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Abstract—Clustering data streams is an important problem in
big data analytics to detect and monitor activity in fast-evolving
environments. We thereby present efficient variants of the K-
Means algorithm for finding quality clusters in one-pass, suitable
for stream processing in a DBMS. Our main variants are Online
K-means, Incremental K-means, and Sliding Window K-means,
which can consider or ignore time decay. We then explain how
to integrate our algorithms with a DBMS using a combination of
SQL queries and UDFs. Acceleration is achieved through a care-
ful combination of optimizations, including sufficient statistics
(data summarization), sparse distance computation (Jaccard and
Euclidean), multithreaded processing (for multi-core CPUs), and
sparse matrix operations. We present benchmark experiments
comparing the quality of results and speed. We show that
Incremental K-Means achieves similar or even better results
than the Standard K-Means algorithm. On the other hand, we
show that the sliding window K-Means algorithm captures the
evolution of data streams through time.

I. INTRODUCTION

Companies are raising their investment in stream processing
to make faster and better business decisions [22]. Data stream
clustering is one area of focus in stream data analytics because
of its summarization prowess that results in significant data
insights [10], [23]. The major challenge with data stream
processing is the difficulty of storing endless streams of
information [6], [1]. Examples of stream environments in-
clude network traffic, vehicle telemetry, transactions in retail
chains (e.g., market basket data), IoT sensor data, weather
monitoring, telephone communications, stock trading, and
applications’ logs [13], [5], [3].

In this paper, we are motivated by the multiple applications
derived from the efficient clustering of binary data streams.
One specific example we have observed firsthand is the
possibility of clustering vehicle telemetry to detect defects,
where each binary entry represents a vehicle indicator (e.g.,
check engine). Other examples include intrusion detection,
summarizing transactional data sets, or spam detection. Binary
data sets are interesting and valuable for several reasons. They
are the simplest data representation in a computer and can be
used to summarize categorical data. From a clustering point
of view, binary data offer several advantages. There is no
noise like that of continuous attributes. They can represent
categorical data and efficiently store, index, and retrieve it.
Since all dimensions have the same scale, there is no need to
normalize the data set (e.g., z-score).

K-Means remains one of the most simple and popular
clustering algorithms used in practice. However, K-means is
sensitive to centroid initialization, outliers, and skewed distri-
butions. Also, K-Means may converge to poor locally optimal
solutions, which usually must iterate through the data several
times. These characteristics make it a bad fit for stream data.
This paper focuses on the iterative nature of K-means applied
to data streams. With the motivation above in mind, this work
introduces several improvements to the Incremental K-Means
algorithm to cluster binary data streams [16]. The K-Means
variants studied include the well-known Standard K-Means,
On-line K-Means, and Incremental K-Means. Considering the
importance of more recent stream data, we introduce a slid-
ing window incremental K-Means algorithm that incorporates
time decay of old data [24]. We continue past research on
integrating analytics with stream database systems [4], [19].
This paper extends the binary streams clustering state-of-
the-art by proposing new K-Means variations resulting from
introducing optimizations around one-pass sufficient statistics,
efficient distance computation, and extending Jaccard distance
computation for sparse binary vectors and sparse matrix opera-
tions. From a systems programming perspective, we study how
to program our proposed K-Means algorithm variants to run
in-database analytics with DBMS/OS mechanisms, including
User-Defined Functions (UDFs) and multithreading.

This paper is structured as follows. Section II presents the
necessary background around K-Means, data streams, and in-
database analytics. Section III describes several approaches
for clustering data streams. Section IV has our experimental
evaluation for the studied algorithms. Finally, Section V and
Section VI capture related work and our conclusions, respec-
tively.

II. PRELIMINARIES

The problem of clustering is defined as finding a partition
of a data set D having an n d-dimensional into k clusters,
such that the distance between a transaction and a centroid is
minimized. The output is a list containing a matrix with the
cluster centroids C, a matrix with the clusters’ weights, W
and an array of variance diagonal matrices, R. The matrices
C and R are of size d × k, and W is a k × 1 matrix.
The array of matrices R is managed as a matrix because
only the main diagonal of each variance matrix is stored.
These matrices use the following convention for subscripts:
Let transactions t be identified by the i subscript, where
i ∈ {1, 2, . . . , n}. The cluster identifier is given by j, where978-1-6654-8045-1/22/$31.00 ©2022 IEEE



j ∈ {1, 2, . . . , k}. Therefore, the j subscript refers to the
columns of C or R. As a result, Cj , Rj , and Wj refer to
the jth cluster centroid, the jth variance diagonal matrix, and
the jth cluster weight, respectively. Dimensions are mapped by
h where h ∈ {1, 2, . . . , d}. Moreover, let {D1, D2, . . . , Dk}
be the k subsets of D given C such that Dj ∩ Dj′ = ∅ for
j ̸= j′. Chj represents the fraction of points in cluster j that
have dimension h equal to one.

