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Abstract—Given the large and growing volume of big data and
frequent use of complex analytical queries, understanding energy
efficiency of query processing has become a critical research issue,
as highlighted by database systems papers in the last few years.
Common software solutions mainly consider IO cost models to
estimate energy consumption when executing queries. On the
other hand, current hardware solutions benefit from advances
in the development of green components and their associated
tuning techniques, especially dynamic voltage and frequency
scaling (DVFS), which can balance the performance and power
consumption of multicore CPUs. Unfortunately, to the best of
our knowledge, there is an absence of solutions mixing both
(hardware and software). Heeding this gap, we propose a novel
predictive model to measure and predict energy consumption of
analytical queries when using multi-core processors and different
frequency configurations. We first experimentally illustrate the
surprising impact of CPU frequency and the number of processor
cores on execution time, power and energy consumption. Second,
we introduce an extended predictive model that enriches a well-
known machine learning cost model with our new angle, the
frequency scaling in multi-core environment. Specifically, by
using Support Vector Regression and Random Forest Regression,
we compute the energy coefficients of an accurate regression
model for energy prediction. Experiments with benchmark data
sets TPC-H and TPC-DS evaluate our proposed framework
in terms of energy consumption reduction, showing promising
results.

Index Terms—Query Optimization, Energy Efficiency, Big
Data Warehouses, Green Computing, Multi-core CPU, Frequency
Scaling.

I. INTRODUCTION

One of the ways to combat climate change and reduce
emissions of carbon dioxide CO2 is to study the energy
efficiency (EE) of devices used in our daily life. Recently, EE
has become an important aspect that attracts the attention of
researchers in different disciplines [1]–[5]. The data industry
is one of the sectors with high energy consumption [6].
Therefore, several recommendations and directives have been
launched by organizations and governments to regulate servers
and data storage products to improve their energy efficiency
[7].

Power and cooling costs are some of the highest costs
in data storage and processing products today, which makes
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improvement in EE crucial [8], [9]. For ten years, the academia
and industry communities propose eco-design solutions and
services for storing and processing massive amounts of data
to meet the challenges of the ecological and energy transition.
These solutions are dedicated to traditional Database Manage-
ment Systems (DBMSs) and data centers [5], [10]–[12]. The
major solutions and services of energy efficiency in database
systems are compiled in this recent survey [6].

Note that the most natural place to add EE awareness to a
data storage and processing product is the query optimizer [8].
By examining the literature, the existing studies on EE query
processing are classified into two main classes including [6],
[11] (i) hardware approaches and (ii) software approaches. At
the hardware level, many efforts have been undertaken. They
are declined into two main directions: (a) the development
of new energy-efficient hardware and (b) the proposal of
techniques to calibrate the usage of energy of significant
hardware such as central processing unit (CPU). The latter
consumes more than 50 percent of the power required to run
a system such as a DBMS [13], [14]. Dynamic Voltage and
Frequency Scaling (DVFS) [15] is one of the most popular
techniques since it aims at adjusting processor frequencies
[8]. DVFS plays a crucial role in adjusting the performance
and power consumption of different kinds of systems (mobile
systems, desktops,and servers). It is supported by many types
of processors (e.g., AMD PowerNow and Intel’s SpeedStep).
DVFS allows a voltage and frequency, and hence energy
consumption of processors, to be adjusted at run time using
operating system modules called frequency governors [16],
[17].

In software approaches, several initiatives and solutions
have been proposed and implemented in DBMSs. Analytical
cost models represent the common thread of these approaches.
Their role is to predict the energy consumption of queries
based on the main resources consumed during query pro-
cessing. The three main resources are considered by these
existing cost models: CPU, IO (inputs-outputs), and RAM.
By analyzing these cost models, we identify that there is
a consensus of the existing analytical cost models in their
definition to capture energy consumption when executing a
given analytical query in Q. This consensus is defined as



follows:

Power(Q) : α · IO + β · CPU + γ ·RAM (1)

where α, β, γ are power factors that are determined using
machine learning (ML) algorithms, whereas IO, CPU, and
RAM metrics are provided by the query optimizer of the
DBMS hosting the target database.

