in the cumulative probability table167

for N(0, 1). Generally in big data, both groups are large and we can compute168

v efficiently using our solution. However, if either group is small, then we can169

compute v directly without computing the summarization matrix first.170

3.2.3. Machine Learning Models171

Two types of ML models are considered: supervised and unsupervised172

models. We present how to compute the Linear regression and Näıve Bayes173

as a representative of the supervised models. And for unsupervised models,174

we present how we can compute Principal Component Analysis and K-means175

exploiting our summarization matrix.176

Linear Regression:. We know that the standard definition of LR is given177

as Y = βTX + ε, where β is the column vector of regression coefficients178

and ε represents the Gaussian error. Also, X is a (d + 1) × n augmented179

matrix where we have X with a row of n 1s. And, β can be defined as180

β̂ = (XXT )−1XY T . Based on the summarization matrix (Γ), we can rewrite181

this equation as below.182

β̂ = Q−1(XY T ) (10)

Using this β̂, estimated Y value (Ŷ ) can be computed for new points183

xi. We do not show this in the experimental section as this computation is184

straightforward.185

Principal Component Analysis:. PCA can be computed on the covariance186

matrix (V ), or the correlation matrix (ρ). This model requires two parameters.187

First is U , which is a set of d orthogonal vectors, principal components of the188

data set, and the diagonal matrix (D2) which contains the squared eigenvalues.189

We compute ρ, the correlation matrix as ρ = UD2UT = (UD2UT )T . It can be190

computed from our summarization matrix (Γ) as: ρab = (nQab−LaLb)

(
√
nQaa−L2

a

√
nQbb−L2

b)
.191
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Then we compute the model from the ρ by solving Singular Value Decompo-192

sition on it (svd(ρ)). After computing the model, the actual dimensionality193

reduction of X is straightforward. We just need a matrix multiplication194

between the matrix derived from SVD and X. For example, if we need to195

reduce the dimensionality of X to P dimensions, we need to multiply matrices196

d× P derived from SVD and X.197

Näıve Bayes:. We need the k-Gamma matrix to compute the NB model as198

this is a classification/clustering problem. Here, we focus on k = 2 classes for199

NB. We compute Ng, Lg, Qg as mentioned above for each class. The output is200

three model parameters: mean (C), variance (R), and the prior probabilities201

(W ) which can be obtained using Eq 11. Here, Ng = |Xg| and we take the202

diagonal of L · LT and Q, which can be manipulated as a 1D array instead of203

a 2D array.204

Wg =
Ng

n
; Cg =

Lg
Ng

; Rg =
Qg

Ng

− diag
[LgL

T
g ]

N2
g

(11)

After computing the model using the above equation, we can predict the205

class labels for new data exploiting it. For each point in the new data, we206

compute a probability value per class using the model parameters in Eq 11,207

and assign the class with maximum probability. We compute the probability208

P (xi|θ) as, P (xi|θ) = (1/
√

2πσ2
g)e

−0.5(xi−µxi )
2/σ2

g209

K-means:. Similar to NB, we compute model parameters Nj, Lj, Qj (where210

j = 1, .., k) for each cluster. From these statistics, we compute Cj , Wj similar211

to NB presented in Eq. 11. After computing the model parameters, the212

algorithm iterates executing two steps starting from random initialization213

until cluster centroids become stable.214

1. Determining centroids: This step determines the closest cluster for each215

point (using Euclidean distance) and adds the point to it. The distance216

from each point xi can be determined as d(xi, Cj) = (xi−Cj)T (xi−Cj).217

2. Updating centroids: This step updates all the centroids Cj by computing218

the mean vector of points belonging to cluster j (j = 1, .., k). The cluster219

weights Wj are also updated based on the new centroids.220

The K-means algorithm stops when centroids change by a marginal fraction221

in consecutive iterations, measured by the quantization error. With decreasing222

error at each iteration, K-means is theoretically guaranteed to converge, yet223

we set a threshold on the number of iterations to avoid excessively long runs.224
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Figure 1: System architecture to compute ML and statistical models by parallel data
summarization.