In a similar fashion, Wj is the fraction of the n points
(weights) that are contained in cluster j. These weights can be
understood as percentages, which give a more intuitive under-
standing. Points that do not adjust well to the clustering model
are called outliers. We define a generic operator diag[] to
ease matrix manipulation. This operator obtains a diagonal
matrix from a vector or converts the diagonal of a matrix into
a vector. In this work, we compare symmetric and asymmetric
similarity measures, like Euclidean and Jaccard distance. In the
Euclidean distance, a 0/0 match is as important as a 1/1 match
on some dimensions. In contrast, the Jaccard distance gives no
importance to 0/0 matches [9], [11]. Thus, the Euclidean dis-
tance from ti to Cj is given by δ(ti, Cj) = (ti−Cj)t(ti−Cj).
The Jaccard distance, which operates on binary vectors in the
[0,1] interval, has to be extended to operate with centroids
that contain real data. The extended Jaccard distance is given
by J(ti, Cj) = 1 − ti·CT

j

∥ti∥2
2+∥Ci∥2

2−ti·CT
j

. Let S = [0, 1]d

be a d-dimensional Hamming cube representing the input
space. Let D = t1, t2, . . . , tn be a data set of n points
in S. That is, ti is a d × 1 binary vector (treated as a
transaction). Matrix D is a d × n sparse binary matrix. Let
Ti = {h|Dhi = 1, h ∈ {1, 2, . . . , d}, i ∈ {1, 2, ..., n}}. That
is, Ti is the set of non-zero coordinates of ti. Therefore, Ti
can be understood as a transaction or an item set. Then the
input data set D becomes a data stream X = T1, T2, . . . , Tn of
transactions. Since transactions are sparse vectors, we found
that |Ti| ≪ d. This fact will be exploited for efficient distance
computations. We will use T to denote average transaction
size (T =

∑n
i=1 |Ti|/n). This work focuses on data sets with

d ≪ n. Our work relies on understanding the intricacies of
three main concepts.

A. Clustering
The K-Means algorithm is a fundamental clustering method

[2], [21]. K-Means can be initialized from a random or
approximate solution. Each iteration assigns each point to its
nearest cluster (using any distance measure), and then points
belonging to the same cluster are averaged to get new cluster
centroids. Each iteration gradually improves cluster centroids
until they converge (they do not change). When using the
Euclidean distance, the quality of a clustering model q(C)
is measured by the sum of squared distances from each point
to the cluster where it was assigned [15], [2]. This quantity
is proportional to the average quantization error, also known
as distortion [21]. The quality of a solution is obtained by the
squared error measured as q(C) = 1

n

∑n
i=1 δ(ti, Cj), which

can be computed from R and W as q(C) = q(R,W ) =∑k
j=1Wj

∑d
h=1Rhj .

A different distance measure is needed for categorical
attributes, such as the extended Jaccard distance. The en-
tropy of each cluster E(Cj) is computed by E(Cj) =
−

∑
∀g∈Cj

Njg

Nj
log

Njg

Nj
, where Njg represents the number of

points in cluster j in partition g (induced by the categorical
attribute) and Nj is the total number of points in cluster j.

B. Streaming Data

A continuously ordered sequence of transactions represent-
ing a set of ones or zeroes. Intrinsically, this sequence is
ordered by time, which can either be implicit by arrival time
or explicit by timestamp [8]. Due to this continuous arrival,
the data items of a stream can only be seen once. Analysts
are generally more interested in transactions during a specific
time interval or the most recent ones. This interval analysis
of data streams gave rise to window models, which have been
used in multiple streaming systems [5].

There are several classifications for window models for
streams according to the sliding endpoint, the management
of the records inside the window, and the update interval [5].
The endpoint management can either have a fixed window in
time (fixed endpoints), two sliding endpoints (sliding window
replacing old transactions with new transactions), or one fixed
endpoint (landmark window). The management of records in
the window can either be done using a logical or physical
approach by using a time frame or a number of transactions
to be contained in a window. The update interval represents the
time when the records in the window are analyzed, propagating
them to the clustering model. This update process can be
performed with sliding, non-overlapping, or overlapping win-
dows. When a non-overlapping window approach is used, the
stream is divided into disjoint window intervals. In the over-
lapping window approach, every new transaction will replace
the oldest transaction when the window is being moved across
the data stream. An overlapping window approach results in
a transaction that can be used to compute the model several
times. Without loss of generality, we will define a window with
an interval based on the number of transactions held in mem-
ory to be analyzed from a given stream (physical approach).
Let τ represent the window in which the transactions are
contained. This window is defined as τ = τ1, . . . , τm, where
each sliding non-overlapping subwindow τγ can aggregate at
most ω-transactions. Notice that there is no difference if the
window is assumed to have a time interval. However, the
number of transactions held within a window can be variable.
Also, a physical approach is the most efficient solution if the
streaming environment has a constant flow of transactions and
the timestamp is given during arrival time.

