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Abstract—Two decades ago, the most popular data mining
technique were association rules (ARs). Nowadays deep neural
networks (DNNs) are the most popular mechanism for building
predictive models. On the other hand, medical data sets, despite
being generally small in size (low volume), they are challenging
for predictive models due to diverse attribute content (high
variety) and variables with low redundancy (high variability). In
this work we compare these two analytic techniques to identify
effective models to predict heart disease, a multi-target prediction
problem. Both techniques require expertise, manual tuning, and
iterative experimentation to determine optimal parameters. Our
goal is to build a DNN model that is at least as good as the
best ARs. There exist two Big Data challenges: risks factors
combined with imaging attributes produce a large number of
hidden patterns and the number of association rules reaches
millions, without using search constraints at low support (fre-
quency) values. Preliminary experiments on a real data set show
discovered rules have high predictive accuracy and they provide
a highly accurate, but highly specific, profile of sick patients.
Despite careful data pre-processing and hyper-parameter tuning
DNNs are slightly more accurate than association rules, but more
generalizable. Therefore, both techniques can complement each
other.

Index Terms—Pattern, Deep learning, Frequent Itemset, Data
mining, Classification

I. INTRODUCTION

Association rules are a powerful data mining technique
that is capable of discovering every frequent pattern present
in a set of data, meeting minimum probability constraints.
From a machine learning perspective, association rules identify
simple, intuitive, specific predictive patterns. About 20 years
ago, association rules (ARs) [12] were the premiere data
mining technique, with thousands of papers being published
since then. But trends have changed dramatically. With the
continuous rise and availability of multicore CPUs, GPUs and
larger RAM, deep neural networks (deep learning) [1], [8],
[15], [25] have effectively become the main predictive model
for machine learning and data science nowadays. Deep Neural
Networks (DNNs) have taken over as the premier predictive
modeling technique due to their high accuracy [1], [11],
surpassing most previous machine learning models. Data sets
from diverse fields, including medicine, are currently being
analyzed by deep neural networks. In addition, their ability to
cope with noise, high dimensionality and raw data have made
them the preferred technique to analyze text and images. On
the other hand, medical data sets (from a hospital in our case),

despite being generally small in size, they are challenging for
predictive models due to their high variability (many hidden
patterns), their diverse attribute content (high variety), and
having variables with low redundancy (high variability). In
other words, they do represent a Big Data problem, despite
lacking one V: Volume.

Based on the motivation above, this work compares the
historically popular technique of association rules and the
currently most popular predictive method of deep neural
networks for heart disease prediction. Our goal is predicting
stenosis (plaque buildup) of the four major arteries in the
heart. This work is not the first to study ARs or DNNs for
heart disease prediction, but previous work has not compared
both techniques with each other. Previus research has neither
considered heart disease as a multi-target prediction problem.

We study the problem from a comprehensive analytic per-
spective. We explain how the input data set is pre-processed
for each technique. We compare the strengths and weaknesses
of each tecnique for our medical problem. Finally, we compare
both techniques on a real medical data set, tuning their
parameters to increase accuracy and reduce processing time
(without compromising accuracy). To round up our study, we
also compare DNNs against other supervised machine learning
models, widely used today: Support Vector Machines and
Logistic Regression. We should emphasize logistic regression
remains a workhorse in medicine given its explainability and
robustness, despite being slightly less accurate than SVMs or
DNNs.

II. BACKGROUND AND DEFINITIONS

This section provides mathematical definitions for asso-
ciation rules and deep neural networks that will be used
throughout the paper. Each subsection can be skipped by a
reader familiar with each technique.

A. Input Data Set

Consider a raw data set S containing n records S =
{x1, x2, .., xn} with categorical, numerical and image at-
tributes, to be transformed into the data set D defined below.
More precisely, if S has p attributes A1, A2, ...Ap, then Aj is
either categorical or numeric.

The input for association rules is a data set D with n
transactions, coming from a discretization of S (explained



below). The output is a set of discovered rules meeting several
thresholds. Each association rule consists of an antecedent
and a consequent and has three associated metrics: support,
confidence, and lift, defined below.

In contrast, for DNNs the input is a matrix. The input for
the neural network is a matrix with d columns and n rows,
where d is the so-called dimensionality and n is the number
of patient records. The output is a probability of disease per
artery per patient, as well as the accuracy score for correctly
predicting severe heart disease in that specific artery.

