
Scalable Parallel Machine Learning Computing a
Summarization Matrix with SQL Queries

Carlos Ordonez
Department of Computer Science

University of Houston
USA

Abstract—Multidimensional data summarization is a funda-
mental mechanism to accelerate the computation of machine
learning (ML) models. On the other hand, relational DBMSs can
scale beyond main memory limits, they can evaluate SQL queries
in parallel and they hide complex internal system details. Heeding
this motivation, we present a wide spectrum of alternative SQL
queries to compute a summarization matrix that significantly
accelerates the computation of many ML models in a data
science language (e.g. Python). We consider two fundamental
storage layouts: horizontal and vertical. Our proposed SQL
queries lead to diverse query plans, which in turn yield highly
different processing times. We identify storage layout (row vs
column) and relational join optimization as two key performance
factors. After careful analysis and bechmarking, we recommend
two SQL queries that can work across DBMSs. We show
UDFs, an extensibility mechanism, despite being faster, they
have many disadvantages compared to plain SQL queries (not
portable, system-dependent limitations, main memory, manual
optimization required). An extensive experimental evaluation
shows the pros and cons of our proposed SQL-based solution.
Columnar storage provides an order of magnitude performance
improvement over row storage. Moreover, SQL queries can
match UDF performance on sparse matrices. We show that by
exploiting the summarization matrix in Python, the computation
of two popular statistical models (Linear Regression and PCA), is
much faster than popular Python libraries (on a single machine)
and also faster than Apache Spark (in parallel, in-memory
solution for big data clusters). We also show our SQL-based
solution exhibits linear speedup in parallel processing. In short,
the DBMS can act as a backend linear algebra kernel.

Index Terms—SQL, Gramian matrix, Linear Algebra, In-
database, Query

I. INTRODUCTION

Computing Machine learning on large data sets remains
a major challenge in Big Data Analytics. Currently, parallel
DBMSs and Hadoop Big Data systems (e.g. Spark, Mon-
goDB, and graph engines) remain popular alternatives for
big data analytics [7], with Python being the glue language
integrating all libraries and subsystems. The limitations of
each system and challenges posed by big data have spawned
many different analytic systems, which are either good for
query processing (in general SQL) or for machine learning
[7]. Row DBMSs remain the best technology for transaction
processing and columnar DBMSs are a competitor in query
processing [8]. Columnar DBMSs [8] are a new generation
class of database systems, with significantly different storage
and query processing mechanisms compared to traditional row
DBMSs. On the other hand, data summarization is an essential

mechanism to accelerate analytic algorithms on large data sets.
There has been research on data summarization to accelerate
the computation of distance based clustering [14] and parallel
array operator that computes a similar data summarization
matrix [13]. The basic idea is to substitute the data set by
the summary reducing time in further computations.

We exploit a summarization matrix, called Γ (Gamma) [13],
[1], that captures essential statistical properties of the data set
to compute first and second moments (mean, variance) of mul-
tivariate probability distributions (i.e. common across many
models). The most important features of the summarization
matrix are that it is much smaller than the data set, it can
fit in main memory, and it can be used to avoid recomputing
costly matrix multiplications in iterative ML algorithms. The
Gamma matrix captures essential statistical properties of the
data set and it allows iterative algorithms to work faster in
main memory, without any approximation.

The paper contributions can be summarized as follows.
Our goal is accelerating machine learning by pushing the
computation of the summarization matrix into the DBMS with
SQL. We propose two table storage layouts in SQL for the
input data set, for dense and sparse matrices respectively.
Based on the table layout we propose different SQL queries for
the Gamma matrix computation, which are valuable from sev-
eral perspectives: performance, database design, elegance and
ease of optimization. We then present extensive benchmark
experiments representing common data science environments.
We compare query performance in popular DBMSs in both
single machine and in a parallel cluster. By exploiting Gamma,
fundamental machine learning models like Linear Regression
(LR [6], [13]), Principal Component Analysis (PCA [6]) can
be computed in one pass over a large SQL table. We used
Python as a host language to compute ML models exploiting
Gamma. We compare the time to calculate the models exploit-
ing Gamma and Python with popular machine learning library
in Python and Spark for large data sets. We used Python to
compare the results on single node and PySpark to compare
the SQL-based solution in a parallel cluster.

This is an outline of this paper. In Section 2 we review some
common definitions. Section 3 presents our main technical
contributions: studying alternatives to compute the summa-
rization matrix (via a matrix multiplication) with SQL queries.
We present our experimental evaluation in Section 4. Section 5
discusses closely related work. Section 6 summarizes technical

contributions, strengths and weaknesses of our solution and
directions for future research.

II. DEFINITIONS

This is a reference section which defines the input data set
and ML models and explains how to store the data set in a
relational DBMS.

A. Input Data Set

Let X = {x1, x2, ...xn} be the input data set with n points,
where each point xi is a vector in Rd. That is, X is a d× n
matrix, where xi is a column d-vector (i.e., equivalent to a
d× 1 matrix) and i = 1...n and j = 1...d are used as matrix
subscripts.

B. Machine Learning Models

We consider two fundamental models in Machine Learn-
ing(ML) and Statistics.

Linear regression (LR) attempts [5] to model the relation-
ship between independent variables and a dependent variable
by fitting a linear equation to observed data. The linear
regression model characterizes a linear relationship between
the dependent variable and the d explanatory variables.

The objective of Principal Component Analysis (PCA) [6]
is to reduce the noise and redundancy of dimensions by re-
expressing the data set X on a new orthogonal basis, which is
a linear combination of the original dimensions basis. In this
case X has d potentially correlated dimensions. In general,
PCA is computed on the covariance or the correlation matrix
of the data set.