3.3. Parallel Algorithm to Compute Machine Learning and Statistical Models225

Here, we present our generalized parallel algorithm. We propose a 3-phase226

algorithm to compute the summarization matrix and show how machine227

learning and statistical models can be computed exploiting it. Figure 1 shows228

our system architecture for N processing nodes. Our proposed generalized229

3-phase algorithm is given below:230

1. Phase 0: Pre-process the data set. Partition the data set to the N231

processing nodes.232

2. Phase 1: Compute summarization matrix in parallel across N nodes: Γ233

or Γk. This phase will return N partial (local) summarization matrices234

(ΓI or ΓkI , I = 1, 2, ..., N)235

3. Phase 2: Add the partial summarization matrices to get final Γ or Γk236

on the master node. Compute machine learning or statistical model (Θ)237

based on Γ or Γk.238

3.3.1. Phase 0:239

Here, we partition the data set X to the N processing nodes. The data240

set X can be either a full data set or data subsets. We assume data set X241

can be either be in a parallel cluster (disk), cloud (remote cluster, HDFS), or242
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in a local machine. In any case, data to be analyzed must be partitioned into243

the processing nodes. We split and transfer the data set X into N processing244

nodes (XI , I = 1, .., N). There are several partitioning strategies available245

like row-based or column-based partitioning. Here, we use the row-based246

partitioning (horizontal partitioning) as our summarization matrix (Γ) is247

O(d2) and we need all the d columns in each node. If we choose column-based248

(vertical partitioning) or block-based partitioning, the summarization matrix249

in different nodes may end up having different sizes. We use n/N as the data250

set size in each partition (row-based). So, each node in the parallel cluster251

has the same number of rows except for the N -th node which is important252

for our parallel algorithm to work efficiently.253

3.3.2. Phase 1:254

This phase computes our summarization matrix in parallel. In each node,255

we compute a local summarization matrix and at the end of this phase, we256

send it to the master node. The whole procedure is shown in Algorithm 1.257

The input for this phase is the partitioned data set (XI) from the previous258

phase. We assume XI can be of any size and it may or may not fit in the local259

main memory. To address this issue, we optimize the technique to read data260

in blocks so that we can handle large files. For each node, the partitioned261

data set (XI) is read into b = 1...b blocks of same size (m) where m < |XI |.262

The block size depends on the number of records (nI) in XI . As discussed in263

[7], we define the block size as log nI . As log nI � nI , even if nI is very large,264

each block will easily fit in the main memory. Processing data one block at a265

time has many benefits. It is the key to being able to scale the computations266

without increasing memory requirements. External memory (or out-of-core)267

algorithms do not require that all of the data be in RAM at one time. Data268

is processed one block at a time, with intermediate results updated for each269

block. When all the data is processed, we get the final result. According270

to Algorithm 1, we read each block (b) into the main memory and compute271

Gamma for that block (Γb). This partial Gamma is added to the Gamma272

computed up to the previous block (b− 1). We iterate this process until no273

blocks are left and get the Gamma (ΓI) for that node. As each node has all274

the d columns, the size of each ΓI will be (d+ 2)× (d+ 2).275

3.3.3. Phase 2:276

Here, we compute the machine learning or statistical model exploiting the277

summarization matrix computed in Phase 1. However, this phase is computed278
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Algorithm 1: Sequential Gamma computation on each node (Phase
1)

Data: Partitioned Data Set (XI , I = 1, 2..N) from Phase 0
Result: ΓI

1 Read XI into b = 1, 2, ..., b blocks;
2 while next(b) do
3 read(b) ;
4 Γb = Gamma(b) ;
5 ΓI = Γb + ΓI ;

6 end
7 return ΓI to the master node

in the master node only, meaning no parallel processing is needed in this phase.279

At the end of Phase 1, all the ΓIs (Γ1,Γ2, ...,ΓN) are computed in parallel.280

We need to combine them to get the final Γ. So, all the partial ΓIs are sent281

to a master node to perform the addition (sequential) or we can perform it282

in a hierarchical binary tree manner. Hierarchical processing performs the283

addition in multiple levels (bottom-up) until we get the final addition at the284

top level. Here, we perform sequential processing where all the partial ΓIs285

are transferred to the main memory of the master node. Now, to get the final286

summarization matrix (Γ), we compute Γ = Γ1 + Γ2 + ...+ ΓN . Similarly, for287

Γk, Γk = Γk1 + Γk2 + ... + ΓkN . Now, utilizing this Γ or Γk, we compute the288

machine learning or statistical models (Θ) as mentioned in Section 3.2.289

One assumption for our algorithm to work is, we assume data points have290

no specific order. Here, we are computing Phase 1 in parallel and we need291

all the points from k classes/groups in each node to compute the k-Gamma292

matrix. If the points are sorted by k-groups, then our solution would not work.293