Transformations on the raw data set are necessary to use it
in both association rule and deep neural network algorithms.
In association rules numeric attributes are binned at medically-
recommended chosen cutoff points. Categorical attributes are
transformed by assigning an item to each categorical value.
For neural networks numeric values of predictive attributes can
be used as is. On the other hand, categorical values must be
transformed to dummy binary variables, reporting whether or
not each attribute value is present. For both techniques target
variables (arteries) must be transformed into binary variables
to distinguish healthy and sick patients.

B. Association Rules (ARs)

The standard definition of association rules [12] is as
follows. Let I = {i1, i2, ..., im}, where ij is an item (intu-
itively the subscript of a binray dimension), coming from a
transformation on an attribute of S. Let D = {T1, T2, ..., Tn}
be a set of n transactions, coming from discretizing S, where
Ti ⊆ I. A subset of I containing k items is called a k-itemset.
We can now define a predictive rule whose quality can be
measured as explained below. Let X and Y be two itemsets
such that X ⊂ I, Y ⊂ I and X ∩ Y = ∅. An association rule
is a predictive pattern denoted by X ⇒ Y , where X is called
the antecedent and Y is called the consequent.

Association rule have significance metrics, which are de-
fined as follows. For an itemset X , support s(X) is defined
as the fraction of transactions Ti ∈ D s.t. X ⊆ Ti. That is,
support can be understood as the probability of appearance of
the pattern X . Let P (X) be the probability of X in D and
let P (Y |X) be the conditional probability of appearance of Y
given X . Then P (X) can be estimated as P (X) = s(X).
By the same reasoning, the support of a rule X ⇒ Y is
defined as s(X ⇒ Y ) = s(X∪Y ). The confidence of the rule
X ⇒ Y is defined as c(X ⇒ Y ) = s(X ∪Y )/s(X), which is
basically P (Y |X). A third metricm, called lift, is defined as
l(X ⇒ Y ) = P (X ∪ Y )/(P (X)P (Y )) = c(X ⇒ Y )/s(Y );
when lift values are ≥ 1 they provide evidence that X and Y
depend on each other. Lift values below 1 indicate X depends
on the absence of Y or vice-versa. Lift is used to rank rules
and discard redundant rules.

The association rule mining problem is defined as finding
the set of all rules (X ⇒ Y ) such that s(X ⇒ Y ) ≥ ψ and
c(X ⇒ Y ) ≥ α, given a support threshold ψ and a confidence
threshold α. A k-itemset X s.t. s(X) ≥ ψ is called frequent.

C. Deep Neural Networks (DNNs)

We now turn our attention to deep neural networks (a.k.a.
DNNs or multi-layer perceptrons (MLPs)) [1], [8], [25]. The
raw input data set is S, which must be transformed into a
data set X with only numeric features. Numeric attributes
can be used “as is”. Otherwise, if Aj is a discrete variable,
its value must be transformed to a dummy variable based on
the number of possible values. In our case, discrete variables
were all binary and categorized as 1 or 0. Additionally, data is
scaled before input into the DNN. A Z-score was used to make
this transformation. The goal is to predict the probability of
a person having high stenosis in a specific artery. Since there
are four target variables (arteries), four DNNs are computed
(one DNN for each artery). The output for each DNN is
the probability of having disease Y/N. Like most current
DNN research, we use an ReLU and LeakyReLU activation
functions (robust to noise) and neuron dropout (to improve
generalization). Further details can be found on popular deep
learning papers.

A powerful learning paradigm amenable to testing the
feasibility of knowledge transfer is that of neural networks.
A neural network is capable of expressing flexible decision
boundaries over the input space ; it is a nonlinear statistical
model that applies to both regression and classification. In
particular, for a neural network with one hidden layer, each
output node computes the following function:

gk(X = x) = f(
∑
l

wkl f(
∑
i

wlixi + wl0) + wk0),

where x is the input feature vector, f(·) is a nonlinear (e.g.,
sigmoid, tanh, ReLU) function, and xi is a component of
vector x. Subscript i runs along the components of vector x,
index l runs along the number of intermediate functions (i.e.,
nonlinear transformations of the input features), and index
k refers to the kth output node. The output is a nonlinear
transformation of the intermediate functions. The learning
process is limited to finding appropriate values for all weights
{w}. The concepts described below are equally valid for deep
neural networks, where there is more than just one hidden
layer between the input and output nodes.