C. Data Set Storage in SQL

From a database perspective, the data set is stored in an SQL
table in two complementary storage layouts. We use X h table
to represent the data set in a horizontal layout, which is defined
as X h(i,X1, X2...Xd), meaning one more column than X .
A unique number i is added to the data set as primary key.
Alternatively, X can be stored with a vertical layout in table
X v(i, h, v), where v is the actual value for the hth dimension
of vector xi.

III. SQL QUERIES TO COMPUTE THE GAMMA MATRIX

This section presents our main contributions. We first
present a general summarization matrix (called Γ, introduced
in [13]), highlighting how it accelerates the computation of
fundamental machine learning models and why it is a time-
consuming operation which should be computed inside the
DBMS, especially if the data set was created with SQL
queries. We then present the limitations of UDFs, an SQL
extensibility mechanism. Based on linear algebra, we intro-
duce a comprehensive set of SQL queries to compute the Γ
matrix via a large-scale, highly parallel, matrix multiplication.
We consider two alternative storage layouts for the data set:
horizontal and vertical. Finally, we present optimizations to
accelerate query performance, which go beyond those used
by the query optimizer.

A. Processing Mechanism

We used only SQL queries to compute the summarization
matrix, leaving further numerical processing for Data Science
language like Python or R. Matrices are stored as relational
tables in the DBMS. Queries are relational and more general.
Our queries can be used on any DBMS. We emphasize we did
not modify SQL syntax or called UDFs (which are faster, but
not portable and a black box to the query optimizer).

B. The Gamma Matrix

We introduce the Gamma (Γ) summarization matrix. This
matrix contains several vectors and sub-matrices that represent
important sums derived from the data set. We review sufficient
statistics matrices [6], which are integrated and generalized
into a single matrix:

n = |X| (1)

L =

n∑
i=1

xi (2)

Q = XXT =

n∑
i=1

xi.x
T
i (3)

Here, n counts points, L is a linear sum of xi and Q
is a quadratic sum of xi, where xi is multiplied by itself
(i.e., squared) with a vector outer product. As explained in
section iii, linear regression model uses an augmented matrix,
represented by X. We introduce a more general augmented
matrix Z, by appending an additional d+1th row to X, which
contains the vector Y . Since X is d× n, Z has (d+ 2) rows
and n columns, where row [0] are 1s and row [d+ 1] is Y .

Matrix Γ contains a comprehensive, accurate and sufficient
summary of X . We show Γ in two equivalent forms: (1)
vector-matrix and matrix-matrix multiplications and (2) sums
of vector outer products. Notice 1 is a column-vector of n
1s, which allows expressing a sum as a matrix product. Such
equivalence has important performance implications depend-
ing on how the matrix is processed.

Γ =

 n LT 1T .Y Y

L Q XY T

Y.1 Y XT Y Y T

=

 n
∑
xTi

∑
yi∑

xi
∑
xix

T
i

∑
xiyi∑

yi
∑
yix

T
i

∑
y2i

 (4)

The fundamental property of Γ is that it can be computed
by a single matrix multiplication using Z. Therefore, we study
how to compute the matrix product below, related to, but not
the same as the Gram matrix ZTZ [3]:

Γ = ZZT (5)

Matrix Γ is comparatively much smaller than X for big data
and symmetric and computable via vector outer products. Such
facts are summarized in the following properties:

a) Property 1: If Γ can fit in main memory it is feasible
to maintain a summary of X in main memory. However, this
property can be violated for some queries.

b) Property 2: We can get Γ as a matrix multiplication
and as a sum of vector products. Γ can be equivalently
computed as follows:

Γ = ZZT =

n∑
i=1

zi · zTi (6)

Matrix Γ summarizes X to compute the first and second
moment of several multivariate probabilistic distributions. This
implies that Γ is a fundamental summarization matrix because
it can help computing the first and second expected moments
which are mean and co-variance respectively of many proba-
bilistic distributions.

C. Time Complexity of Gamma Computation

The time complexity in computing Γ with a dense matrix
operator is O(d2n), while the time complexity for sparse ma-
trix operator is O(k2n) where k is the number of non− zero
entries from xi. In case the matrix is hyper-sparse, k2 = O(d),
then the matrix operator is O(dn) on average. On space
complexity, the matrix computation requires O(d2) since the
Gamma matrix is a dense matrix.

D. Limitations of UDFs

In the simplest terms, a user-defined function (UDF) in SQL
is a programming construct that accepts several arguments,
does work in main memori with such arguments and returns
one value (e.g. number or string, but in general not a list
or array). Exploiting UDFs for machine learning yields many
advantages as explored in [11]. In [13], the authors introduced
UDFs in a columnar DBMS and an array database. A promi-
nent pro is that UDFs can easily update data in main memory,
which significantly reduces disk I/O and runtime. Since Γ is
much smaller than the data set, UDF seems to be the perfect
solution to calculate Γ. However, UDFs also have limitations.
(1) UDF capabilities provided by a particular DBMS will
vary and thus the limitations will vary. Different DBMSs
have different implementations of UDFs. Hence, in order to
carry out the experiments in [13], the two UDFs, despite
being written in C++ language, had to be reprogrammed
differently in each DBMS. In other words, portability is the
main weakness of UDFs. (2) The UDF is kept in-memory
throughout the whole computation process, disk I/O is not
allowed because the DBMS has to maintain and save the
data from being corrupted by badly written UDFs. Therefore,
the only way to store UDF result on disk is to store it as a
column value in the result table. (3) UDF can not allocate an
array with a user-specified size run-time, this implies different
versions of the UDFs might be needed as memory becomes
scarce. (4) UDFs also cannot execute dynamically constructed
SQL statements. To construct a statement dynamically based
on the parameter values, one must resort to using stored
procedures. (5) UDFs cannot make use of temporary tables.
As an alternative, it is possible to use table variables within a
UDF. However, temporary tables are somewhat more flexible
than table variables. The latter cannot have indexes.