Hence, it is expected that the k-groups are represented in each node. Also, our294

solution may not work if there are no intermediate computations that have295

sums of variables or sums of cross-products of variables. In practical terms,296

this means computing averages, covariances or correlations. 90% of models297

have some intermediate computations like these (i.e. not all). However, there298

may be other computations that cannot be helped by our summarization299

matrix. For instance, gradient descent, kurtosis, logarithms of variables.300
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3.4. Integrating with Data Science Languages: R301

Here, we discuss how we integrate our algorithm with a data science302

language. In this paper, we choose R as our choice of data science language.303

However, our solution applies to other programming languages that provide304

an API to call C++ code. We choose and recommend data science languages305

because SQL queries work for tables and relational data, and they do not have306

subscripts. Also, SQL queries are slow for analytics, especially the parallel307

JOIN operation, and UDFs are not portable. On the other hand, Spark is308

not easy to debug and Java is slower than C++. Moreover, data science309

languages like R and Python are more popular among analysts nowadays.310

Before running our algorithm, we can perform getting subsets from the311

original data set. For example, we can filter rows from the original data set312

based on some criteria (e.g. age, gender) or choose columns based on our313

need (selection and projection respectively, in a similar manner to a DBMS).314

This way, we can build the data subset in R or other languages and then315

apply our algorithm to the subsets. This should be done before Phase 0.316

Key insight: Phase 1 must work in C++ (or C). As mentioned in Section317

3.1, we evaluate the
∑
zi ∗ zTi to compute our summarization matrix. This318

sum of vector outer products must be computed block by block in C++,319

not in the host language. Computing zi ∗ zTi in a loop in any analytic320

language (e.g. Python, R) is slow, usually one-row-at-a-time. On the other321

hand, computing Z ∗ ZT with traditional matrix multiplication is also slow322

due to ZT materialization, even in RAM. We use an external library that323

facilitates extending the host language with C++ functions to compute our324

summarization matrix. For example, R has Rcpp library that can be used to325

integrate C++ code with R and accelerate computation by replacing an R326

function with its C++ equivalent function. In Rcpp, only the reference gets327

passed to the other side but not the actual value which makes it efficient to328

integrate the C++ code.329

For Phase 2, statistical or machine learning model computation can be330

done efficiently in one machine by calling the existing functions from the data331

science languages. In other words, Phase 2 uses the data science language332

“as is” where Phase 1 exploited C++. It would be difficult and error-prone to333

reprogram all the ML models. Instead, our solution requires just changing334

certain steps in each numerical method, rewriting their equations based on the335

data summaries (1 or k). For example, in Listing 1, we present an example336

of R source code to compute descriptive statistics such as mean, variance,337
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(Eq. 4, 5 respectively) and the LR model (mentioned in Eq. 10) from the338

summarization matrix (gamma) computed in Phase 1.339

Listing 1: Example of R source code (Phase 2) to compute the descriptive statistics and
the LR model.

d_plus2 = length(gamma [1,])340

d = d_plus2 - 1341

n = gamma [1,1]342

L = gamma [2:d,1]343

Q = gamma [2:d,2:d]344

345

#descriptive statistics346

mu = L/n #mean347

sigma = Q/n - L*L/(n^2) #variance348

349

#LR model350

XYT = gamma [2:d, d_plus2]351

Beta = solve(Q) * XYT352

Our algorithm has the potential to work in Python. In the same manner353

as R, we can use Python with C++ to compute our summarization matrix.354

Python has ‘SWIG’ library that can be used to expose the C++ functions to355

the Python environment. Then we can use the NumPy library to compute356

the models in Python, similar to R. As an extra benefit, our solution gives357

the flexibility to the analyst to compute data summaries in a parallel cluster358