While hardware solutions dominate the literature of EE of
data processing systems, they are expensive and hence are only
cost-effective when widely deployed. Software solutions may
be an interesting alternative to reduce energy consumption by
combining them with existing hardware techniques such as
dynamic frequency scaling (DFS). By deeply analyzing these
existing research efforts, we realize the absence of solutions
that mix hardware and software aspects, except the work pro-
posed in [8] that proposed dynamic fine-grained scheduling of
analytical queries in-memory databases but without providing
adequate analytical cost models.

In this work, we propose a solution hybridizing the two
most popular techniques from hardware (DFS) and software
(cost models) in order to improve the prediction accuracy of
the existing energy cost models and augment their genericity
to cover different processor configurations. To the best of our
knowledge, this work is the first that performs this hybridiza-
tion.

Our main contributions are:

• We provide an extensive study to evaluate the effect of
varying the processor frequency and the number of its
cores on energy consumption when executing a workload
of queries;

• We propose an accurate and portable cost model to pre-
dict the energy consumption of queries when using multi-
core processors and different frequency configurations.
The energy coefficients of our model are determined
using two machine learning techniques (Support Vector
Regression and Random Forest Regression);

• We conduct intensive experiments to validate our pro-
posal using the TPC-H and TPC-DS benchmarks and
PostgreSQL DBMS and a comparison of our findings
with two major existing software solutions.

Our paper is organized as follows: Section II describes our
motivating example. In section III, we present the fundamental
concepts to elaborate our solution. Section IV covers our
related works. Section V describes our pipeline-based energy
model in detail. Section VI presents our experimental eval-
uation and a comparison with the state-of-the-art solutions.
Finally, section VII concludes our work and gives some
perspectives.

II. MOTIVATING EXAMPLE

In this section, we illustrate through an example, the impact
of processor configurations on three main costs: (i) query
processing, (ii) power, and (iii) energy consumption of the
entire server during the query execution.

To do so, we consider six analytical queries
{Q1, Q3, Q4, Q5, Q6, Q7} issued from the TPC-H1

benchmark running on a data warehouse with a scale
factor of 50 GB2. PostgreSQL DBMS is used to host this
warehouse. The above queries contain respectively: 1, 2 joins
operations that are CPU and IO intensive. These queries are
then executed by varying the number of processors and their
frequencies. The frequency value of the processor of our
server ranges from 800 MHz to 3.4 GHz. From this interval,
we select three different values to generate three frequency
classes: (i) Small Frequency (SF) of 800 MHz, (ii) Medium
Frequency (MF) of 2.3 GHz, and Large Frequency (LF) of
3.4 GHz. For each value, we vary the number of processor
cores (1, 2, and 4).

As a consequence, nine different configurations are consid-
ered: [SF(1 CPU), SF(2 CPUs), SF(4 CPUs)], [MF(1 CPU),
MF(2 CPUs), MF(4 CPUs)], and so on. We consider a hypoth-
esis that the same frequency is assigned to all processor cores.
The results of our experiments are summarized as follows:

- Impact of processor configuration on query execution
cost: In this experiment, we compute the execution cost
of our queries under nine different configurations. The
obtained results are described in Fig. 1 that show a naive
finding stipulating that when the number of processors
and their frequency values are high then query execution
saving is also high. Consequently, the configuration LF(4
CPUs) is the best one for this requirement.

- Impact of processor configuration on power con-
sumption cost: The power consumption cost is measured
for each query executed in different configurations. The
results in Fig. 2 are the opposite of the above ones
(Fig. 1), in the sense that when the frequency and/or the
number of processors are low, the reduction of power
consumption is guaranteed (the case of the configuration
SF(1 CPU)). We note that the best scenario for the query
execution time criteria contradicts the one dedicated to
the power consumption requirement.

- Impact of processor configuration on energy execution
cost: Similarly, Fig. 3 gives the energy consumption cost
of our queries under nine configurations. We observe that
there is any configuration that is better for almost cases.
Note that the energy consumption cost of a given query
is equal to its execution time cost multiplied by its power
cost. Therefore, to ensure energy consumption reduction,
the best trade-off between execution time cost and power
consumption cost has to be found.

To summarize, there is no better scenario for most configu-
rations. This is due to the requirements of queries in terms
of CPU, IO, and memory. Another important point that we
got from these experiments concerns the crucial role of the
number of processors and their frequencies on query energy
consumption costs. Therefore, their integration into analytical
energy cost models is necessary.