E. Matrix Multiplication with SQL Queries

We now turn our attention to how to compute a Gramian
matrix multiplication with SQL queries.

For data set stored in a vertical layout, matrix multiplication
by SQL query requires an INNER JOIN (or JOIN in short
for this paper), followed by a GROUP BY aggregation. In
most DBMSs, either sort-merge join or hash join are available.
In general, a join is the most time-consuming operator in
the query plan. The time complexity of this approach is
therefore O(n logn) for sort-merge join or O(n) for hash join.
Assuming the matrix sparse a hash join is likely to work. In
order to speed up the process, an index on the join attributes
can be added. In a columnar DBMS merging is done without
the sorting phase. Hence, the time complexity is reduced to
O(n). For further optimization, the matrix is replicated before
being used as input in the query. In the case of columnar
storage databases, it is expected that if the table is stored in
sorted order by subscripts, then ia JOIN is expected to be done
either by merge (no sort) or hash method.

For a data set stored in horizontal form, matrix multiplica-
tion is computed with a list of d2 aggregations, bypassing a
JOIN.

F. Storing a Sparse Matrix in the DBMS

When a matrix is sparse it is necessary to store it in a more
efficient form for two reasons: (1) zeroes produce zeroes in
matrix multiplication; (2) less space mean more efficient I/O.

TABLE I
HORIZONTAL AND VERTICAL LAYOUT OF THE SAME DATA SET

XH =

i X1 X2 X3
1 a b 0
2 0 c d
3 0 0 a
4 b 0 d

XV =

i h v
1 1 a
1 2 b
2 2 c
2 3 d
3 3 a
4 1 b
4 3 d

In our work, most data sets are sparse, but they come in a
horizontal layout in the input file to be loaded. Therefore, it is
not intuitive to store and read them with a horizontal layout.
Hence, we store sparse matrices in vertical form. In DBMS,
the tables are transformed from horizontal to vertical form.
If a DBMS does not offer PIVOT-ing transformation can be
achieved by simple SQL queries. First, a column with a unique
point id i is added to the data set to build table X h in the
query below, where table X h has d columns representing d
dimensions (intuitively, X is stored in transposed form).
INSERT INTO X_h
SELECT

sum(1) OVER (rows unbounded preceding) AS i
,X1, X2, X3,..., Xd

FROM dataset;

The vertical layout table X v(i, h, v) is then created by the
following d SQL queries.

INSERT INTO X_v

SELECT i, 1, X1
FROM X_h
WHERE X1 > 0;
...
INSERT INTO X_v
SELECT i, d, Xd
FROM X_h
WHERE Xd > 0;

G. SQL Queries To Compute the Summarization Matrix

Here we propose a wide spectrum of alternative SQL queries
to calculate the Gamma matrix and we briefly discuss the
general query plan generated by the query optimizer in both
row and columnar DBMS.

Pre-processing for Gamma computation

Since the first column of Z matrix contains 1s, we need to
add this column to X v. i Since X v has already been stored
in vertical form, in order to add this column, we simply insert
these 1s by adding n rows of i, 0, 1 where i = 1 . . . n.

INSERT INTO X_v
SELECT i,0,1
FROM (SELECT DISTINCT i FROM X_v)T;

Query 1: JOIN followed by GROUP BY Aggregation (Q1:
JOIN/GROUPBY)

This is the simplest and most natural query to compute the
Γ matrix with a JOIN and an aggregation. This is a straight
matrix multiplication for the matrix stored in sparse form. The
SQL query is given below. Here X L and X R are alias for
the table X v.

SELECT X_L.h AS a
,X_R.h AS b
,sum(X_L.v*X_R.v) AS v

FROM X_v X_L JOIN X_v X_R ON X_L.i = X_R.i
GROUP BY a,b;

Query plan analysis: In a row DBMS table X is sorted,
whereas in a columnar DBMS the rows are automaically sorted
when the table is loaded. After the two tables are sorted, the
JOIN operation is performed with a MERGE join. The final
phase is the aggregation on the columns h. As h does not have
many distinctive values, hashing is expected. In this part, the
tables are not processed all at once, but one part at a time
because the tables are too large to fit into the memory. The
costliest task of the whole process is the join of the two tables.

Query 2: Nested Query (Q2: Nested)

This method is similar to the first one, but the multiplica-
tions are calculated individually and placed in a temporary
table before being aggregated to get the final value of the Γ
matrix. The SQL query is below where T is a temporary table.

SELECT a,
b,
sum(v) AS v

FROM (SELECT X_L.h AS a,
X_R.h AS b,
X_L.v*X_R.v AS v
FROM X_v X_L JOIN X_v X_R
ON X_L.i = X_R.i) T

GROUP BY a, b;

Query plan analysis: The query plan for this alternative
turns out to be the same as the first one, highlighting the
impossibility of computing the aggregation first and JOIN
second.

Query 3: Correlated Query (Q3: Correlated)

This query is also similar to the first query. However, a
WHERE EXISTS clause is introduced in the query. EXISTS
returns true if the subquery returns any rows. i The SQL is
given below where the subquery’s SELECT list consists of
the asterisk (*). It is not necessary to specify column names
because the query tests for the existence or nonexistence of
records that meet the conditions specified in the subquery. The
WHERE EXISTS clause provides an optimized version of the
JOIN, a SEMI-JOIN.