(local or cloud), but explore many statistics and models locally. Moreover,359

our parallel solution is simple, elegant, more general and we did not need any360

complicated library. However, analysts should have some good knowledge of361

the internals of the algorithm.362

3.5. Time and Space Complexity363

We assume N to be the number of processing nodes under a shared-nothing364

architecture, and d� n, N � n. Let, m be the number of records in each365

block and b be the total number of blocks per processing node and each block366

size is fixed. Here, the time complexity is proportional to the block size as367

we are computing Γ in blocks per node. So, for each block time complexity368

of computing Γ will be O(d2b). For a total of m blocks, it will be O(md2b)369

in each node. When all the blocks are read, mb = n. In our case of parallel370

computation, the time complexity will be O(md2b/N) per processing node.371

In the case of the k-Gamma matrix, we only compute L and diagonal of372

Q of the whole Gamma matrix. So, for Γk, it will be O(mdb/N) in each373
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processing node. On the other hand, when transferring all the partial Γs,374

if we transfer to the master node all at once: O(d2), for sequential transfer:375

O(d2N), for hierarchical binary tree fashion: O(d2N + log2(N)d2). Finally,376

we take advantage of our summarization matrix to accelerate computing the377

ML and statistical models. So, the time complexity of this part does not378

depend on n and is Ω(d3). Most common machine learning models including379

LR with least squares and SVD have time complexity Ω(d3) multiplied by a380

certain number of iterations.381

In the case of space complexity, space required by Γ in the main memory382

is O(d2) in each node. And it is O(kd) for Γk, where k is the number of383

classes/clusters. So, our algorithm is highly optimized and uses little RAM.384

As Γ or Γk does not depend on n, the space required by each processing node385

in the parallel cluster will be the same as computing it in a single node (O(d2)386

and O(kd) respectively). Also, we are adding the new Γ with the previous387

one for each block. So, the space is fixed or unchangeable regardless of the388

number of blocks.389

4. Experimental Evaluation390

This section presents our experimental evaluation. First, we present our391

experimental setup and data sets used for the experiments. Then, we present392

the computation of descriptive statistics and statistical tests. For machine393

learning models, we compare our proposed solution with Spark, a popular394

Hadoop big data system, and parallel DBMS, to make sure our solution395

is competitive with other parallel systems. We also present the trade-off396

between computation in a single machine and a parallel cluster. All the time397

measurements were taken five times and we report the average excluding the398

maximum and minimum value. The standard deviations are very small and399

the highest standard deviation recorded is 2.03 seconds.400

4.1. Experimental Setup401

4.1.1. Hardware and Software402

We performed our experiments using an 8-node parallel cluster each with403

Pentium(R) Quadcore CPU running at 1.60 GHz, 8 GB RAM, and 1 TB404

disk space. We choose R as a representative of data science language and405

we develop our solution using R and C++. We used the standard UNIX406

commands to split and transfer the data set among the processing nodes. For407

parallel comparison, we used the Spark-MLlib library for comparing with408
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Table 2: Base data sets description

Data set d n Description Models Applied
YearPredictionMSD 90 515K rain or not LR, PCA
CreditCard 30 285K raise in credit line NB, KM

Table 3: Time (in Sec) to compute descriptive statistics on data subsets in parallel N = 8
machines(M = Millions)

Data set d n Phase 0 Phase 1 Phase 2 Total
YearPrediction-Subset1 90 1M 18 14 9 41
YearPrediction-Subset2 90 5M 102 67 9 178
YearPrediction-Full 90 10M 213 135 9 357

Spark, and we used Vertica to compare with a parallel DBMS. In the case409

of Spark, we programmed the models using Scala, for Vertica, we used a410

previous solution developed with UDFs and SQL queries.411

4.1.2. Data Sets412

Machine learning or statistical models does not work well on raw data as it413

may have noise, missing values, outlier values, and so on which can overfit or414

underfit the models. Also, large public data sets for computing all the models415

are not available. Therefore, we had to use common data sets available and416

replicate them to mimic large data sets. We used two data sets presented417

in Table 2 as our base data sets: YearPredictionMSD and CreditCard data418

set, obtained from the UCI machine learning repository. We sampled and419

replicated the data sets in random order to get varying n (data set size). And420

for lower d, we chose it randomly from the original data set.421

4.2. Computing Descriptive Statistics on Data Subsets422

As mentioned in Section 3.2, we can compute descriptive statistics and423

statistical tests utilizing our summarization matrix. We can get subsets of424

the original data set based on some filter (e.g. gender, age group, location)425

and see the descriptive statistics there before applying any machine learning426

models. Here, Table 3 shows how our summarization performs on data subsets427

compared to the original data set in parallel N = 8 machines. We take the428

YearPrediction data set and generate data subsets from there. We generate429

10 data subsets (YearPrediction-Subset1) and 2 data subsets (YearPrediction-430

Subset2) of equal sizes from the original data set. We report the time of one431
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Table 4: Time (in Seconds) to compute mean comparison on data subsets in parallel N = 8
machines (M=millions)