Several activation functions are popularly used in neural
networks. The sigmoid function is foundational to logistic
regression and became an activation function that’s considered
when using neural networks. It ranges from 0 to 1, and [18]
defines as:

g(x) =
1

1 + e−x

The Hyperbolic tangent function (tanh) is defined as the
ratio between the hyperbolic sine and the hyperbolic cosine.
Its values range from -1 to 1 [18]

tanh(x) =
sinh(x)

cosh(x)



The Rectified Linear Unit function (ReLU) has become
the most popular activation function used in neural networks
today: [20]

ReLU = max(0, x) (1)

Leaky ReLU is a slightly modified version of ReLU that
has a slight slope when x < 0 In this example, k is a small
value to used to reduce the slope [18] .

h(x) =

{
x, if x > 0

kx, otherwise

There are also techniques to improve generalization.
Dropout is a technique used to prevent overfitting and improve
learning performance. It works by temporarily dropping a
random neuron from the network after every epoch during
the training process. The probability can be manually tuned,
but its default value, 0.5, is close to the optimal solution in
many instances [28].

III. COMPARING BOTH TECHNIQUES

This section provides details on pros and cons of association
rules (ARs) and deep neural networks (DNNs) in the context
of our medical problem.

A. Strengths and Limitations of ARs

Association rules have the advantage of being exhaustive:
all patterns above the input thresholds are discovered. A rule
with high confidence provides a valuable pattern, but its real
predictive value is dictated by its support: the higher, the better.
However, ARs do have several limitations and disadvantages.
Unfortunately, many high-confidence rules tend to have low
support. Running time can take hours: there is tradeoff be-
tween support and confidence. Many rules are meaningless
from a predictive perspective: they must be filtered. The next
section explains how these limitations are solved.

B. Search Constraints to Discover Medically Significant Rules

The most important user-specified parameters are minimum
support and minimum confidence. In a perfect world, we
would discover rules that have at least 50% support and 90%
confidence. Unfortunately, those rules are rare. Support is
the parameter that most greatly impacts running time and
rule generalization. If support is too low, discovered rules
apply to so few people that the prediction does not generalize
to the whole population. Equally important, running time
greatly increases, in general exponentially. On the other hand,
confidence should be relatively high: above 90% is highly
desirable, but difficult to get, below 70% has little predictive
value as they approach tossing a coin.

We now explain search constraints. Without search con-
straints, the number of explored and discovered rules can be
exponential and therefore the running time of the AR discovery
algorithm drastically increases, –hours or days depending on p,
the number of attributes and data set size n. The first constraint
is limiting k, the number of items that can appear together,

resulting in simpler rules, fewer rules, less passes over the data
set. The rationale is that a rule with too many items is too
specific and rules tend to be redundant. The second constraint
is a template for rules, after frequent itemsets are discovered.
We only care about rules where the predicted atribute (severe
artery stenosis) is the consequent. Conversely, items from
predicted attributes should not appear in the antecedent.

The use of additional constraints is necessary in order to
reduce number of discovered rules and to make run time rea-
sonable. Due to the fact that we have more computing power
now (faster CPUs, more RAM) than we did ten years ago
fewer constraints were applied. Finding rules with negation is
a major challenge due to the explosion of number of patterns.
Negation was not considered because we are more interested
in what makes people sick as opposed to what makes them
healthy. Additionally, negation was unnecessary because we
discarded patients with boarder-line disease which condensed
output to only one item for each artery. Grouping items to
discard well-known combinations of risk factors was neither
necessary. Another limitation of association rules is the overlap
of attributes, a form of redundancy. The same items may
appear as subsets of the antecedent across many rules, but
they have a different meaning and medical interpretation when
considered as an overall rule.

C. Strengths and Limitations of DNNs

When utilizing DNNs, it is important to understand the
impact that hyper-parameters can have on predictive accuracy.
The number of layers and number of neurons per hidden layer
are perhaps the most important hyper parameters in any clas-
sification or regression problem. This makes hyper-parameter
optimization necessary, with various optimization techniques
studied in the literature [24], [16], [4]. In our case, to improve
DNNs accuracy to compare them with association rules,
we experimentally studied fundamental hyper-parameters: the
neuron activation function, the number of layers and the
number of neurons per layer. Secondary parameters include
the learning rate and neuron dropout, which we found out
they had less impact on accuracy.

Overfitting is an issue in machine learning where the model
is over trained on the training data to the point where accuracy
gets close to 100%. Once this occurs, the model does not
generalize well on the testing data (or new records) because
it has become too specific, tailored to the training data set.
The goal is to increase accuracy as much as possible before
the model overfits and then scale back to a point where the
testing accuracy does not decrease.

D. Examples

Association Rules Example

A simple example of an association rule is be presented
below. Consider the example data set below, with five patient
records and four attributes. If the association rule algorithm
were to be applied to the data set, one of the rules generated
would be:



TABLE I: Example data set.