SELECT X_L.h AS a,
X_R.h AS b,
sum(X_L.v*X_R.v) AS v

FROM X_v X_L JOIN X_v X_R
ON X_L.i=X_R.i
WHERE EXISTS (SELECT *

FROM X_v
WHERE X_L.i=X_v.i)

GROUP BY a,b;

Query plan analysis: In this alternative, the table X v is
first materialized as the first two queries. The next step is
slightly different. Because of the WHERE EXISTS clause, a
SEMI-JOIN was introduced into the query plan before the
sort operation on column i of the table X L. Hash is the
algorithm for the SEMI-JOIN. After the sorting on i, as the
previous two queries, the two tables are joined by merging
followed by the hash aggregation.

Query 4: Horizontal Query (Q4: Horizontal)

This method performs matrix multiplication in dense form.
Hence, it requires the table to be in a horizontal layout. The
task can be achieved in two phases. However, this query has to
be generated by an external program to determine the number
of columns of the data set (d). The first phase is transforming
the data set from sparse form into dense form, if necessary.
Then we carry out the matrix multiplication on the horizontal
table (X h). The following two SQL queries perform the
operations.

CREATE TABLE X_h AS
SELECT
i

,sum(CASE WHEN h=0 THEN v END) AS X0
,sum(CASE WHEN h=1 THEN v END) AS X1

,sum(CASE WHEN h=2 THEN v END) AS X2
,sum(CASE WHEN h=3 THEN v END) AS X3
...
,sum(CASE WHEN h=n THEN v END) AS Xn
FROM X_v GROUP BY i;

SELECT
sum(X0*X0),sum(X0*X1),.. sum(X0*Xn)

,NULL,sum(X1*X1),.. sum(X1*Xn)
,NULL,NULL,sum(X2*X3).. sum(X2*Xn)
..

,NULL,NULL, .. NULL,sum(Xn*Xn)
FROM X_h;

Since the summarization matrix is symmetric we can save
one half the work. As we can see here, the result matrix
contains NULL values for the lower triangle. This query
significantly reduces the number of operations. More impor-
tantly, this solution does not require a JOIN. It is simply
an aggregation. Therefore, this solution is expected to be the
fastest solution. However, there is one major limitation: this
creates a one-row table with (d + 1)2 columns. The number
of dimensions of the data set should not be more than the
square root of the maximum number of columns allowed by
the DBMS. This limit varies among DBMSs. In a row DBMS
and a commercial columnar DBMS, this number is around
1600, which means the maximum d should be 40 including
the column with 1s.

Query plan: The query plan for this alternative is quite
simple: only an aggregation of the multiplication over all
column pairs resulting in a very wide result table with one
row.

Query 5: Incremental query (Q5: Incremental)

This query computes each matrix entry separately and then
assembles all individual results into one matrix. Therefore, it is
expected that this query is the slowest because the query block
to create table T is done by looping through i. This query is
not included in the experiment section because the data set
has more than n=1 million rows, which make it infeasible to
execute. Nevertheless, this query may potentially work with
data sets having d� n.

SELECT a,b,sum(v)
FROM (
SELECT a,b,X_L.v*X_R.v AS v
FROM
(SELECT h AS a,v
FROM X_v WHERE i=1) X_L

,(SELECT h AS b,v
FROM X_v WHERE i=1) X_R

UNION ALL
...
SELECT
a,b,X_L.v*X_R.v AS v
FROM
(SELECT h AS a,v

FROM X_v WHERE i=n) X_L
,(SELECT h AS b,v
FROM X_v WHERE i=n) X_R

) T
GROUP BY a,b;

H. Optimization

We introduce several optimizations to reduce the I/O cost
and evaluation time including indexing, maintaining a dupli-
cate copy of the data set table and using columnar storage.

a) Indexing: As expected, the most expensive query
operator is the JOIN. There are three different algorithms
for JOIN processing GUW2008: nested loop, sort merge, and
hash. Nested loop is not an acceptable solution since it has the
complexity O(n2). In consequence, in most DBMSs, either
sort merge or hash join are chosen. Sort merge join is less
efficient than hash join since it generally requires sorting first.
However, in this case, the join column is i, the point identifier
in the data set. It is expected that the cardinality of i is
larger than the size of a hash table that can be maintained in
RAM. On the other hand, tables are always sorted by key in a
columnar DBMS. Hence, merge join is the default algorithm
in a columnar DBMS, the best DBMS for this Gramian matrix
multiplication. Sort merge join, in a row DBMS, is evaluated
in two phases: sorting the tables by the join column(s) and
then merging rows on matching keys. The sorting operation
takes O(n log(n) time. In order to avoid the sorting phase, a
clustered index on i is defined and precomputed (sorting each
block by h).

b) Maintain a duplicate copy of the data set: As the
computation of Γ requires a JOIN of the table by itself, it
is a good idea to maintain a secondary copy of the table
before carrying out the JOIN. This mechanism is called
“view materialization” in some DBMS. This can be done in
O(n) time, but for a large table, this duplication process can
be expensive. While performing parallel processing, we can
partition one table by one column, and the other table by
another column. This will speed up the JOIN performance in
a parallel DBMS. Partitions improve parallelism during query
execution and enable additional local optimizations.

I. Machine Learning Model Computation Exploiting the Sum-
marization matrix

The Γ matrix contains sufficient statistics which can be
used to compute many different machine learning models in
a external language or package. Important models include
Naive Bayes classifier, Principal Component Analysis, Linear
Regression, Variable Selection, K-means/EM clustering, as
explained in [13]. The meta-algorithm to compute all these
models has two phases. The 1st phase is computed inside the
DBMS in our case. The 2nd phase can be easily evaluated
outside the DBMS in a Data Science language like Python
or R. In this paper, we chose LR and PCA to compare
the performance of model computation with and without
the summarization matrix. In order to make the paper self-
contained, we used the same equations mentioned in [13]. We

Fig. 1. Parallel System Architecture

call each model Θ. Using Gamma, a fast algorithm to compute
the models in two phases is following:

1) Compute Γ inside the DBMS with SQL queries (serial
on one node or in parallel in a cluster).