Data set d n Partition Compute Γ Stat test
YearPrediction-subset3 90 1M 18 14 9
YearPrediction-subset4 90 9M 199 122 9
YearPrediction-subset5 90 5M 102 67 9
YearPrediction-subset6 90 5M 102 67 9

representative data subsets from each of them (the other subsets have almost432

the same time measurements, within 1 sec variation) and also for the full433

data set. For each of them, the time for Phase 0, Phase 1, and Phase 2 from434

Section 3.3 is reported in Table 3. From Phase 0 and Phase 1, we can see that435

our solution scales well and there is almost no performance penalty regardless436

of data subset or the full data set. As for Phase 2, we compute the descriptive437

statistics in one machine for data subsets (Eq. 7) using the summarization438

matrix. For that, we first need to send the partial summarization matrices439

to the master node, add them, and then compute the statistics. Computing440

the statistics is fast utilizing R run-time and is done in less than a second441

(< 1 sec). And sending partial matrices from N = 8 machines takes equal442

time (< 1 sec for each machine). We round up the time and put 9 seconds443

for Phase 2 in each case in Table 3. As our summarization matrix depends444

on d, and not on n, this time does not change if the n gets bigger.445

On the other hand, for statistical tests, we perform the mean comparison446

test as mentioned in Section 3.2. Table 4 shows the time to perform the mean447

comparison test in parallel N = 8 machines. To perform this test, we split the448

data set as 10%-90% and 50%-50%. We partition the data sets and compute449

the summarization matrix as mentioned above. We can see our solution is450

scalable for this part. The partial summarization matrices are sent to the451

master node (each machine takes < 1 second) and added to get the final452

summarization matrix for each subset (total ∼ 8 seconds). Based on this453

matrix, we perform the mean comparison test. First, we get the mean, std.454

deviation, and total number of points from the final summarization matrix455

of each subset (Eq. 9) and then perform the test using Eq. 8. As we are456

computing this part in R run-time, it is fast and takes less than 1 second for457

each subset.458
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Table 5: Time (in Seconds) to compute the ML models with our solution and in Spark
(N = 8 nodes; M=Millions)

Θ R (N=8) Spark (N=8)
(Data set) n d Partition Export Γ + Θ Partition Θ
LR 1M 10 9 6 12 7 41
(Year- 10M 10 23 13 29 17 286
Prediction) 100M 10 317 96 218 161 1780
PCA 1M 10 9 6 12 7 15
(Year- 10M 10 23 13 29 17 46
Prediction) 100M 10 317 96 218 161 277
NB 1M 10 11 6 13 7 Crash
(credit- 10M 10 28 17 36 25 Crash
card) 100M 10 335 125 252 231 Crash
KM 1M 10 11 6 13 7 64
(credit- 10M 10 28 17 36 25 392
card) 100M 10 335 125 252 231 Stop

4.3. Comparison with Hadoop Parallel Big Data System: Spark459

Here, we compare our solution with Spark for machine learning models,460

a popular parallel data processing engine developed to provide faster and461

easy-to-use analytics. For that, we partition the data sets using HDFS and462

then run the models using the Spark-MLlib library (with Scala), Spark’s463

scalable machine learning library to run the ML models. We emphasize464

that we used the recommended settings and parameters as given in the465

library documentation. Here, we are taking the data sets with a higher n466

(n = 1M, 10M, 100M) and medium d (d = 10) to demonstrate how large467

data sets perform on both. Moreover, we do not assume that the data set is468

already in the processing machines. As mentioned in Section 3.3, we assume469

data to be analyzed can be stored in the (1) disk of a large machine (local file470

system), (2) HDFS, or (3) already partitioned in the processing machines. If471

data is in the file system, we need to partition the data set among N machines.472

Nowadays, data can be also in the HDFS (or cloud) as it is a popular platform473

to store huge data sets. In that case, we have to export the data and then474

partition it among N machines. It is possible to read directly from the HDFS475

using some library but we are not exploring that here. Finally, if the data set476

is already partitioned in the processing machines, no partitioning is needed.477

We do not show similar experiments based on data storage for descriptive478
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(a) LR (b) PCA