1http://www.tpc.org/tpch/
2Giga Byte
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Fig. 1. Execution time of six TPC-H queries under nine different processor configurations.
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Fig. 2. Power Consumption of six TPC-H queries under nine different processor configurations.
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Fig. 3. Energy consumption of six TPC-H queries under nine different processor configurations.

III. BACKGROUND

This section introduces the key concepts related to energy
and query processing in DBMSs.

Definition 1: Power represents the rate of doing work or
the energy amount per unit of time. It is measured in watts
(W). Formally, the power can be defined as follows:

P =
J

T
(2)

where P , T , and J represent respectively, a power, a period
of time, and the total work performed in that period of time.

Definition 2: Energy is defined as a measure of the ability to
do work. The joule is its measurement unit. Formally, energy

is defined as follows:

E = P · T (3)

where P , T , and E represent respectively, a power, a period
of time, and the energy.
Usually, in information technology context, the energy is the
electrical energy consumed by the computing system over
time, whereas the power is the rate of electrical energy
consumed per a second [18]. The consumption of the electrical
power of a given system can be decomposed into two parts:
(1) Baseline Power (Pstatic) that represents the power required
to operate the fans, processor, memory, IO devices, and other
components of the motherboard in an idle state. (2) Active



Power (Pdynamic) is the power consumed when executing a
workload. The total electrical power (Ptotal) consumed by a
given computing system is the summation of the static power
and the dynamic power.

Ptotal = Pstatic + Pdynamic (4)

In this paper, we consider the average power consumed during
the query execution.

Definition 3: Energy efficiency (EE) is the use of the same
power to provide better performance or the same service with
less energy [14]. It is defined as follows:

EE =
WorkDone

Energy
=

WorkDone

Power · Time

=
Performance

Power

(5)

A. Query Processing in a DBMS

Processing a given SQL like query passes through four
main steps: (i) query code parsing, (ii) transformation, (iii)
planning and optimization, and (iv) execution. Query code
parsing: generates a parse tree from a plain text SQL state-
ment after checking its syntax and performing a semantic
analysis. Transformation: transforms the parse tree to a
logical plan (algebraic plan) using algebraic rules. Planning
and optimization: generates several query execution plans
that can be executed from the logical query plan. Next, the
planner uses a cost model to estimate the cost of each query
plan and selects the most efficient one. Execution: executes
the query by accessing the tables and access methods in the
order created by the selected execution plan.

B. Pipeline Segmentation

The execution of a generated query plan is performed
using a pipeline strategy that segments the plan into a set
of pipelines based on blocking and non-blocking relational
operators [19], [20]. An operator is blocking if it cannot
produce any output tuple without reading all its inputs (e.g.,
sort operator) [19]. Thus, a pipeline consists of a set of
concurrently running operators. An example of segmentation
of a query execution plan into pipelines is illustrated in Fig.
4, where we can see that the query plan is segmented into 4
pipelines {PL1, PL2, PL3, PL4}. These pipelines are exe-
cuted in sequential order: PL1 −→ PL2 −→ PL3 −→ PL4.

The average power consumption of a given query
Q whose execution plan is composed of n pipelines
{PL1, PL2, . . . , PLn}, is defined as follows [12]:

Power(Q) =

n∑
i=1

Power(PLi) · Time(PLi)

Time(Q)
(6)

where Power(PLi), Time(PLi), and Time(Q) represent respec-
tively, the average power of the pipeline PLi, the execution
time of PLi, the time required to execute Q.

IV. RELATED WORK

This section discusses the main studies devoted to the
integration of energy consumption in query processors. These
studies may be divided into two main categories: (i) hardware-
oriented approaches and (ii) software-oriented approaches.