2) In a Data Science language (e.g. Python or R) exploit
the summarization matrix in intermediate matrix compu-
tations in iterative methods.

Figure III-I shows the system architecture of a parallel
DBMS that is used to compute the Γ matrix in parallel.

In first phase, we compute Gamma with purely SQL queries
and in second phase we incorporate Gamma in the steps of
numerical and statistical methods. By exploiting Gamma, it
becomes possible to reduce the number of times X is read,
and to reduce CPU computations in iterative methods.

a) Linear Regression: Using matrix notation previously
defined, the data set is represented by matrix Y (1 × n) and
X(d × n), and the standard definition of a linear regression
model is:

Y = βTX + ε

where β = [β0, ..., βd] is the column vector of regression
coefficients, ε is the Gaussian error, X is the augmented matrix
of X. The vector β is estimated using ordinary least square
method, whose solution is:

β̂ = (XXT)−1XY T (7)

As stated above, Γ contains those 2 partial matrices, so β̂ =
Q−1(XY T). Therefore, LR algorithm becomes:

1) Compute Γ
2) Solve β̂ exploiting Γ

b) Principal Components Analysis: PCA can be com-
puted solving SVD on the correlation matrix. To PCA we
rewrite the correlation matrix equation based on the sufficient
statistics in Γ:

ρab = (nQab − LaLb)/(
√
nQaa − L2

a

√
nQbb − L2

b) (8)

The PCA algorithm is therefore:
1) Compute Γ
2) Compute ρ, solve SVD of ρ

IV. EXPERIMENTAL EVALUATION

In this section, we explain our hardware and software con-
figuration so that other researchers and developers can interpret
and reproduce our experiments. We use two alternative parallel
configurations: 1 node with a multi-core CPU and a parallel
cluster with N machines. The 1-node configuration represents
the most common setup in the cloud or in an average local
server. The N -node configuration is the most common high
performance setup in a local cluster with a shared-nothing
architecture. Most experiments focus on the performance to
compute the Gamma matrix. It is worth mentioning that the
computation of the Gamma matrix involves an exact matrix
multiplication, not an approximation. Therefore, it is not
necessary to measure statistical or numerical accuracy. We
emphasize again that the Γ matrix is consumed by a host
language that calls the SQL query. We used Python for our
experiments since it is by far the most popular language in
Data Science.

This section is organized as follows: performance of the
queries in 1 multi-core node with 3 different DBMSs with
and without the second copy of the table; the performance of
the queries in parallel with 2, 4, 8 nodes; and then compare
the time to compute two machine learning models: Linear
Regression and Principal Components Analysis in Python and
Spark.

A. Experimental Setup

1) DBMS Hardware and Software: All experiments were
conducted in an N=8 node (+1 master node for Hadoop/Spark)
cluster with each computer having a 4-core CPU running at
1.6GHz, 8GB RAM, 1TB HDD. The OS was Linux Ubuntu
14. To avoid complaints from commercial or open-source
DBMSs developers, we call the two row databases as “Row1”,
“Row2” running in 1 node, and the columnar DBMS as
“Columnar” running in 1, 2, 4, 8 nodes. All three DBMSs
are ANSI SQL compliant (i.e. standard, reliable, widely used).
The cluster also hosts Hadoop and Spark with all the machine
learning packages installed (MLib, SparkX). We used Python
as the host language to generate SQL queries and submit the
queries to the databases/systems. In some comparisons, Python
is paired with a machine learning package called scikit-learn.

2) Data Sets: We used the real ”network data set”, from the
KDD CUP 1999. This data set has d=39 columns and n=1.3
million rows. We truncated the data set at n= 1 million rows. In
terms of sparsity, the data set has 27% non-zero entries, which
highlights the importance of more efficient storage in the
vertical layout. This data set was exploded 10X and 100X to
make two challenging large data sets to test the performance of
the query in parallel and distributed databases systems. When
n =1M the data set always fits in RAM. When n =100M the
data set size exceeds the RAM capacity of 1 node, but can
still be stored in RAM, partitioned across the 8 nodes.

TABLE II
COMPARING QUERIES ACROSS DBMSS ON ONE NODE (UNIT: SECONDS).

Record size = 1M Columnar Row1 Row2
Q1 (JOIN/GROUPBY) 13.7 176.6 2087.1
Q2 (Nested) 14.9 175.8 1944.8
Q3 (Correlated) 24.0 228.8 2283.7
Q4 (Horizontal) 13.7 1100.6 968.8

B. Time Performance in One Node

In this section, we perform the experiments in a single
machine. We compare the performance of Gamma computa-
tion across different DBMS: Columnar, Row1, and Row2. We
emphasize that the queries mentioned in the previous section
worked without any modifications on the three systems. Ex-
periments without an index on table X v are omitted as we
saw no benefit in doing so. Table II shows the performance of
the queries in one node with index on the i and h columns.
However, the columnar DBMS does not need indexing. From
these results, we can see the columnar DBMS performs much
better than the row DBMSs, on all queries.

From Table II, we can see the columnar DBMS has out-
standing performance in the three queries up to an order of
magnitude faster with a vertical layout. Main reasons: less
I/O volume (compressed data), faster join processing. Even
with the index, the two row DBMSs do not come close to
the performance of the columnar DBMS. This is because (1)
The row DBMS has to lookup and traverse the index for
the right matching value. (2) Columnar DBMS offers data
compression in which rows with identical key values are stored
as only one row (value+frequency), whereas in the row DBMS,
these values are repeated in a redundant fashion. As a result,
row DBMS needs to retrieve the same values over and over,
while the columnar DBMS only needs to read once. However,
the outcome was different for the horizontal layout query. In
this case, the columnar DBMS shows no advantage over the
row DBMSs. The introduction of the WHERE clause as an
optimization did not yield the expected acceleration. However,
it is only 15% slower, which is not a significant time increase.