AGE CHOL SMOKE LAD
65 253 Y 72
42 258 Y 71
56 186 N 51
47 251 Y 46
51 132 N 36

200<=CHOL<250,SMOKE=Y => 70<=LAD<100

In the above rule, support ψ, = 0.4, confidence α, = 0.67,
and lift = 1.1. This example is a discovered rule that gives
the following profile of patients: A patient that is between 60
and 100 years old, has a certain region of the heart that is
considered to have defect, and has cholesterol between 200
and 250 has an LAD artery that is blocked between 70% and
100%. This particular antecedent (left side) appeared in 40%
of the population. Of that 40%, 67% had the artery blockage.
If someone has the attributes in the antecedent that person
is 1.1 times more likely to have the item in the consequent
present as well. Support is calculated as ψ = 2

5 , where the
numerator is the number of items that have both antecedent
and consequent and the denominator is the total sample.
Confidence is calculated as α = 2

3 , where the numerator
is the number of records that satisfies both antecedent and
consequent and the denominator is the number that only
satisfies the antecedent. Lift is the confidence divided by the
fraction of items containing the consequent,

2
3
3
5

Deep Neural Network Example
An example of the DNN is made using the same mock

data set as above. The output for DNN is the probability
that a certain input belongs to an output class. Here we
create probabilities that would correspond to: LAD >= 70%.
According to the DNN in this example, if you are 65 years
old, have cholesterol of 253, and smoke, the probability of you
having greater than 70% stenosis of LAD is 62%. It’s worth
noting that these probabilities are independent of overall model
accuracy. Chance is defined as the ratio of the largest class in
the classification problem. In this case that is 2

5 or 40%. The
goal of the model is to have higher than chance predictive
power. For this example, we want the model to be predicting
more than 40% accuracy to show that learning has occurred.

TABLE II: Output for DNN on example data set.

AGE CHOL SMOKE LAD DNN Output
65 253 Y 72 0.62
68 258 Y 71 0.71
56 186 N 51 0.38
55 251 Y 46 0.47
58 132 N 36 0.15

IV. EXPERIMENTS

This section discusses the setup used for our experimental
evaluation. We explain hardware and software, and we provide
detailed data set description as well as specific function call
parameters for each technique. We provide a preliminary
comparison evaluating predictive accuracy of both techniques.

A. Hardware and Software

Experiments were conducted on a machine with a Quad-
core (4 core) Intel Pentium CPU @ 1.60GHz and 8GB of
DDR3 1600 MHz memory. The operating system was Linux
Ubuntu 18.04. In the future, we plan to use GPUs to accelerate
the computation of DNNs as it has become the norm. Faster
hardware will allow us to explore deeper nets and larger data
sets.

ARs were found by a C++ program, with 5000 lines of
source code with no special data mining libraries. DNNs
were computed by a Python program with approximately 500
lines. The main Python libraries used were: Keras, TensorFlow,
Scikit-learn, Pandas, and NumPy.

B. Medical Data Set

We should emphasize it is difficult to get access to medical
data due to many security and privacy regulations. The data set
explained below was shared by a US hospital, specialized in
cardiology and radiology. We believe our findings hold for
a other medical data sets for heart diease, but we cannot
claim the challenges will be the same for other ailments.
The data set used to compare the two predictive techniques
contained records for cardiovascular disease. This data set
was multimodal, containing both alphanumeric attributes and
heart imaging data. The data set size was n = 655 and
p = 25. Four additional “target” attributes were created by
data scientists using data from the raw data set (details below).
Alphanumeric attributes include risk factors (age, cholesterol,
sex, hypertension, diabetes, hyperloipodemia, and smoking
habits), historical information (family history of heart disease,
claudication or pain caused by reduced blood flow, previous
angina or chest pain caused by reduced blood flow to the
heart, previous stroke, and previous cardiac surgery). Imaging
attributes included a heart image divided into 9 regions (AL,
AS, SA, SI, IS, IL, LI, LA, AP), and carotid artery stenosis
in 4 arteries (LM, LAD, LCX, RCA). Severe disease of each
artery was created based on stenosis ( ≥ 50% for LM, ≥70%
for all other arteries). The continuous variables used were:
age, LM, LAD, LCX, RCA, AL, AS, SA, SI, IS, IL, LI,
LA, AP, and cholesterol. The binary variables used were:
sex, hypertension, diabetes, hyperloipodemia, family history
of heart disease, smoker, claudication (stress from exercise),
previous angina, previous stroke, and previous heart surgery.
As previously mentioned, numeric variables are necessary for
the neural network. Therefore, categorical variables need to
be transformed into binary variables. Originally, the binary
variables were ”m” or ”f” for sex and ”y” or ”n” for all
the others. Slight modifications were necessary for the neural
network input. The ”sex” attribute was transformed to the male
attribute, 1 for males and 0 for females. Remaining discrete
attributes were transformed from 1 for “y” and 0 for “n”.