A. Hardware-oriented Approaches

Several research efforts have been devoted to reducing the
energy consumption of the central processing unit (CPU) of
storage systems hosting data. Hardware manufacturers are
developing EE components and multi-core technologies that
enable the processing of higher loads. Modern CPUs have
energy-management features defined by the Advanced Config-
uration and Power Interface (ACPI) [21] that reduces energy
consumption by dynamically adjusting the performance state
(P-state) based on utilization. A widely adopted technique for
reducing the energy consumption of server processors is DVFS
(dynamic voltage and frequency scaling). DVFS is typically
controlled by frequency governors in the operating system
[16], [17]. Based on the DVFS technique, the authors in
[22] proposed the Predictive Energy Saving Online Scheduling
algorithm in the context of Web search engines. To process a
query, PESOS selects the most appropriate CPU frequency that
reduces the CPU energy consumption of a query-processing
node (i.e., a server dedicated to processing user queries) while
respecting tail latency requirements imposed on queries. The
work of [23] uses the frequency and/or voltage mechanism
(PVC, DVFS) to calibrate energy consumption to satisfy the
query performance requirement. To save energy, they execute
queries at lower voltage and frequency based on the ability of
modern processors, the throughput target, and the workload
characteristics (e.g., CPU or I/O intensive queries). In [24],
the authors proposed an application that dynamically regulates
the clock speed based on response time in order to reduce the
energy consumption of OLTP (online transaction processing)
in a multi-core environment. This application is able to save
7.6% of total energy consumption when executing TPC-
C benchmark queries3. In [25], an experimental study was
conducted to evaluate the impact of reducing the CPU clock
frequency on the energy consumption of common DBMS
operators (scans, simple aggregations, and joins). They found
that reducing processor frequency significantly improves the
EE of main-memory database systems. The work of [17]
proposed a frequency selection algorithm called POLARIS
(POwer and Latency Aware Request Scheduling) that aims
to reduce power consumption while satisfying the required la-
tency of DBMS transactions. This technique controls database
transaction scheduling and directly manages the processor
frequency based on the execution time of all transactions,
including waiting and ongoing transactions, predicted by a
transaction execution time model.

3https://www.tpc.org/tpcc/



Fig. 4. An example of segmenting a query plan into pipelines.

B. Software-Oriented Approaches

Several studies focusing on software aspects have been pro-
posed to integrate the energy dimension in query processors.
These efforts mainly concern the development of analytical
cost models to characterize the energy consumption of a query
or a workload. The main particularity of these models is that
they are built on the top of DBMS query optimizers, in the
sense that they pick the values of the different costs computed
by query optimizers such as CPU, IO, and Memory. In [26],
[27], the authors proposed a cost model to predict energy
consumption using the response time of a query delivered
by PostgreSQL DBMS. This model is dedicated to executing
a single query executed without parallelism (inter-query). A
model was defined for each basic DBMS operation that esti-
mates its power according to the number of tuples processed
by the processor and the number of pages read/written from
the disk. The parameter values of this model have been
obtained thanks to a simple linear regression technique. The
authors in [28] proposed a pipeline-based model to estimate
the peak power consumption of an isolated query using a
step-wise regression technique. This model is then used to
select the query plan with the lowest peak power. It is based
on a mathematical function that takes as input the rates and
sizes of the data flowing through the pipeline operators and
gives an estimate of the peak power consumption. Using the
linear regression technique, the authors in [29] proposed an
operator-based model to predict the energy consumption of
some DBMS operators (select, project, and join). The proposed
model is used to choose energy-aware query execution plans
while maintaining traditional performance constraints. In [30],
the authors proposed a pipeline-based cost model to predict the
energy consumption of an isolated query using the polynomial
regression technique (non-linear regression). The model is
constructed based on the CPU cost and I/O cost of each
pipeline. The work in [5] studied the impact of the main mem-
ory size and the three main cache structures (Database Buffer
Cache, Dictionary Cache, and Library Cache) on various query
execution costs (response time, power, and energy). Then, we
build a linear cost model that takes the memory cost into

account in addition to CPU cost and I/O cost, to predict energy
consumption for queries in a sequential execution mode and
at operator-level modeling. The values of different parameters
of this model are obtained by a simple linear regression
technique. In [11], [31], the authors studied the effect of
the parallel execution mode on the energy consumption of
queries. As an extension of the sequential model in [30], they
proposed an energy-aware cost model that uses polynomial
regression technique and artificial neural networks to set the
values of different parameters. The obtained model showed
an improvement of the energy estimation in a multi-core
environment.

To summarize the above studies, we figure out the existence
of a gap between hardware and software-oriented approaches,
although they can be easily combined. To bridge the gap,
we propose in this paper, an example of the hybridization
of hardware and software solutions that enriches the most
popular software solution concerning the analytical cost model
by hardware DFS technique. One of the main characteristics
of this hybridization is that it does not challenge existing solu-
tions, but it assists designers and developers in considering the
DFS component when building energy consumption analytical
cost models.