In terms of performance comparison among all queries, the
horizontal query provides the best result if we do not add
the pre-processing time to transform the table from a vertical
to a horizontal layout. The horizontal layout query matches
our expectation, being reasonably fast across DBMSs, because
there is no JOIN operator.

We also attempted to run the same experiments with the
table X v and its replication. The results are shown in Table
III. The queries were modified to accommodate this change.
However, the time to replicate the table was excluded. From
Table III, we can see that there is no speed up in creating the
second copy of the table for row DBMSs. On the other hand,
for the columnar database, the query that takes advantage of
the secondary table was estimated to be more expensive than
the one that joins the table by itself. However, there is no
experiment for the horizontal query in Table III as it does not
need a join and so we do not need a second copy of the table.

TABLE III
COMPARING DBMSS ON ONE NODE WITH DUPLICATED TABLE (UNIT:

SECONDS).

size n=1M Columnar Row1 Row2
Q1 (JOIN/GROUP BY) 15.1 177.7 1802.4
Q2 (Nested) 14.3 177.7 1921.4
Q3 (Correlated) 24.1 230.8 > 1 hour
Q4 (Horizontal) N/A N/A N/A
UDF N/A N/A N/A

TABLE IV
PARALLEL SPEEDUP ANALYSIS VARYING # OF NODES N (UNIT:

SECONDS).

Size
(n)

Query N=1 N=2 N=4 N=8

1M

Q1 (JOIN/GROUP BY) 15.1 7.9 4.3 4.3
Q2 (Nested) 14.3 10.4 4.4 2.7
Q3 (Correlated) 24.1 15.7 6.8 4.1
Q4 (Horizontal) 13.7 24.5 12.4 10.4
UDF 72.7 22.9 8.0 3.6

10M

Q1 (JOIN/GROUP BY) 136.3 199.2 169.3 39.4
Q2 (Nested) 136.6 169.7 80.9 46.3
Q3 (Correlated) 249.9 285.3 157.0 141.9
Q4 (Horizontal) 204.8 75.0 110.9 68.7
UDF 766.3 233.9 74.5 47.6

C. Parallel Processing in Multiple Nodes

In this section, we analyze parallel speedup of our best
queries, varying cluster size, with N = 1, 2, 4, 8 nodes. We use
a columnar DBMS, which is the fastest to process the input
matrix in a vertical layout. Results are shown on Table IV. We
conduct experiments varying n: 1 million, 10 million and 100
million rows. To provide a thorough analysis, we also compare
our SQL query solution with the UDF version of the Γ matrix,
proposed in [13].

From the result, we can see that for one million rows,
the speedup is linear to the number of nodes. In particular,
doubling the number of working nodes will result in halving
the execution time. Fig 2 shows that with the addition of
the number of nodes, the execution time is decreasing. For
N = 8 nodes, the execution time is almost same of all the
queries except horizontal query. For the data set of 10 million
rows, there is no significant speedup for the 1, 2, and 4 nodes.
However, for N = 8 nodes, the performance boost up is more
visible than other nodes. In both cases, Query 1 and 2 almost
takes the same amount of time. For 100 million records in
Table V, the 1, 2 and 4 node couldn’t compute the Gamma
matrix. Therefore, We show the results only for N = 8 nodes.
Here, each query performs better than the UDF.

For the UDF version of Gamma, it does not show any
advantages in performance over SQL queries providing all
of its operations is done in memory. Although the executing
time decreases with the number of nodes, mostly it was
outperformed by one of the SQL queries. It showed better
performance for 1M records but as the table size grows larger,
the queries began to perform better than the UDF.

TABLE V
COMPARING QUERIES IN COLUMNAR DBMS IN A PARALLEL CLUSTER

WITH 8 NODES ON 100 MILLION POINTS (UNIT: SECONDS).

Size n= 100M Time
Q1 (JOIN/GROUP BY) 316.1
Q2 (Nested) 249.3
Q3 (Correlated) 412.2
Q4 (Horizontal) 397.4
UDF 630.3

Fig. 2. Performance of each query in parallel for different nodes for record
size=1M (Time in Sec)

D. Comparing Models Computation with Python and Spark

Given the popularity of Python and Apache Spark in Data
Science, we compare two basic Machine Learning models:
Linear Regression (LR) and Principal Component Analysis
(PCA).

There are two scenarios to consider: one node and 8 nodes.
In one node setting, we used Python. The data set in CSV form
is loaded and transformed into numpy sparse array for Linear
Regression and dense array for PCA as scikit-learn does not
support sparse array for PCA computation. The arrays were
then fitted into the models by calling the respective functions.
The results are shown in Table IV-D. We see that it is possible
to compute the model when the record size is smaller. Even for
10M records, Python fails to compute the models in reasonable
time. As we can see from Table IV-D, Python reached the time
limit of hour experiment set at 1 hour even for the data set
having 10 million rows, whereas Gamma with columnar is
done in less than 3 minutes.

For computation in parallel with 8 nodes, we used Spark.
Pyspark is used as the host language to call Spark functions
(MLib) on the data sets. We loaded into the data into HDFS
first on the same cluster before running any experiments and
exclude the time. Table IV-D shows the results to compute the
models in Spark for varying record sizes.

In the case of Γ, because of the size, the time to calculate
the models from the Γ matrix is almost negligible. In fact, the
computation of the two models with Γ was done in less than
1 second. The formulas 7 and 8 mentioned in the previous
section were used to calculate the two models based on the Γ
matrix returned from the DBMSs. Figure 3 shows the results

TABLE VI
MODEL COMPUTATION IN PYTHON WITH SCIKIT-LEARN IN 1 NODE (UNIT:

SECONDS).