C. In-DBMS Analytics

Practitioners have found difficulty integrating machine
learning algorithms into a DBMS because DBMSs lack ma-
trices and vectors as native data types, linear algebra opera-
tors, and loops [18]. Despite these limitations, previous work
has shown that user-defined functions (UDFs) can be used
to extend the functionality of the DBMS and bypass these



limitations. A UDF is a compiled piece of low-level code (e.g.,
C++) plugged into the DBMS to be called in the SELECT
statement. UDFs are executed in a memory pool managed by
the DBMS. UDFs can be scalar, aggregate, or table-valued.
Scalar UDFs are routines executed record-by-record, which
take as input one row and return one value per row. Aggregate
UDFs maintain the allocated memory through the data stream
resulting from the SELECT statement. Aggregate UDFs can
analyze a set of records in independent parallel processes
merged into a final global aggregation. Aggregate UDFs return
a single row per group. Table-valued functions (TVFs) are a
type of user-defined function that, unlike aggregate UDFs, can
return a table as the final result of the function. In addition
to this, a TVF cannot implicitly manage parallelism. Despite
this lack of “out-of-the-box” parallelism, it is common that
database systems allow the user to implement routines that
support parallelism. TVFs can read and process an input data
set as a single data stream and return a table as output. More
importantly, TVFs allow the developer to manage arrays and
matrices within the memory space assigned to the UDFs.

III. CLUSTERING BINARY DATA STREAMS

In this section, we introduce optimizations for the K-Means
algorithm that leverage the unique features of stream data:
sparse distance computation and efficient model parameter
update with sparse vector operations [16]. We then introduce
K-Means variants to incrementally compute clusters in one
pass, with and without a sliding time window. Finally, we
explain how to integrate these algorithms with UDFs in a
DBMS.

The first optimization to accelerate computations deals with
sparse vectors (mapped from transactions). Sparse distance
computation and simpler sufficient statistics are our main
objectives. When D is a sparse matrix, and d is high, the
distance formula is expensive to compute (primarily because
this computation is performed between each point and all
the centroids). Sparse Euclidean distance computation is op-
timized, without modifying the result, by precomputing the
distance from every Cj to the null vector 0⃗. In order to do
so, a k-dimensional vector ∆ : δj = (⃗0, Cj) is defined.
Thus each δ(ti, Cj) can be computed as δ(ti, Cj) = ∆j +∑
h=1,(ti)h ̸=0((ti)h −Chj)

2 −C2
hj . A similar optimization is

obtained by precomputing the norm of each centroid if the
extended Jaccard distance is desired. Here, each ∆j value
is obtained from the

∑d
h=1 C

2
hj . Thus, the extended Jaccard

distance J(ti, Cj) = 1 − ti·CT
j

|ti|+∆j−ti·CT
j

, where the squared
norm of the ti vector is equal to the transaction size.

Previous research [2] shows that K-Means can be opti-
mized with sufficient statistics to compute the model, which
are summaries of D1, D2, . . . , Dk represented by the three
matrices N ,L, and Q. These matrices contain the sum of
points, the sum of squared points, and the number of points
per cluster, respectively. Fortunately, since we are working
with binary data, it is possible to simplify these computations.
The following lemma, proposed in [16], states that sufficient

statistics for the problem of clustering binary vectors are
simpler than the ones required for clustering numeric data.

Lemma 1. Let D be a set of n transactions of binary
data and D1, D2, . . . , Dk be a partition of D. Then the
sufficient statistics required for computing C,R,W are only
N and L, significantly reducing computation time (an order of
magnitude with incremental learning) and space (to one-half).

Proof. In order to compute W , k counters are needed for
the k subsets of D that are stored in the k × 1 matrix
N and then Wj = Nj/n. For the computation of C, we
use Lj =

∑n
i=1 ti,∀ti ∈ Dj and then Cj = Lj/Nj .

To compute Q, the following formula must be computed:
Qj =

∑n
i=1 diag[tit

t
i] =

∑n
t=1 ti = Lj ,∀ti ∈ Dj . Note

that diag[titti] = ti because x = x2 if x is binary and ti
is a vector of binary numbers. Elements off the diagonal are
ignored for diagonal matrices. Since we know that Q = L, we
conclude that only N and L are required to obtain sufficient
statistics from binary transactions.

Lemma 1 makes it possible to reduce storage to one-half.
Therefore, R can be computed from C without scanning D or
storing Q. However, it is not possible to reduce storage further
because when K-Means determines cluster membership, it
needs to keep a copy of Cj to compute distances and a separate
matrix with Lj to accumulate the point to cluster j. Thus, both
C and L are needed for an Incremental but not for an Online
version. The Online K-Means algorithm, which corresponds
to a variant of K-Means that updates the model with every
new transaction, could keep a single matrix for centroids and
the sum of points. For the remainder of this paper, L is a
d×k matrix and Lj =

∑
∀ti∈Dj

ti and N is k×1 matrix and
Nj = |Dj |. The update formulas for C,R,W are Cj = 1

Nj
Lj ,

Rj = diag[Cj ]− CjC
t
j and Wj =

Nj∑k
j′=1

Nj′
.