V. ENERGY MODELING PROCESS

In this section, we describe our modeling approach based on
machine learning to predict the energy consumption of query
execution plans.

A. Overview of Modeling Process

Our framework DFSOFT to capture energy consumption
when executing a query is based on two phases: training and
prediction as shown in Fig. 5 and 6.

In the training phase, we build an energy cost model that
estimates the energy consumption of queries under different
processor configurations. This model is built on top of a
DBMS query optimizer. We consider a set of analytical queries
for this phase executed by the target DBMS in a sequential
way. The final execution plan of each query is produced by
the query optimizer in raw format. To get different pipelines



Fig. 5. Energy modeling process: training phase.

Fig. 6. Energy modeling process: prediction phase.

of this query, the plan is analyzed based on blocking and non-
blocking operators. This analysis also allows us to get various
data exploitable by our final model: (a) energy measurement of
different pipelines, (b) involved parameters, and (c) processor
frequency. This data is then stored in a repository. Once the
training phase is done, a preparation phase has to be performed
on the gathered data. This phase consists of cleaning and
normalizing our data by removing duplicate rows, outliers,
and rows that contain missing or incorrect values.

The prediction phase cares about the new arrival analytical
queries. When a query arrives, the following steps are exe-
cuted: (i) analyze the query execution plan to obtain its differ-
ent pipelines, (ii) extract the necessary parameters to perform
the estimation, and (iii) predict the energy consumption using
our final trained model.

B. Identification of Energy Sensitive Parameters

This identification of relevant parameters is made using
intensive experiments. They are conducted by executing a
workload of simple and complex queries in an isolated way on
serial and parallel modes by varying degrees of parallelism,
the scale factor of the TPC-H benchmark, and processor
frequency configurations. Based on the pipeline mechanism,
the execution query plans created by the query optimizer are
executed recursively by the executor component to retrieve
the set of required tuples. During the execution of pipeline
operators four different parameters are collected: (i) the set of
instructions executed by the processor. The cost associated
to this set represents the CPU cost (COSTCPU ), (ii) the
number of data blocks that are loaded from the disk to the
main memory. The cost related to this loading is denoted by
COSTIO, (iii) the manipulated main memory blocks. They are
associated to a main-memory cost (COSTRAM ), and (iv) the
number of CPU cores used to execute the CPU instructions.
This number corresponds to the degree of parallelism (NCPU ).
In this work, we focus on a single node with a multi-core

environment.
In addition to the above parameters, the frequency config-

uration (fCPU ) is also considered. It represents the processor
frequency used during the execution of the pipeline operators.
The frequency values lie in the interval [800 MHz, 3.4 GHz].

Thus, for a given query Q, whose execution plan is com-
posed of n pipelines noted {PL1, PL2, . . . , PLn}, let m
be the number of relational operators {OP1, OP2, . . . , OPm}
composing a pipeline PLi.

Formally, the power cost associated with the execution of a
pipeline PLi using a frequency setting fCPU is represented
by the following equation:

Power(PLi) = βCPU ·
m∑

k=1

COSTCPUk

⊕βIO ·
m∑

k=1

COSTIOk
⊕ βRAM ·

m∑
k=1

COSTRAMk

⊕βf · fCPU ⊕ βN ·NCPU

(7)

where βCPU , βIO, βRAM , βf and βN are the model coef-
ficients (i.e., unit power costs) for the pipelines. ⊕ represents
the relationship (linear, non-linear) between the parameters of
our model. The COSTCPUk

is the number of instructions
executed by the operator k per second, COSTIOk

is the
number of data blocks loaded from disk by the operator k per
second, COSTRAMk

is the number of data blocks retrieved
from the main memory by the operator k per second, and
NCPU is the number of CPU cores used to execute the pipeline
PLi.

The energy consumption Energy(Q) of the query Q is the
sum of the energy consumed by the pipelines composing this
query. Its represented by the following equation:

Energy(Q) =

n∑
i=1

Energy(PLi) (8)

Similarly to energy, the execution time Time(Q) of the query
Q is the sum of the execution time of the pipelines composing
this query. Its represented by the following equation:

Time(Q) =

n∑
i=1

Time(PLi) (9)

We can distinguish between two types of query execution
modes: (i) serial mode and (ii) parallel mode.

• Serial mode: where the degree of parallelism is 1
(NCPU = 1) which means that pipeline operators are
executed using just one processor.