(c) NB (d) KM

Figure 2: Total time (in Seconds) for ML models using different approaches (M=millions).

statistics and statistical tests as it would be redundant and trivial.479

Table 5 presents the time to compute the ML models in the parallel cluster480

with our solution and Spark. For each entry, we round it up to the nearest481

integer value. From Table 5, the ‘Partition’ column is the time to partition482

X among N processing nodes. This is Phase 0 from our 3-phase algorithm483

discussed in Section 3.3. We used the standard and fastest UNIX commands484

available to perform this operation. The ‘Export’ column is the time to export485

the data set X from HDFS to the local machine. And the ‘Γ + Θ’ column486

is the time to compute Γ in parallel N machines, send them to the master487

node to compute the final summarization matrix, and compute the machine488

learning model (Θ) from it. This process is Phase 1 and 2 combined from our489

algorithm in Section 3.3. In the Spark part of Table 5, ‘Partition’ is the time490

to load and distribute the data set in HDFS among N machines. And we491

report the time to compute the models using Spark-MLlib in the ‘Θ’ column.492

Fig 2 shows the total time based on Table 5 to compute the ML models493

using different approaches discussed above. We simply add the times to494

get the total time for different approaches. We can see that if the data set495
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is already partitioned in the processing machines, computing the models496

utilizing our summarization matrix is fast in all cases. Partitioning the497

data set first and then computing the ML models is a bit slower, but still498

fast. Exporting the data set from HDFS adds more time over the previous499

approach. On the other hand, Spark is mostly slow compared to any of500

our approaches. For Linear Regression, Spark minimizes the specified loss501

function with regularization. For PCA, the Spark-MLlib library uses a similar502

algorithm as ours. It computes XT ∗X for large X by computing the outer503

product of each row of the matrix by itself, then adding all the results up.504

This is Q from our summarization matrix which Spark manipulates in the505

main memory by each worker node. Still, Spark is slightly slower than our506

method for computing only the PCA model. For Näıve Bayes, Spark-MLlib507

implements the multinominal Näıve Bayes whose major drawback is having508

negative values in the data set crashes the model. As Spark crashes showing509

“illegalArgumentException” during the execution of NB, there is no plot for510

Spark in Fig 2(c). And for K-means, Spark implements a parallelized variant511

of k-means++ [8] which generates a k-means model and is roughly O(k), so512

this suffers a slower start with a large k. Also, it is expensive when the model513

is trained. If we analyze the plots from Fig 2 more carefully, we can see that514

when the data set is already partitioned, computing the models is at least515

2X faster than our other approaches. In the other approaches, we have to516

partition the data set (data in disk), or export from HDFS and then perform517

partition it (data in HDFS). This is slower because we are partitioning the518

text (.csv) files, not binary files. This is a bottleneck and takes a long time.519

However, it is due to the file format and not a shortcoming of our solution.520

Moreover, R can read binary files and as we can call C++ code from R, it is521

possible to read binary files efficiently in R (but CSV is most common).522

However, there are some drawbacks to our solution. If some distribution523

cannot be summarized with sufficient statistics from the Gaussian distribution,524

then our approach would not work. For example, exponential distribution525

may be inaccurate. But, in general, one or multiple Gaussian works well. Also,526

it is not possible to get the original data set back from the summarization527

matrix. That is, we cannot get X back from Γ or Γk.528

4.4. Comparison with a Parallel Big Data System: DBMS529

Now, we compare our solution with a parallel columnar DBMS (Vertica)530

running on N processing nodes. In general, parallel columnar DBMS performs531

better than row DBMS when d is not large. However, it is feasible that a532
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(a) Partition X and compute Gamma (b) Compute Gamma

Figure 3: Time (in Sec) comparison for Γ on N = 8 nodes: our solution vs parallel DBMS
for varying n and d (M=millions)

parallel row DBMS may be faster, but d would have to be very high, probably533

hundreds of columns and a dense matrix. We adapted the solution presented534

in [2] using UDFs and SQL queries which is the current best solution to535

compute the summarization matrix in a parallel DBMS. As there is no prior536

solution of Γk matrix in a DBMS, here we only compare our solution with the537

Γ matrix. We already know that the machine learning model (Θ) computation538

is very fast (∼ 1 second) in the main memory exploiting Γ. So, we only report539

the time to compute the Γ using N processing nodes which are shown in Fig540

3. We compute Γ for varying n = 1M, 10M, 100M and d = 10 in two cases:541

(1) when data is not partitioned (data in disk or HDFS), and (2) when data is542

already partitioned. We consider both cases to give the parallel DBMS a fair543

chance as it is often assumed for analytics that data is already stored in the544