A. K-Means Variants for Binary Data Streams

Based on the optimizations introduced above, we present
important K-Means variants for binary data streams. These
variants are the Incremental K-Means (IKM), Multithreaded
Incremental K-Means (IKM-MT), Incremental Window K-
Means (Inc.WinKM), Multithreaded Incremental Window
Means (Inc.WinKM-MT) and the K-Means with multithread-
ing (KM-MT). Consider the binary data points given as
transactions T1, T2, . . . , Tn and k clusters. Notice we assume
points arrive as lists of integers as defined in Section II. The
storage order of dimensions within each transaction does not
affect the correctness of the algorithm as long as transaction
dimensions remain sorted by transaction id i. The output is the
clustering model given by the matrices C,R,W , a partition of
D into D1, D2, ..., Dk and a measure of cluster quality. Let
the nearest neighbor function be defined as NN(C, ti) = J ,
such that δ(ti, CJ) ≤ δ(ti, Cj) for every cluster where J ̸= j.

Let ⊕ be a sparse addition of vectors where only non-zero
entries are added. The Lj⊕ti operation has complexity O(T ).
Similar to this operation, the ti · CTj also takes O(T ) and



is equivalent to a sparse aggregation given by
∑

∀h∈Ti
Chj .

Initializing C is based on a sample of k points. The weights
Wj are initialized to 1/k to avoid early re-seeding (see [15]).

B. Incremental K-Means

Incremental K-Means is our main variant. This version is
a compromise between the Online K-Means algorithm that
updates the model after every new transaction and the Standard
K-Means algorithm that updates it after a full iteration with
n transactions. A fundamental difference with Standard K-
Means is that Incremental K-Means does not iterate until con-
vergence and that the model is updated every n/ψ transactions
(ψ times), each time touching the entirety of C and W . The
setting for ψ, which will be fully described later, is important
for obtaining a good solution and represents a learning rate
for speeding up convergence.

Multithreaded Incremental K-Means: The Incremental K-
Means algorithm does not update the model immediately
following a batch of transactions. During this batch, it is
possible to compute the membership of each transaction in
parallel. The initialization of the algorithm proceeds as in the
Incremental K-Means. However, a set I is initialized to hold
a set of transactions to process per thread (load), and the user
gives a load size Is.

The Expectation step (E step) is computed in batch on a
set of transactions in the stream (ThreadPoolAdd function).
During this step, the Nearest Neighbor computation is obtained
for every point, and the sparse addition of LJ ⊕ Ti and Nj
are computed. An important consideration during the L and
N update is that these arrays must be made thread-safe by
introducing a lock. Updating the model (M step) is performed
every ψ steps. However, this step must wait until all the threads
in the thread pool finish their loads to update the model (Join
function). In contrast to the E step, the operations during the
maximization phase cannot be performed sparsely. Fortunately,
these operations are computed efficiently with the N and
L vectors. If empty clusters are found, the Reseed function
reseeds such clusters with the furthest neighbors of non-empty
clusters, as proposed in [2]. The reseeding points are extracted
from the outliers list stored in a summary table. This summary
table consists of two arrays held in memory for storing the
most frequent item per cluster and the farthest transactions
assigned to a cluster (cluster outliers are represented in red
in the figure). Notice that this summary table is maintained in
O(1) by setting fixed intervals (e.g., every 0.10) for storing the
most frequent items and a fixed number of outlier transactions
per cluster. An additional optimization is that the R and W
matrices can be computed only at the end of the iteration if
no Online q(C) or reseeding is desired.

Updating the Cluster Model: It is prohibitive for K-Means
to iterate until convergence in data streams. Thus, we must
rely on a “learning rate” or ψ to achieve cluster quality
and performance of the Incremental K-Means algorithm. The
learning rate defines the intervals at which the model gets
updated. If ψ = 1, then Incremental K-Means is reduced
to Standard K-Means stopped after just one iteration. The

Timeω

Nτ
Nτ1 Nτm

Timeω

Nτ
Nτ1 Nτm

a) b)

Fig. 1. (a) Sliding Window (b) Jumping Window.

model will only get updated once all the transactions have
been considered. If ψ = n, then the Incremental K-Means
algorithm reduces to Online K-Means. In this case, the model
will be updated with every new transaction. We propose setting
ψ =

√
n to achieve a balance. The rationale behind this setting

is that: (1) It is independent of d and k. (2) A larger data set
size n accelerates convergence since as n→ ∞ then ψ → ∞.
(3) The number of points used to recompute centroids is the
same as the total number of times they are updated.