We created binary variables for the neural network to train
and test on. These variables were based on the discretized
values of the arteries (LM, LAD,LCX, RCA). Each artery
became a target attribute for severe disease Y/N, defined as
≥ 70% for LAD, LCX, and RCA and ≥ 50% for LM, with



1 if severe disease is present and 0 otherwise. Two additional
changes were made to the patient data: missing data data
values were replaced (mean for numeric, mode for categor-
ical) and heart region image values were rescaled to prevent
giving more importance to image data ([-1,1] was rescaled
to [0,1]). The medical data set had a significant fraction of
missing values. Missing patient data were replaced (imputed)
as follows. For binary variables (smoking, previous cardiac
surgery, and so on) the mode was taken for each sex. For
numeric variables (cholesterol, age, or heart region images)
the average was taken for each sex. Image data required a
more complicated process. Originally, the data ranged from
-1 to 1 for heart region images. Regions with no defect were
labeled from -1 to 0.2. However, no ranges between -1 and 0
were ever used. To prevent the neural network from assigning
lower weights to the images because of the large difference in
value, the -1 images were replaced with 0. All data was then
scaled using standard normalization to properly distribute the
potential predictive power of each attribute.

C. Input Parameters

Parameter Settings: Association Rules

We consider the following parameter categories: binning
cutoffs, thresholds (support, confidence) and pattern search
constraints. The first step was to bin stensosis attributes into
separate ranges for healthy and unhealthy patients. The four
major arteries (LM, LAD, LCX, and RCA) were divided into
two ranges, no disease or severe disease. Typically, arteries
are considered healthy if stenosis is under 50%, moderate
disease if stenosis is between 50% and 70%, and severe if
greater than 70%. The exception is LM, which is healthy
under 30%, moderate between 30% and 50%, and severe
above 50%. These cutoff points come from popular cardiology
practices. For these experiments, only severe disease cutoffs
were considered.

The nine heart region images (AL, IL, IS, AS, SI, SA, LI,
LA, AP) were divided into two categories. Healthy regions
with no defect ranged from 0 to 0.2. Regions with defects were
grouped as ≥ 0.2. Cholesterol was cutoff at three different
values. Between 0 and 200 was considered healthy, between
200 and 250 was considered warning, and over 250 was
considered bad. We grouped patients into three different age
ranges: 0-40 (young), 40-60 (adult), and 60-100 (old).

Based on the opinion of doctors and clinicians, minimum
confidence was set at 70%. This number is based on balancing
identifying sick and healthy patients. Minimum support was
ψ = 0.02. Minimum confidence was α = 0.70. Finally, Lift
minimum = 1. Rules that applied to approximately fewer than
33 patients in the data set (minimum support, ψ = 2%) were
filtered out. Based on medical opinion, confidence, α, was set
to 70%. Medically speaking, rules whose confidence is below
70% are not useful [21]. Minimum lift was set to 1.0.

In an effort to reduce the number of association rules gener-
ated the following constraints were applied. We increased the
size of the antecedent from 4 items (in previous experiments),
to 6 items. Rules with more items would have higher predictive

accuracy, but they would be too specific. The heart arteries
were restricted to appear only in the consequent of the rule.
All other attributes were set to only appear in the antecedent.
Maximum run time for association rules was set to thirty
minutes.

Results: Discovered Predictive Association Rules

Without search constraints the association rule discovery
problem becomes intractable [21], reaching one million item-
sets below 1% support (≈ 220) and the number of derived
rules is an order of magnitude larger [22]. In other words, the
medical data set is small, but the number of patterns is large,
indeed being big data. With the aforementioned constraints
applied, we were left with 2,634 association rules. Of these
rules, 2,549 were for LAD, 3 for LCX, and 82 for RCA. Values
for minimum, maximum, mean, and standard deviation are
located in tables below.

The maximum support for a rule was only 13% of the
population of the data set. Some of the most statistically
interesting rules are included in the chart below. At first glance,
the distribution of rules stands out. A vast majority of the
rules are for LAD, 96.77% of all rules. No rules for LM were
discovered. This is likely due to a small number of patients in
the data set with severe disease of LM. LCX had only three
rules; all of which were only at a support level of 2%. Finally,
RCA had 82 rules discovered.