Size (n) 1M 10M

System Python +
DBMS

Python +
sklearn

Python +
DBMS

Python +
sklearn

LR 13.7 75.6 136.3 >1 hour
PCA 13.7 79.3 136.3 >1 hour

Fig. 3. Time to compute models using Python+Gamma and Python in 1 node

of running the models in a single node for 1M data set for both
Python and Gamma. From the graph, we can see that Gamma
computes the model much faster than Python. Figure 4 shows
the results of running the models in parallel for both Gamma
and Spark. With varying record sizes, Gamma performs better
than Spark almost every time. One thing to note is that the
size of the Γ matrix is independent of the number of records,
i.e, data sets having the same number of d will result in a d×d
Γ matrix. The time to calculate the final models, therefore, is
the same regardless of n.

There is time difference between calculating LR and PCA,
in particular, PCA takes much more time than LR due to its
complexity. Meanwhile, Γ only needs to be computed once
for both models.

Fig. 4. Time to compute models using Python+Gamma and Spark in 8 nodes

TABLE VII
MODEL COMPUTATION IN PYSPARK RUNNING IN 8 NODES (UNIT: SECONDS).

Size (n) 1M 10M 100M

System Python +
DBMS

Python +
Spark

Python +
DBMS

Python +
Spark

Python +
DBMS

Python +
Spark

LR 2.7 44.1 39.4 317.4 316.1 3183.5
PCA 2.7 44.6 39.4 253.3 316.1 2097.9

E. Cost Analysis

We briefly discuss the query plan and cost of the queries.
A query plan is a sequence of step-like paths that the query
optimizer selects to execute the statement in the database.
In most databases, the statement EXPLAIN can be used to
analyze the query plan which is optimized by the query
optimizer. The query optimizer builds different query plans
and chooses the one with least cost. It is worth mentioning
that cost in query plan estimated by the EXPLAIN statement
is arbitrary numbers. There is no unified unit for the cost in
query planning, but it generally quantifies the number of I/O
operations. In a row database, the the cost is the number of
sequential page fetches, hence other cost variables are set with
reference to that value. In a columnar database that stores data
in compressed form by column, cost means the estimated
resources allocated for the query, which is the combination
of CPU, memory, and network. The I/O cost is based on
a combination of database statistics, such as the estimated
number of rows to be processed, the cardinality of each
column, minimum or maximum values of each column, the
uniform or non-uniform distribution of values in a column
and so on.

Table VIII summarizes the cost of the first three queries for
different situations in a row database and Table IX summarizes
the cost for a columnar database.

TABLE VIII
ESTIMATED I/O COST IN A ROW DBMS (UNIT: DISK BLOCKS FETCHED).

Row1 Q1
(JOIN/GROUP BY)

Q2
(Nested)

Q3
(Correlated)

No index 11,331,274 11,331,274 12,187,240
Having index 9,863,709 9,958,843 12,144,797
Second copy 3,163,730 3,163,720 3,264,345

TABLE IX
ESTIMATED I/O COST IN A COLUMNAR DBMS (UNIT: MIXED

RESOURCES).

Columnar Q1
(JOIN/GROUP BY)

Q2
(Nested)

Q3
(Correlated)

Self join 190K 190K 184K
Second copy 412K 412K 499K

V. RELATED WORK

This section focuses on data summarization, optimizing
matrix multiplication, in-database machine learning model
computation and workflows.

A similar, but less general, data summarization to ours was
pioneered in [14] to accelerate the computation of distance-
based clustering: the sums of values and the sums of squares.
Later [2] exploited such summaries as multidimensional suffi-
cient statistics for the K-means and EM clustering algorithms.
The main differences between [14] and [2] are: data summaries
were useful only for one model (clustering). Compared to our
proposed matrix, their summaries represent a (constrained)
diagonal version of Γ because dimension independence is
assumed (i.e. cross-products, covariances, correlations, are
ignored) and there is a separate vector to capture L. From a
computational perspective, our summarization algorithm boils
down to one matrix multiplication, whereas those algorithms
work is aggregations. Another major difference is that in our
models one summarization matrix is sufficient, whereas those
clustering models need more than one matrix. Parallel process-
ing for data summarization has received moderate attention.
Reference [9] highlights the following techniques: sampling,
incremental aggregation, matrix factorization and similarity
joins. A parallel array operator was proposed based on a
specific form of matrix multiplication in [13], which computes
a comprehensive data summarization matrix. By leveraging
UDFs, it computes the Gamma summarization matrix in ths
SciDB array DBMS and a columnar DBMS. Although the
algorithm is the same, the actual system solution is signifi-
cantly different. Since portability of the summarization matrix
is the main con, the solution is limited to only for the DBMSs
mentioned there. In short, we use only SQL queries to compute
the summarization matrix.

Optimizing matrix computations when matrices cannot fit
in RAM is a classical topic in numerical linear algebra [4],
exploiting significantly different algorithms and data struc-
tures compared to database systems. Matrix multiplication
has been extensively studied with dense and sparse matrices,
as well as one processor (sequentially) or N processors (in
parallel): parallel sparse matrix multiplication is the hardest
combination. The specific assumptions about matrix shape,
density, and parallel computation model vary widely. Most
research has proposed algorithms for partitioning and storing
the input matrices by block in distributed memory in a cluster.
Parallel matrix multiplication algorithms for matrices residing
on secondary storage is still a research topic in ScaLAPACK
because of the complexity of combining parallel computation
with MPI and efficient I/O on disk. MPI is not an efficient
interface for DBMSs because it has an underlying global
shared-memory model. The importance of aggregate UDFs
to accelerate the computation of machine learning models in

DBMSs is highlighted in [11], making a big step forward com-
pared to a pure query-based approach [5]. But as mentioned
above, they are not portable and they are a black box for the
query optimizer. Previously, hardware limitations and slower
DBMSs made SQL queries slow. Faster CPUs and ample
RAM have sparked a renewed interest in pushing I/O intensive
analytic computations in Big Data via SQL [10]. Now, queries
are much faster and scalable making them competitive for in-
DBMS processing for common machine learning models like
linear regression [5]. In a big data analytics pipeline there are
many tools, programming languages, and scripts producing
many intermediate files and tables [12], which have the goal
of building a data set to be used as input in an ML model,
like the two models studied in this work. Managing such
intermediate data and its corresponding source code is the most
time-consuming step in a big data analytics project.