DBMS. Fig 3a shows the comparison when data is in the disk. In this case,545

we split the data set into N processing nodes and then compute Γ. And, if546

the data set is in the HDFS, then we export the data first and then partition547

it as mentioned above. For DBMS, we used standard SQL queries to COPY548

(Partition) the data set in all machines. As partitioning in DBMS is slow,549

we can see that parallel DBMS performs much slower in all cases than our550

solution when it has to partition the data first. On the other hand, Fig 3b551

shows the comparison to just compute Γ using N machines where the data552

set is already partitioned and loaded into DBMS. Our solution also performs553

better for Γ computation as n grows (Fig 3b). Also, DBMS solutions using554

UDFs are not portable and they require a lot of memory to scale up.555
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(a) Gamma (b) k-Gamma

Figure 4: Time comparison for Γ and Γk in parallel cluster (N = 8 nodes) and single
machine (N = 1 node) for varying n and d.

4.5. Understanding Trade-offs: Parallel Cluster and Single Machine556

Here, we understand the trade-offs of computing our summarization matrix557

on a parallel cluster and a single machine. Though we have seen that parallel558

processing accelerates the computation, we may not need a large cluster each559

time, especially when the data set size is smaller. Instead, we can use a560

single machine to handle small data sets as parallel processing may introduce561

overhead and make the processing slower. Fig 4 shows the comparison to562

compute Γ and ΓK in one machine and parallel (N = 8) machines. We can563

see that a single machine performs better when n and d is low (≤ 1M × 10)564

in both cases. The reason is, the parallel cluster is spending much time565

partitioning the data set and transferring the partial ΓI (or ΓkI ) matrices. On566

the other hand, parallel cluster seems to be faster from n = 1M and d = 20.567

When n is very high (n = 10M or more), the parallel cluster is at least 2X568

to 4X faster than the single machine and becomes the obvious choice for569

processing. This is because a single machine cannot scale as the data size570

grows due to limited memory. However, we should emphasize that these571

time measurements are only for partitioning the data set and computing the572

actual summarization matrix (Phase 0 and 1 from Section 3.3), and it does573

not include the time to compute the machine learning or statistical models574

(Phase 2 from Section 3.3).575

5. Related Work576

Here, we discuss the closely related work of other researchers as well as577

discuss the extension from our previous approaches.578
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5.1. Fast ML Algorithms579

Research has developed fast algorithms mostly based on sampling, data580

summarization, and gradient descent [9], generally working in a sequential581

manner (data mining) [10]. Stochastic (incremental) gradient descent (SGD)582

[11], [12] is a popular approach, useful when there is a convex function to583

optimize (like least-squares in LR). As for drawbacks, SGD is naturally584

sequential (difficult to process in parallel), it obtains an approximate solution585

and it is difficult to adapt to non-convex functions (e.g. clustering). Also,586

MapReduce (MR) is another data mining technique used in big data analytics.587

Research has developed to classify big data [13], processing all-k-nearest-588

neighbor queries in parallel [14] using MapReduce. In [15] by Chu et al., a wide589

range of machine learning algorithms were parallelized by taking advantage590

of the summation form in a MapReduce framework. Using summation, the591

authors could achieve a 1.9 times speed up on a dual-processor without592

any special optimizations. However, MapReduce is not a suitable choice593

as not every algorithm can be implemented as an MR program and when594

we need to process data through iterations such as K-means. On the other595

hand, data summarization to accelerate the computation of machine learning596

models has received significant attention [2], [5], [16] [17]. Zhang et al. in597