Table IV shows medically significant rules, validated by a
cardiologist [21]. Interestingly, several rules had a confidence
value of 100% with 2-3% support. This means that these rules
applied to each patient who had the items in the antecedent
present. Although support is low, ranging from approximately
13 and 20 people, it is still significant to find a rule that applies
to each affected person. Another interesting finding is that
each rule had at least one of the nine heart region images
in the antecedent. Previous research had grouped all images
together in an effort to reduce complexity and run time. Now
that we have included each image as its own attribute we can
get a more accurate picture of which regions of the heart are
impacting heart disease. Many rules had several heart images,
but fewer had several of our other attributes. The non-image
attributes help contribute to a clearer picture of who is likely at
risk. For example, one rule with several non-image attributes
was age between 60 and 100, defective SI region of the heart,
male, hyperloipodemia, and smokers indicates RCA between
70 and 100, with 2% support and 88% confidence.

Out of potentially millions of rules search constraints fil-
tered them down to a few thousand. Of the 2,634 rules, 1,851
of them had between 2% and 4% support. This means roughly
70% of rules discovered apply to approximately 13 and 26
people. With support as low as this it is a difficult to apply
these findings to the population at large. Another observation
on support is its relationship with confidence. As support goes
up confidence goes down. Therefore, rules that have very high
confidence were only found on a small percentage of the data
set.



TABLE III: Attribute definitions: numeric, categorical and image.

Abbreviation Definition Abbreviation Definition Abbreviation Definition Abbreviation Definition
Age Patient Age SA Septo-Anterior HTA Hypertension PSTROKE Previous Stroke
LM Left Main SI Septo-Inferior DIAB Diabetes PCARSUR Previous heart surgery
LAD Left Anterior Descending IS Infero-Septal HYPLPD Hyperlipidemia CHOL Cholesterol
LCX Left Circumflex IL Infero-Lateral FHCAD Family History of Heart Disease
RCA Right Coronary LI Latero-Inferior SMOKE Smokes
AL Antero-Lateral AP Apical CLAUDI Claudication
AS Antero-Septal Sex Sex PANGIO Previous angina

TABLE IV: Medically significant rules

Antecedent Consequent Support Confidence Lift
{0.2<=SA<1.1,0.2<=LI<1.1,200<=CHOL<250} {70<=LAD<100} 0.03 1.00 3.2
{0.2<=AS<1.1,0.2<=IL<1.1,0.2<=AP<1.1,SEX=F} {70<=LAD<100} 0.03 1.00 3.2
{0.2<=SA<1.1,0.2<=LI<1.1,SEX=M,200<=CHOL<250} {70<=LAD<100} 0.02 1.00 3.2
{0.2<=AS<1.1,0.2<=IL<1.1,0.2<=AP<1.1,SEX=F,PSTROKE=y} {70<=LAD<100} 0.02 1.00 3.2
{0.2<=AS<1.1,0.2<=AP<1.1} {70<=LAD<100} 0.13 0.72 2.3
{60<=AGE<100,0.2<=AS<1.1} {70<=LAD<100} 0.11 0.70 2.2
{0.2<=IL<1.1,0.2<=LI<1.1,HYPLPD=y,200<=CHOL<250} {70<=LCX<100} 0.02 0.78 2.9
{40<=AGE<60,0.2<=IL<1.1,0.2<=LI<1.1,DIAB=y} {70<=LCX<100} 0.02 0.72 2.7
{60<=AGE<100,0.2<=IL<1.1,0.2<=LI<1.1,HYPLPD=y} {70<=RCA<100} 0.08 0.70 2.2
{60<=AGE<100,0.2<=IL<1.1,DIAB=y,HYPLPD=y} {70<=RCA<100} 0.02 0.89 2.8
{60<=AGE<100,0.2<=SI<1.1,SEX=M,HYPLPD=y,SMOKE=y} {70<=RCA<100} 0.02 0.88 2.8

TABLE V: Statistics on support values.

Whole Set LAD LCX RCA
Min 0.02 0.02 0.02 0.02
Max 0.13 0.13 0.02 0.08
Mean 0.039 0.039 0.02 0.028
Std 0.017 0.017 0.00 0.013

TABLE VI: Statistics on confidence values.

Whole Set LAD LCX RCA
Min 0.70 0.70 0.72 0.70
Max 1.00 1.00 0.78 0.89
Mean 0.7779 0.779 0.743 0.742
Std 0.0558 0.0557 0.035 0.044

Parameter Settings: Deep Neural Networks

Many iterations of experimentation occurred in an effort
to find the model that had the highest predictive capabilities.
In order to accomplish this, hyper parameters for the neural
network were changed for each experimental iteration (results
presented in the chart below). Accuracy is most affected by the
number of hidden layers of the neural network and the number
of neurons in each respective layer. The types of activation
functions were varied as well. Popular activation functions
that were tested were: rectified linear units (ReLU), hyperbolic
tangent (tanh), and Leaky ReLU, defined in section 2.3. Max-
imum run time for neural networks was set to thirty minutes
(stopped). The main constraint from the data set applied to
neural networks is that the four arteries are not included in
the data set, and the transformed binary artery disease values
became the target variables. We also attempted to use Bayesian
Optimization [16] to select which hyperparameters perform the
best, but results were not encouraging (accuracy went down)
and running time increased to hours; this is an issue for future
research.