The model can also be updated in fixed intervals using a
logarithmic learning rate. This learning rate will update less
often than the

√
n. An increasing interval, depending on the

size of the data set, can be obtained by using a geometric rate
(e.g., 20, 21, 22, ...). These learning rates are also independent
of d or k. An important characteristic of the geometric learning
rate is that the algorithm would update the model in the
early stages of the data stream more frequently. Eventually,
the updated intervals will keep increasing the gap between
updates. At some point, increasing the learning rate will not
accelerate convergence significantly, and the rate can remain
constant. This occurs when the error of the model gets reduced
within a desired threshold. An advantage of the geometric
learning rate is that n is not needed in advance to obtain the
update intervals, unlike the

√
n and log(n) learning rates.

C. Incremental Window K-Means

The introduction of time decay requires that we modify
our Incremental K-Means algorithm to work within a window
of transactions of the data stream X . The version is similar
to the incremental K-Means in that it does not iterate until
convergence. The model is updated every n/ψ transactions.
In contrast, Incremental Window K-Means (IncWinKM) only
considers the transactions in a current window for estimating
the output matrices C, R, and W . A multithreaded version
of this algorithm is possible by adding the ThreadPoolAdd
and Join functions to the proposed algorithm (adding a lock
to the Lτ and Nτ data structures is required).

The window is managed as a fixed number of transactions
that can be held in memory within an interval τ . The sufficient
statistics of the window are stored in N and L. However,
m subwindows with a smaller number of transactions w are
used to displace the window in the current time (see Figure
1(a). Consequently, a global array with sufficient statistics of
the whole window and a set of partial subwindows containing
only a few transactions exists. The proposed algorithm initially
obtains all the sufficient statistics of the incoming transactions
and stores them in the available subwindow. When all the
subwindows become full of transactions, the subwindow with



the shortest average transaction arrival time is purged, and then
it starts receiving new transactions. Notice that prior to the
reset of the selected subwindow, the values of the transactions
accumulated in such an interval are discarded from the global
window. Once the subwindow with the oldest transactions
has been subtracted from the global aggregation, the new
transaction is aggregated to the empty subwindow and the
general aggregation. The final result of this process is a set
of overlapping windows. The model will then be evaluated
like the incremental K-Means algorithm. However, the C,R,
and W matrices will be obtained with the transactions in the
current window. If reseeding is required, this should be done
with transactions in the current window. We also developed a
windowed version of Standard K-means for experimental com-
parison purposes, exploiting sufficient statistics to accelerate
computation.

D. Integrating K-Means Variants with UDFs

Our KM variations can be programmed inside a DBMS by
exploiting its extensibility mechanisms such as user-defined
functions (UDFs). UDFs allow low level C code (C# in
our case) routines to manage memory in a manner that is
more efficient for the machine learning algorithm, leaving I/O
for SQL. Thus, the incremental KM algorithm, the window
variant, and the multithreaded versions can leverage UDFs
to process sufficient statistics and cluster generation in one
pass. The data set X is physically sorted by i,h guaranteeing
that all dimensions of a sparse transaction are contiguous,
for more efficient I/O. As a result, X is being read by the
user-defined function as a data stream of sparse contiguous
transactions. The best UDF fit for implementing the K-Means
variants is a table-valued function (TVF) since the results will
be the centroids and transaction membership. Even though
an aggregate UDF allows updating vectors and matrices in
RAM during the data stream processing, it is difficult to
synchronize their threads since the data stream is partitioned
into independent substreams which prevent efficiently updat-
ing the model in a consistent and isolated manner (i.e. shared
memory and locking would be necessary). Initially, the TVF
creates a continuous stream by querying the table with a
SELECT statement. Thereafter, every transaction is read once
and processed to updated sufficient statistics and recompute
the model. The algorithm relies on allocating all the incoming
transactions t into a temporary dynamic array T , which is also
allocated in a list of transactions I .

A workload for each thread must be maintained in a list to
parallelize the E step. Once the list of transactions is equal
to the desired thread load, the algorithm performs an E step
in an independent thread for aggregating every transaction
in the load to the current N and L vectors. Sparse and
distance computations take place here. If a window is used,
the algorithm must evaluate if some transactions need to be
discarded from the global N and L vectors and determine in
which subwindow the new transaction must be stored. The
shared data structures for sufficient statistics (N ,L, and all
τ ) must be updated by initially obtaining a lock to guarantee

correct results (isolation). Once each thread has been created,
the background threads are added to a thread pool until a
fixed number of threads (usually the number of cores in the
CPU) is reached. Once the fixed number of threads has been
reached, the system allocates a queue (with waiting loads) to
be processed by reusing idle threads. As a result, a maximum
number of threads is created, and then they are used to avoid
overhead in thread creation. Based on the learning rate given
by the users as input to the UDF, the algorithm will perform an
update of the model every n/ψ times. Therefore, the algorithm
should wait for all the threads to finish their executions until it
can proceed to update the model. The final output of the model,
the C,R, and W matrices are written to an output table. There
are multiple challenges when performing this integration; the
first challenge is efficiently managing the memory allocations
because of the limited memory pool allowed by the DBMS
engine when executing UDFs. The DBMS engine may limit
the algorithm’s output. Possible output variations may include
row partitioning, user-defined objects (encapsulated binary
objects), or external resources (such as pipes or file writing)
that can be used to output the final model. Notice that even
though the algorithm does not change when integrating into
a UDF, memory, thread management, and output resources
become a challenge for the algorithm. An advantage of the
Incremental K-Means algorithm and the window variants is
that the space requirements of the algorithm are limited to
having the N , L vectors and R, C, and W matrices. Finally,
the UDF is called from a SELECT statement. The input of
the user-defined function requires the user to specify the table
to be scanned, d (dimensionality), k (# of clusters), and the
learning rate. The algorithm’s output is a table containing the
C, R, and W matrices.