• Parallel mode: the pipeline operators can be executed
using many processors (NCPU greater than or equal to
2).

In PostgreSQL DBMS (since release 10), parallelism is
enabled by default and is controlled by using a configuration
parameter called max parallel workers per gather4. This pa-
rameter is set to 2 by default.

4https://www.postgresql.org/docs/14/how-parallel-query-works.html



Our model parameters (COSTCPU , COSTIO,
COSTRAM , NCPU ) are extracted from the execution query
plans obtained using explain5 tool of PostgreSQL DBMS.
And for getting and changing the processor frequency
configuration, we used an Intel DVFS implementation called
EIST6 (Enhanced Intel SpeedStep Technology).

To estimate the values of our model coefficients in (7), we
used two machine learning techniques: The support Vector
Regression technique and the Random Forest Regression tech-
nique.

Support Vector Regression. It is a supervised learning
algorithm used in regression problems [32]. It supports both
linear and non-linear regressions. Among the possible training
parameters for Support Vector Regression, we find the kernel
(the kernel type to be used in the algorithm), gamma (the
kernel coefficient), C (the regularization parameter), and ep-
silon value (that determines the width of the tube (hyperplane)
within which no penalty is associated in the training loss
function with points predicted within a distance epsilon from
the actual value).

Random Forest Regression. It is an ensemble learning
method for regression [32]. This method operates by construct-
ing a multitude of decision trees (forest) at training time to
improve accurate prediction. It is fast to train and it produces
good predictions.

C. Training and Testing Datasets

To train and validate our energy cost model, we used
the TPC-H benchmark widely used for evaluating analytical
complex queries. It consists of eight tables (Part, Partsupp,
Region, Supplier, Customer, Lineitem, Nation, and Orders).

For the training set, we generated data at the following
scale factors: 10 GB, 30 GB, and 50 GB. Next, we created
a workload composed of seventy TPC-H queries divided into
two main categories: (i) CPU-intensive queries with operations
that exhaust the system processor and (ii) I/O-intensive queries
with operations that exhaust the hard disk. Our workload
contains queries with a single table scan and queries with
multiple joins with different predicates. It also includes sort-
ing/grouping conditions and simple and advanced aggregation
functions.

For each scale factor, we collected the query execution
plans of our queries and measured the energy consumed by
each of them using the power meter. For each query, we
repeated the execution processing by varying the number of
CPU cores (degree of parallelism) from 1 (serial mode) to
4 (parallel mode), and for each CPU frequency configuration
(3.4 GHz, 3 GHz, 2.7 GHz, 2.3 GHz, 1.9 GHz, 1.5 GHz,
1.2 GHz, 0.8 GHz). Note that before starting our experiments,
we disable unnecessary background tasks. We also empty the
operating system and PostgreSQL buffers before the execution
of each query. After collecting our training dataset, we use two
machine learning algorithms (SVR and RFR) to obtain the
values of our cost model parameters. After that, we consider

5https://www.postgresql.org/docs/14/using-explain.html
6https://en.wikipedia.org/wiki/SpeedStep

a dataset with 50 GB and the 22 TPC-H queries and 13 TPC-
DS7 queries (generated using QGEN8 tool) to validate and
measure the accuracy of our cost model. Once our model is
validated, energy prediction of new queries is obtained without
using the power meter.

VI. EXPERIMENTAL EVALUATION

In this section, we present and discuss the experimental en-
vironment of our study and the several experiments conducted
in order to evaluate the effectiveness of our energy cost model.

A. Experimental Setup

The main components of the system that we use as a server
to run our experiments are as follows: Dell Precision Tower
3620 with Dell 09WH54 motherboard, Intel Core i7-6700 CPU
@ 3.4GHz (1 CPU - 4 Cores - 8 Threads), 16 GB Dual
Channel DDR4 @ 2133MHz main memory, SSD Disk SM951
NVMe SAMSUNG 256GB. Our server has a Thermal Design
Power (TDP) of 65W and can adjust dynamically the CPU
frequency using the DVFS technique. A description of the
static and dynamic power of major components in our server
is provided in Table I. Our experimental environment consists
of a database server, a power meter, and a client machine
(monitor). The energy consumption measurement of the server
is done by using a power meter called Yocto-Watt9 (produced
by Yoctopuce) at a 1Hz frequency. The power meter is placed
between the electrical power source and the database server
and it is linked via a USB cable to the monitor machine for
data collection. In our server, the Operating System used is
Ubuntu 20.04 (kernel 20.04.4 LTS) and PostgreSQL (release
14.1) as an open-source row-store DBMS. The experimental
platform is shown in Fig. 7. We modified the query optimizer
in order to collect more details statistics in the query execution
plans.