Results: Deep Neural Networks

As a correctness and accuracy check, we computed classic
machine learning algorithms on the data to ensure better than
chance predictions, and that pursuing the models with deep
neural networks was the correct choice. Logistic regression
and support vector machines were applied to the data (trans-
formed from raw data for use by the neural network). Results
with prediction accuracies are included in the chart below;
as well as an example from a deep neural network. Default
parameters were used for both logistic regression and support
vector machines.

Next, we conducted experiments with various neural net-
work toplogies. The next paragraph describes why certain
network choices were made. Each item in the square brackets
represents a layer of the network. The number is how many
neurons are in that layer. The type of activation function is
next to that.

The best results were obtained from a deep neural net-
work with four layers of 50 neurons per layer, an activation
LeakyReLU function and dropout of 0.5. It is worth noting
that the artery LM had higher prediction values than the



TABLE VII: Lift Values

Whole Set LAD LCX RCA
Min 2.2 2.2 2.7 2.2
Max 3.2 3.2 2.9 2.8
Mean 2.4866 2.4899 2.7667 2.3732
Std 0.1820 0.1818 0.1155 0.1441

TABLE VIII: Sanity check: comparing DNNs with other ML models.

Artery Logistic Regression SVM DNN
LAD 71.8 74.8 77.9
LCX 77.1 77.9 79.4
RCA 67.2 67.2 71.0
LM 93.1 94.7 93.1

TABLE IX: Accuracy of DNNs tuning hyper-parameters.

Description of Network LAD LCX RCA LM
[50,50,50,50] LeakyReLU 78.8 75.6 71.4 92.2
[5,5,5,5] ReLU 75.6 72.8 69.1 92.2
[50,50,50,50,50] ReLU 77.9 77.4 71.4 92.2
[20,20,20,20] ReLU 75.1 77.4 72.8 92.2
[50,50,50,50,5] ReLU 78.3 75.1 71.9 92.2
[50,50,50,50] tanh 77.0 77.4 71.4 92.2
[50,50,50,50] linear 76.1 76.5 71.9 92.2
[50,50,50,50] LeakyReLU 78.8 77.9 67.9 93.1
[50,50,50,50] LeakyReLU, dropout 0.5 77.9 79.4 71.0 93.1

other arteries, as expected. From a medical standpoint, LM
is the base trunk from which the other arteries branch out of.
Because of this anatomy, severe disease in LM is much more
rare than disease in the other three arteries. Therefore, our data
set lacks positive (sick) LM instances. In other words, the high
predictive values from the neural network is due to predicting
no disease in LM, ignoring those few patients who have LM
stenosis.

We tried Bayesian Optimization to search for the best hyper-
parameters. Bayesian Optimization was applied on two differ-
ent networks as a trail with fifty iterations. Results showed
lower accuracy than deep neural networks computed with
default values. In addition, the run time was approximately
between 40 and 75 minutes. We must mention 50 iterations is
considered low for Bayesian Optimization, which may require
thousands of iterations. In short, Bayesian optmization is a
research issue for future work.

Comparing ARs and DNNs

We gave each technique its best opportunity. In comparing
them, it is difficult to say that either is clearly superior.
Some instances show association rules to have higher accuracy
(confidence) than neural networks. However, rules with higher
confidence have lower support. This relationship makes it
difficult to generalize rules to the population at large. This is
one of the main issues with association rules, the relationship
between support and confidence: as one goes up the other
goes down. From a medical perspective, discovering rules and
having high predictability of LCX, was most surprising. Medi-
cally, it has been difficult to predict. Expanding on the medical
standpoint, RCA and LAD were the arteries we expected to
learn the most about. However, RCA had the lowest accuracy

in the neural network, 71%. The mean confidence for rules
containing RCA was 74.17%. The maximum confidence was
89%, but again it reached the minimum support of 2%. In
this case, it is less clear which technique is better overall.
However, neural networks do have the advantage of being a
widely applicable and generalizable predictive model. From a
time peformance perspective, as can be seen in Table X, ARs
are 4X faster than DNNs because all rules involving the four
arteries can be obtained on a single run, whereas a separate
DNN is needed for each artery. Nevertheless, both techniques
take several minutes.