SELECT * FROM
BKM_TVF(’T8I4D100Kd100’ -- data set

,100 -- d
,3 -- k
,1 -- learning rate );

Fig. 2. SQL query for IKM.

E. Time Complexity Analysis

Our proposed K-Means variants have an overall time com-
plexity of O(Tkn), where T is the average transaction size.
However, T ≪ d accelerates the computations. Reseeding
using outliers, if desired, can be done in time O(k). The top
items and outlier data structures can be updated in O(1) by
using fixed intervals. Matrices L,C require O(dk) space and
N ,W require O(k). Since R is derived from C, that space
is not needed. In short, space requirements are O(dk), and
time complexity is O(kn) for sparse binary vectors. Note that
the space requirements for the Incremental Window K-Means
vary from the Incremental K-Means.

Window management requires an additional O(dkm) space
for managing the transactions accumulated within the current
window. Given that m represents the total amount of subwin-
dows that accumulate a maximum of ω-transactions. The time



TABLE I
REAL DATA SETS.

Data set n d T Classes
car 1728 21 7 4
heart 655 22 18 2
house 435 45 16 2
nursery 12960 27 9 3
postoperative 90 24 9 3

complexity is still O(kn). Despite this, the algorithm contains
a larger hidden constant than the Incremental K-Means for the
time required to manage the window.

IV. EXPERIMENTAL EVALUATION

This section evaluates the proposed KM variants and their
effects on performance and cluster quality. The solution’s
quality was evaluated using q(C) for the squared error. We
also used entropy E(C) for cluster quality in real data sets. We
decided to incorporate sufficient statistics and sparse matrix
optimizations in all the algorithms for a fair performance
evaluation. All the times are presented in seconds. The ex-
periments were run on a virtual instance with four virtual
cores, 16 GB RAM, and 1 TB of hard disk space. All the
algorithms were programmed with Table-Valued Functions
(TVFs) in Microsoft SQL Server using the C# language. TVFs
were called in SELECT statements, as explained above. All
the algorithms require k as an input parameter. Standard K-
Means also requires a tolerance error for q(C), which was set
to ϵ = 1.0e − 4. Finally, the incremental algorithms require
setting the ψ value, and the window Incremental K-means
algorithm requires setting the number of subwindows and the
number of transactions to aggregate per subwindow.

A. Cluster Quality

We studied cluster quality using five data sets from the UCI
Data Set repository from different domains. A summary of the
data sets is presented in Table I, showing their dimensions,
sparsity, and class labels (to compute entropy). Our results
present the model with the smallest squared error from 30
runs. We also calculated the chosen model’s entropy to observe
the quality of the clusters. The data sets were discretized and
transformed into a binary data stream X .

The experiments’ results evaluating cluster quality are
shown in Figure 3. The Euclidean distance results present
clusters showing slightly better quality than those found by
the Jaccard coefficient. The Jaccard coefficient-based cluster-
ing obtains better quality clusters in a few data sets when
k = 2. Hence, our experiments show that the quality of
the solution is significantly similar when using either of
these two distance measures. Unfortunately, due to space
constraints, performance times with the Jaccard coefficient
are not included. Still, the Euclidean distance computation is
slightly faster (it excludes a division) with a similar E(C).
Figure 4 shows squared error plots where a lower squared
error is desirable. Due to lack of space, we omit plots for
Standard K-Means and plots with Jaccard distance, but we
can mention that the Incremental K-means variant produces
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Fig. 3. Entropy with Jaccard (J) and Euclidean (E) distances.
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Fig. 4. Quality of clusters with real data sets (squared error).

higher quality clusters than Standard K-Means. The Window
KM algorithm variants were executed with parameters set to
m = 10 and ω = ⌈n ∗ 0.10/m⌉. We ran all algorithms a
few times, varying k, to determine a suitable k value. In the
car data set, it is clear that the squared error decreases as the
number of clusters grows in all the algorithms. This data set
is unbalanced for one of the classes (most of the transactions
of the unbalanced class appear at the end of the stream). As a
result, the Incremental K-Means and the window versions tend
to obtain a better-squared error than Standard K-Means. The
reason behind this behavior is that the model is updated with
the most recent data, lowering the squared error with every
incoming transaction. The Standard K-Means re-evaluates old



TABLE II
REAL DATA SETS VARYING ψ.