VI. CONCLUSIONS

We introduced a summarization matrix named Gamma (Γ)
that can be computed with SQL queries. It is the result
of computing a Gramian matrix product of an augmented
data matrix. UDFs have been the traditional mechanism to
extend the DBMS with fast linear algebra capabilities, but
they have many limitations. Large, high dimensional data
sets are generally sparse matrices. Therefore, they deserve
more attention than lower dimensional, dense data sets. We
explained how to compute Gamma with a wide spectrum of
alternative SQL queries in two fundamental storage layouts
(horizontal, vertical). Our approach provides abstraction: SQL
queries work on top of the DBMS without changing any
internal architecture or subsystems. We studied the query plan
and time complexity for each query. We discussed several
optimizations to improve query performance. An extensive
experimental evaluation showed the effectiveness of our SQL-
based proposal. We used both row and columnar DBMS. Both
DBMS can be optimized with certain kind of optimization
techniques. Our experiments provide evidence that data sum-
marization works fast with queries and it can match UDF
performance, especially with sparse matrices. Since storing
data is a big challenge, we stored the data set in vertical way
which will work better for sparse data sets. We performed
the experiments both on single node and on parallel nodes.
We noticed parallel speed up for varying record sizes and
number of nodes. Based on our experiments JOIN followed by
GROUP BY and Nested query gives the best performance. Our
experiments also reveal that a columnar DBMS performs much
faster than row DBMSs. Exploiting Gamma, we computed
the models using Python. We used popular Python libraries
to compare the models in one node and Spark to compare
in parallel. Experiments proved that the Python scikit-learn
library cannot compute the models when data set size is large
and Spark MLib library becomes much slower when as data
set size grows larger.

There are many opportunities for future research. Since our
Gamma summarization matrix can capture essential statistical
properties of the data set, we can compute many important

machine learning models including Linear Regression, PCA,
K-Means, EM, Naive Bayes and other models where exist
correlations or covariances. The UDF will work better when
the data is dense, but we have shown SQL queries are slightly
slower. Also, it fails to compute models that require more than
one summarization matrix like K-means clustering, Linear
Discriminant Analysis and so on. There is no comparison with
HPC linear algebra systems (such as ScaLAPACK), but we
believe the results will be competitive. Issues for future work
include: compute the summarization matrix incrementally,
perform query optimization in a more broad manner, and
compare with other parallel matrix multiplication platforms.

Acknowledgments

The author thanks Huy Hoang and Sikder Al-Amin who
conducted the benchmark experiments and Robin Varghese
who provided valuable insights when comparing the summa-
rization matrix with gradient descent.

REFERENCES

[1] S. T. Al-Amin, S. Uday Sampreeth Chebolu, and C. Ordonez. Extending
the R language with a scalable matrix summarization operator. In IEEE
International Conference on Big Data (BigData), pages 399–405, 2020.

[2] P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to
large databases. In Proc. ACM KDD Conference, pages 9–15, 1998.

[3] J. Demmel. Applied Numerical Linear Algebra. SIAM, 1st edition,
1997.

[4] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vost. Numerical
Linear Algebra for High-Performance Computers. SIAM, 1998.

[5] P. Giesser, G. Stechschulte, A. da Costa Vaz, and M. Kaufmann.
Implementing efficient and scalable in-database linear regression in
SQL. In IEEE International Conference on Big Data (BigData), pages
5125–5132. IEEE, 2021.

[6] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning. Springer, New York, 1st edition, 2001.

[7] E. Kassela, N. Provatas, I. Konstantinou, A. Floratou, and N. Koziris.
General-purpose vs. specialized data analytics systems: A game of ML
& SQL thrones. In IEEE International Conference on Big Data (IEEE
BigData), pages 317–326. IEEE, 2019.

[8] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandier, L. Doshi, and
C. Bear. The Vertica analytic database: C-store 7 years later. PVLDB,
5(12):1790–1801, 2012.

[9] F. Li and S. Nath. Scalable data summarization on big data. Distributed
and Parallel Databases, 32(3):313–314, 2014.

[10] M. Noor and L. Fegaras. Translation of array-based graph programs to
Spark SQL on block arrays. In IEEE International Conference on Big
Data (BigData), pages 131–140. IEEE, 2021.

[11] C. Ordonez. Building statistical models and scoring with UDFs. In
Proc. ACM SIGMOD Conference, pages 1005–1016, NY, USA, 2007.
ACM Press.

[12] C. Ordonez, S. T. Al-Amin, and L. Bellatreche. An ER-Flow diagram
for big data. In IEEE International Conference on Big Data (IEEE
BigData), pages 5795–5797. IEEE, 2020.

[13] C. Ordonez, Y. Zhang, and W. Cabrera. The Gamma matrix to
summarize dense and sparse data sets for big data analytics. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 28(7):1906–
1918, 2016.

[14] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data
clustering method for very large databases. In Proc. ACM SIGMOD
Conference, pages 103–114, 1996.