TABLE X: Running times in minutes and seconds.

DNNs ARs
LAD LCX RCA LM
6m 59s 7m 6s 7m 10s 7m 6s 4m 12s

V. RELATED WORK

This section reviews closely related work on association
rules and deep neural networks in the medical field.

Data mining on medical data presents unique challenges
[26]. Potential issues include fragmented data collection,
stricter privacy concerns, rich attribute types (image, numeric,
categorical, missing information), complex hierarchies behind
attributes and an already rich and complex knowledge base.
Research that discusses how computer programs can be used
to diagnose heart disease [10], [19]. Association rules have
been used to help infection detection and monitoring [5], [6],
to understand what drugs are co-prescribed with antacids [7],
to discover frequent patterns in gene data [3], to understand
interaction between proteins [23] and to detect common risk
factors in pediatric diseases [9]. [13] optimizes an algorithm



that incorporates search constraints into the association rule
mining process. In [27], algorithms are proposed to include
constraints that exclude or include certain items in the associ-
ation rule, like we do.

Neural networks have been successfully applied in many
medical and healthcare problems [2], [14]. Association rules
and neural networks are used in tandem on a medical data set
in [17], but this work does not compare their strengths and
weaknesses for disease prediction.

VI. CONCLUSIONS

We compared predictive accuracy and speed between as-
sociation rules and deep neural networks in a difficult multi-
target predictive problem: predicting heart disease in the four
arteries of the heart. For our experiments on a medical data
set, results indicated a distinct advantage of DNNs over ARs
in some cases and less clear results in others. Overall, basic
DNNs beat ARs, but by a small margin, due to consistently
higher predictive scores and a model generalizable on the
entire data set. On the other hand, association rules found
accurate predictive rules for LAD and RCA arteries with very
high predictive accuracy (e.g. confidence=0.89, 1.0 impossible
to reach with a DNN), but only on small subsets within
the data set. In contrast, LM and LCX arteries had higher
predictive accuracy in the neural network than in association
rules. Furthermore, only three association rules were found
with LCX. The deep neural network produced a model able to
predict LCX with 79% accuracy, clearly preferable. RCA had
a peak prediction accuracy of 71%. While not as high as ARs
confidence, it still has the benefit of being generalizable to the
entire data set. Unfortunately, higher accuracy in DNNs could
not be obtained for several reasons. Perhaps the most important
factor is the small data set size, which is common with medical
data (especially if it comes from a single hospital, patient
records are confidential, difficult to share between hospitals).
A second reason is that we did not use deeper DNNs or CNNs.
In contrast, with big data, large data sets have the luxury of
being able to drop incomplete samples and still have a large
training and testing set. Another machine learning issue with
data sets is that DNNs tend to perform better on a balanced
data set, which is hardly the case with patients having diverse
heart ailments. We double checked our DNNs were better than
other machine learning models (i.e. a sanity check): DNNs
were indeed more accurate than SVMs and logistic regression,
but by a small margin. In short, ARs and DNNs complement
each other.

Our work opens several research issues. For the medical data
set the predictive accuracy of deep neural networks was not as
outstanding as it happens with benchmark image classification
problems (e.g. CIFAR). We want to understand in more depth
why that happens. Medical images are noisier and have less
well defined patterns than images in other domains. We plan
to use Convolutional Neural Networks (CNNs), which can
identify hidden patterns on images. To get more accurate
models based on conditional probabilities, it is necessary to
find subsets from the data set, where the deep neural network

fit is better. We have shown ARs can complement DNNs.
Thus we believe association rules can guide and explain the
deep neural network, given their simplicity and exhaustive
search capabilities. On the other hand, deep neural networks
can enhance association rules, given their ability to capture
non-linear behavior. Finally, we plan to apply Bayesian Op-
timization with a large number of iterations to automatically
determine DNN best parameter settings.
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[24] Fabrı́cio José Pontes, GF Amorim, Pedro Paulo Balestrassi, AP Paiva,
and João Roberto Ferreira. Design of experiments and focused grid
search for neural network parameter optimization. Neurocomputing,
186:22–34, 2016.

[25] Sebastian Raschka and Vahid Mirjalili. Python machine learning:
Machine learning and deep learning with python. Scikit-Learn, and
TensorFlow. Second edition ed, 2017.

[26] J.F. Roddick, P. Fule, and W.J. Graco. Exploratory medical knowledge
discovery: Experiences and issues. SIGKDD Explorations, 5(1):94–99,
2003.

[27] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In Proc. ACM KDD Conference, pages 67–73, 1997.

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.