IKM
1 n sqrt(n) geometric ψ Log(n)

Data set q(C) E(C) q(C) E(C) q(C) E(C) q(C) E(C) q(C) E(C)
car 3.33E-06 3.11E-02 3.90E-06 4.02E-02 3.22E-06 3.82E-02 3.28E-06 3.42E-02 3.23E-06 2.79E-02

heart 6.34E-06 3.23E-02 6.37E-06 3.21E-02 6.23E-06 3.19E-02 6.06E-06 3.22E-02 6.19E-06 3.20E-02
house 7.96E-06 1.70E-02 1.36E-05 3.21E-02 8.41E-06 1.55E-02 7.96E-06 1.34E-02 7.62E-06 1.33E-02

nursery 4.53E-07 5.70E-02 5.21E-07 5.72E-02 4.45E-07 4.88E-02 4.58E-07 5.60E-02 4.50E-07 5.66E-02
post operative 4.74E-05 3.22E-02 5.87E-05 3.27E-02 4.66E-05 3.16E-02 4.69E-05 3.18E-02 4.61E-05 3.15E-02

transactions and is less sensitive to the latest transactions. The
standard Window K-Means tends to overfit the data in a small
window. As a result, it obtains the lowest squared error. In the
heart data set, it is observed that as the number of clusters
increases, the squared error decreases. The Standard K-Means
algorithm finds the best solution. However, the solution of the
incremental K-Means is within our tolerance threshold. The
WKM found the best solution, but the IncWinKM is within
our tolerance value, too. The voting data set behaves similarly
to the heart data set because the squared error decreases as
the number of clusters increases. The IncWinKM produces
a less sensitive model to new data because of the sliding
window approach. The Window KM is highly sensitive to
the window size because the disjoint window approach does
not consider overlapping data from the previous window. The
Window KM algorithm slowly retires older data. While the
incremental KM algorithm is sensitive to recent data (when
calculating the current model), the window versions of the
standard KM and the incremental KM are more sensitive to
the transactions in the Window. The nursery data set contains
the largest number of rows of the real data sets. An interesting
result of this data set is that the squared error improves as the
number of clusters increases. This behavior is also noticed
in the window versions of the algorithm. The rationale is that
the transactions are not skewed, which delivers ideal results. In
addition, the Incremental KM reports similar or better results
than the Standard KM. The last data set is also the smallest
one. The postoperative data set has a smaller error when the
amount of clusters increases, except in the Standard Window
K-Means. This behavior is explained by the small window size
(ω = 1). Generally, the standard algorithm obtains better so-
lutions than the incremental K-Means algorithm. Despite this,
the squared difference is relatively small. Also, the Incremental
Window K-Means is less sensitive to new transactions in the
current stream. Even though we did not include entropy plots
(due to space constraints), we noticed that the best-squared
error solution did not obtain the best E(C) model. We also
noticed that the total model entropy is slightly better for the
incremental variant.

Table II exhibits a set of experiments where the model
update rate defined by the learning rate ψ is modified in the
incremental K-Means. In the car data set, the ψ value that
obtained a better result is the

√
n. However, the geometric

ψ and the log(n) had a similar squared error. This trend
is similar to the one observed in the nursery data set. The
geometric ψ found the smallest squared error in the heart data
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Fig. 5. Varying number of threads and load per thread.

set. The log(n) learning rates in the house data set obtains
better results. In summary, the

√
n, geometric ψ and log(n)

rates obtain the best results of these data sets. However, a ψ
value equivalent to

√
n looks like a balanced alternative for

the learning rate.
We conducted more experiments to verify the performance

of the Incremental KM when varying ψ. The experiments in
Table III show that updating the model more often increases
the total performance time. When ψ = 1, the Incremental
K-Means algorithm turns into the Standard K-Means with
a single iteration. This learning rate performs the fastest in
most of the data sets. Despite this, the results have a high
squared error. When ψ = n, the algorithm turns into the Online
K-Means. Therefore the model is updated for every new
transaction. The quality of the squared error of the resulting
model is not better than a learning rate equal to

√
n, geometric

ψ, or log(n). The
√
n and log n learning rates show similar

behavior. An important observation is that when the learning
rate is geometrical, the algorithm seems to be slower than
or equal to the

√
n and log(n) learning rates. The rationale is

that the geometric learning rate starts updating the model quite
frequently during the first rows, and then it spaces the updates
of the model once the number of transactions increases. This
property can be observed in the nursery data sets, where the
performance is closer to the fastest learning rate.

B. Performance Evaluation

In addition to the real data sets, we studied the scalability
of our algorithms using synthetic data sets generated by the
IBM transaction data generator to obtain some performance



TABLE III
PERFORMANCE WHEN VARYING ψ.