[16] proposed to accelerate the computation of distance-based clustering:598

the sums of values and the sums of squares. Later Bradley et al. [17]599

exploited such summaries as multidimensional sufficient statistics for the600

K-means and EM clustering algorithms. Compared to our solution, these601

proposed techniques were useful only for one model (clustering). From a602

computational perspective, our Γ computation boils down to one matrix603

multiplication, whereas those algorithms work as aggregations. A more604

general data summarization capturing up to the fourth moment was proposed605

by William et al. in [18]. However, unlike our method, it relies on building606

histograms which are incompatible with most statistical methods. In summary,607

our summarization is a generalized algorithm that helps to compute statistical608

and complex ML models like LR, PCA, NB, and KM that could not be solved609

with older summaries.610

5.2. Parallel Processing in ML611

Parallel processing in machine learning has received attention due the to612

the sheer volume of data. There is a large body of work on computing machine613

learning models in Hadoop Big Data systems, before with MapReduce [19] and614

currently with Spark [20]. Distributed implementation of Logistic regression615
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and linear SVM using Spark was discussed by Lin et al. in [21]. Spark-616

MLlib [22] is a popular open-source platform for large-scale data processing617

which well-suited for iterative machine learning tasks. In this paper, we618

compared this library and had similar or better performance in most cases619

for our algorithms as discussed in Section 4. On the other hand, computing620

models with parallel DBMSs have received less attention [11] because they are621

considered cumbersome and more difficult to program. A previous approach622

similar to our method was developed using SQL queries and UDFs for parallel623

DBMSs in [2]. However, it did not have the k-Gamma summarization matrix624

and our comparison in Section 4 shows the solution is much slower than our625

current solution. Also, SQL is mostly popular for transactions and query626

processing and UDFs have portability issues which makes analytics in DBMS627

less popular. In the case of data science languages, there are some available628

packages in R and Python for parallel computing. Compared to other R629

parallel libraries like Revolution R [23] that requires Windows operating630

system or pbdR [24] that provides high-level interfaces to MPI requires a631

complex set up process, our solution avoids the complex set up process and is632

not dependent on any OS. From a “systems” angle, R combined with C++633

did not exist and nobody thought we could insert efficient C++ code for634

a very common computation on parallel machines. El-Khamara et al. in635

[25] argued that it is possible to enable massive parallelism with existing R636

solutions with little to no modification. Also, Subramanian et al. in [26]637

propose a framework that provides users with access to high-performance638

computing resources with R through a web user interface.639

This article is a significant step forward from [5]. Here, we present how we640

can get descriptive statistics from our summarization matrix for the full data641

set or the data subsets. Our experiments showed computing these statistics642

has almost no performance penalty if they are computed on data subsets or643

full data set. Also, we discuss how we can perform statistical tests based644

on our summarization matrix. Moreover, as a pre-processing step, we do645

not assume that data can only be in the file system. Rather, we presented646

experiments with the data set being in the file system, cloud (HDFS), and647

already partitioned in the processing nodes.648

6. Conclusions649

We proposed an efficient way to compute machine learning and statistical650

model with parallel processing. Our general, parallel summarization algorithm651
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can work with multiple programming languages and platforms. We present652

how our summarization matrix can help to compute descriptive statistics,653

perform statistical tests, and compute ML models on the full data set or654

data subsets. We then justified why C++ code is required and how it can655

be integrated with a data science language, presenting R as an example.656

Computing summarization matrix is done with vector outer products in657

C++ and the model computation is performed with existing R functions.658

The experimental evaluation section provides a detailed experiment and659

comparison of our solution. We do not assume data can only be stored in the660

file system. Rather, we provide experiments with data being in the file system,661

cloud, or already partitioned in the processing machines. Our experiments662

prove that our solution is more scalable than Spark and faster than Spark in663

most cases. However, our solution suffers only when partitioning the data664

set as we are doing it in a simple approach using available UNIX commands665

where Spark is using HDFS, a well established distributed file system. On666

the other hand, our solution is way faster than the previous version of the667

summarization matrix which was done with UDF and SQL queries. We also668

showed that our summarization matrix can be used to compute models on669

data subsets or full data set with almost no performance penalty.670

As for future work, we want to explore other dimensions. We intend to671

study how to accelerate computation with multicore CPUs and GPUs in a672

single box. We also want to explore more ML models, including Logistic673

Regression, LDA, and SVMs. Also, we want to explore if we can extend our674

approach to window data and stream such as, BIRCH algorithm that has675

been extensively used for stream clustering. Moreover, we want to compare676

the tradeoffs when we integrate our solution with other popular languages677

like Python or JavaScript. Finally, we want to see how our solution behaves678

on a sliding window.679
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