TABLE I
STATIC AND DYNAMIC POWER CONSUMPTION OF THE MAJOR

COMPONENTS OF THE SERVER.

Component
Static
Power
(Watt)

Dynamic
Power
(Watt)

CPU: Intel Core i7-6700 CPU @ 3.4GHz 8.97 42.90
Memory: 16 GB DDR4 @ 2133MHz 2.50 4.68
SSD Disk SM951 NVMe SAMSUNG 256 GB 4.00 6.30

B. Values of Energy Cost Model Parameters

After several observations in which the chosen queries to
train our model are executed one after the others, we used
two Machine learning techniques (Support Vector Regression,
Random Forest Regression) using sklearn10 tool to determine
the values of the parameters for our model represented in (7).

7https://www.tpc.org/tpcds/
8https://github.com/electrum/tpch-dbgen
9https://www.yoctopuce.com/FR/products/yocto-watt
10https://scikit-learn.org/stable/



Fig. 7. The deployment environment of our experiments.

The model was trained on all the data collected from
the queries. Training parameters were found using the Grid-
SearchCV technique that applied an exhaustive search over the
specified parameter values for our model. The best value of
each parameter was selected from the following values:
Support Vector Regression (SVR) model: kernel (’rbf’, ’lin-
ear’), gamma (1, 0.1, 0.01, 0.001, 1e-4, 1e-7), C (10, 100, 150,
200), epsilon (0.1, 0.2, 0.3, 0.5). Random Forest Regression
(RFR) model: n estimators (100, 150, 281, 463, 645, 827,
1009, 1190, 1372, 1554, 1736, 1918, 2100), max features
(’auto’, ’sqrt’), max depth (None, 3, 5, 7, 10, 15, 20, 30, 40,
50, 60, 70, 80, 90, 100, 110), min samples split (2, 5, 10, 15,
20), min samples leaf (1, 2, 3, 4).

The other parameters are set to default values. Table II
shows the best values of training parameters selected after the
end of the training phase for the two models.

TABLE II
PARAMETERS VALUES OBTAINED AFTER THE TRAINING PHASE.

ML Model Training Parameters Values

RFR

n estimators 150
max features sqrt
max depth 10
min samples split 10
min samples leaf 1

SVR

kernel rbf
gamma 0.1
C 10
espsilon 0.5

C. Energy Cost Model Validation

In this section, we aim, through several experiments, to
validate the accuracy prediction of our energy cost model,
described in section V, using the standard queries provided
by the TPC-H and TPC-DS benchmarks. We execute the 22
TPC-H queries and 13 TPC-DS queries on a database with a
scale factor of 50 GB (SF=50). We measured the actual energy
consumed by the entire database server during the query
processing and compared it with the energy predicted using
our energy cost model. To evaluate the prediction accuracy
of our model, we used prediction error rate (PER) as our

error metric. The formula defining our error metric is as

follows: PER =
|ActualQ − PredictedQ|

ActualQ
, where ActualQ

denotes the real values of power measured by the power meter
and PredictedQ denotes the prediction values of our energy
model. We compared our energy cost model (DFSOFT) with
two other energy prediction approaches:
(1) Pipeline-based model (PBM): we implemented the
pipeline-based cost model proposed in [31]. This model has
three parameters that are the number of instructions executed
by the processor, the number of data blocks retrieved from
disk, and the number of data blocks retrieved from the main
memory. The machine learning technique used in this work is
Polynomial Regression.
(2) Operator-based model (OBM): We also implemented the
operator-based cost model proposed in [5]. This model has
three parameters that are the number of instructions executed
by the processor, the number of multiple read operations
retrieved from the hard disk, and the number of data blocks
retrieved from the main memory. The machine learning tech-
nique used in this work is multiple-linear regression (MLR).
Table III presents a comparison between our model and the
other two models in terms of parameters used to predict the
energy.

TABLE III
PARAMETERS OF OUR MODEL AND OTHER MODELS

Model
Parameters

Energy Cost Models
PBM OBM Our Model

CPU ✓ ✓ ✓
Disk ✓ ✓ ✓
RAM ✓ ✓ ✓
Frequency x x ✓
Parallelism x x ✓

Next, we present the prediction error rates of power con-
sumption of the TPC-H and TPC-DS queries obtained in a
serial mode (parallelism degree fixed to 1) and in a parallel
mode, where the parallelism degree is fixed to 2 and 4, using
our cost model and two existing ones.

1) Prediction Analysis on TPC-H benchmark

Serial mode. Fig. 8 shows a comparison of the energy
estimation errors of the TPC-H benchmark queries obtained
using DFSOFT (with SVR and RFR techniques), PBM, and
OBM in a serial mode. The difference between the estimated
energy using our model and the measured one is very small
in almost all cases compared with the other models. For
DFSOFT, the RFR model performs better than the SVR model.
The average of prediction errors is 2.37%, 1.31%, 14.87%, and
13.93% for DFSOFT-SVR, DFSOFT-RFR, PBM, and OBM
respectively.

Parallel mode. Fig. 9 presents a comparison of the energy
estimation errors of the TPC-H benchmark queries obtained
using DFSOFT (with SVR and RFR techniques), PBM, and
OBM for a degree of parallelism fixed to 4. Also, in this mode,
we notice that the difference between the estimated energy
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Fig. 8. Energy estimation errors of the TPC-H benchmark queries in a serial mode (NCPU = 1) using DFSOFT, PBM and OBM.

using our model and the measured one is very small in almost
all cases as well as our model performs better than the other
two models. The average prediction errors are this execution
mode are 4.65%, 4.44%, 11.4%, and 11.31% for DFSOFT-
SVR, DFSOFT-RFR, PBM, and OBM respectively.

As shown in Fig. 8 and 9, our cost model to estimate
energy consumption produces a more accurate prediction of
power with very small errors in all our experiments and in
all execution modes (serial and parallel).
Fig. 10 presents a summary of the average estimation errors
obtained by DFSOFT (with SVR and RFR techniques), PBM,
and OBM with a degree of parallelism fixed to 1, 2, and 4,
and the general case (all modes) that presents the average
errors of all the execution modes. This figure shows that
DFSOFT outperforms the two existing models PBM and
OBM in all execution modes (serial and parallel).
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Fig. 10. Energy estimation errors of the TPC-H benchmark queries
in serial mode (NCPU = 1), parallel mode (NCPU = 2, 4) and all
modes using DFSOFT, PBM and OBM.

2) Prediction Analysis on TPC-DS benchmark

The results of serial mode have been omitted for lack of
space. We then concentrate on parallel mode. Our results show
that the error increases compared to the one obtained using the
TPC-H benchmark. This is due to the complexity of TPC-DS
queries.

VII. CONCLUSION

In this paper, we pointed out the absence of hybrid solutions
combining hardware and software aspects in building eco-
query processors. To perform this hybridization, we proposed
to consider two main popular techniques belonging to hard-

ware and software which are DFS technique and mathematical
cost models dedicated to estimating energy consumption when
executing workload of queries. To show the impact of DFS,
we considered a motivating example with different processor
configurations (frequency and number of cores). Based on
the encouraging results that we got from this example, we
build our accurate and portable energy cost model that aims
at predicting the energy consumption of queries in DBMSs
in which DFS is a part of the model. This latter takes
into account the important features related to the processor
ecosystem such as frequency and the number of cores of
the processor dedicated to executing queries. In order to
identify the coefficient values of our model, we used Support
Vector Regression and Random Forest Regression. Finally, we
conducted several experiments using the TPC-H and TPC-DS
benchmark queries running on PostgreSQL DBMS to validate
the proposal and compare it with state-of-the-art energy cost
models. Our results show that our model predicts accurately
the energy consumption of queries as well as outperforms the
other two existing approaches. We believe that these findings
can be easily reproducible in the context of machine learning
computations.

We are currently studying XGBoost regression and Artificial
Neural Networks with much larger training datasets, and
deploying our analytical energy consumption model into the
PostgreSQL query optimizer to: (i) identify energy-hungry
queries and warn users before executing them, and (ii) find
the best processor configuration that minimizes the energy
consumption.
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