IKM
Data set 1 n sqrt(n) geometric ψ Log(n)

q(C) seconds seconds seconds seconds seconds
car 0.2813 0.0781 0.1719 0.1719 0.1719

heart 0.0625 0.1250 0.0781 0.0781 0.0625
house 0.0625 0.1250 0.0625 0.0625 0.0781

nursery 1.4063 2.5000 1.4063 1.3906 1.3750
post operative 0.0156 0.0156 0.0001 0.0156 0.0156

TABLE IV
TRANSACTIONAL DATA SETS TIME EXPERIMENTS FOR 10 MODELS WHEN

VARYING n, d (TIME IN SECONDS).

Varying data set size T = 4, d = 10, k = 10.

Varying number of dimensions T = 4, n = 100k, k = 10.

measurements. The configuration setting was as follows: The
number of transactions was n = 100k. The average transaction
size T was 4, 8, 10, and 20. Pattern length (I) was one-half
of the transaction length. Dimensionality d was 10, 100, and
1000. The rest of the parameters were kept at their defaults
(average rule confidence=0.25, correlation=0.75). These data
sets represent very sparse matrices and very high dimensional
data. We did not expect to find any significant clusters, but we
wanted to try the algorithms to observe their scalability.

Figure 5 presents performance experiments varying the
thread count and transaction loads in the T4I2D100Kd10 data
set. The results show that increasing the number of threads will
significantly improve when the experiments with two threads
per core are reached. Once the number of threads increases
beyond this, the performance improvement is minimal or
even gets worse. Similarly, the transaction load has a similar
“bathtub” trend, in which the best results are obtained with a
load of 256 transactions per thread. We use this setting for the
rest of the experiments with multithreading (load = 256 and

threads = 4).
The set of plots in Table IV shows experiments for ten

computed parallel models when varying the average transac-
tion size, the data set size, the number of dimensions, and
the number of clusters for KM and all the variants. It is
important to notice that even though the comparison is made
between equivalent algorithms (e.g., WKM and IncWinKM),
we included the eight trends in the same plot. Plot (a) shows
that all the algorithms have a linear increase when the average
transaction size increases. However, this increase does occur
at a high rate due to the optimization for sparse transactions.
Despite this optimization, this increase is not insignificant
and cannot be neglected. Plot (b) presents the trends when
increasing the number of transactions in the data set. Notice
that all the algorithms present linear scalability. In addition,
all the incremental versions perform at least half the time of
their corresponding KM algorithm. Plot (c) shows the trend
close to linear when increasing the number of dimensions.
The trend of both algorithms KM and incremental is similar
for the window and regular versions. This is because the
model update takes O(d), and it takes the same time in all
the algorithms. However, the trend of the Standard K-Means
algorithm seems to remain constant when d = 1000, and
this is because the squared error of the Standard K-Means
in the data set is already within the tolerance value and is
converging in the first iteration. As a result, the traditional
K-Means is faster since it only performs an update operation
of the model at the end of the execution. The last plot (d)
shows the linear scalability concerning the number of clusters.
Notice that the incremental algorithm always performs faster
than the standard KM. Also, notice that in all the plots,
the multithreaded version has a 25% to 30% speed up for
the non-threaded version. Also, the equivalent multithreaded
versions (e.g., IKM-MT and IncWinKM-MT) take almost the
same time. As a result, the multithreaded versions significantly
reduce window management time. The improvement is from
66% to 75% of the non-threaded version’s performance.

Table V shows experiments on data sets larger than any
previous plots. The objectives of these experiments are to
observe the trend in data sets on the order of millions and to
observe the average number of transactions that are processed
by second. The results confirm the findings observed in the
smaller data sets. The linear scalability when increasing the
number of points is proportional in magnitude to the increase
in time. On the other hand, the increases in the dimensions and
the average transaction size have a smaller but linear, constant
increase. The number of clusters also linearly increases the
execution time. However, the impact of increasing the number
of clusters is reduced by optimizing the ∆ vector, as observed
in the experiments. The rate of the average transactions per
second is closely related to T and d.

Finally, Table VI shows the result in the performance
times when modifying the window size. The increase was in
the number of subwindows and the number of transactions
aggregated in a subwindow. The experiments show that the
algorithm’s performance decreases when the number of sub-



windows is augmented. However, this window management
time is almost negligible due to the multithreaded version. On
the other hand, the algorithm did not have any effect when
the number of transactions per window was increased. The
rationale behind this is that the aggregation can be performed
efficiently. The experiments show similar trends in Table V.

C. Discussion

In a nutshell, our multithreaded implementations were the
fastest in their class without resulting in worst-quality clusters.
In particular, the Incremental Window K-Means algorithm
showed similar or better quality clusters than those of the
Standard K-Means. Furthermore, the Standard K-Means was
always the slowest algorithm, taking at least two or three
times longer than the incremental K-Means until it found con-
vergence. In several cases, the Standard K-Means algorithm
obtained the best solution with real data sets. This suggests
that some clustering problems are difficult enough to require
several scans over the data set to find a good solution. Also,
we found no sensitivity to the initialization of C, as when
clustering numeric data. This suggests we need more sophisti-
cated initialization techniques to avoid getting stuck in locally
optimal solutions. On the other hand, choosing the correct
learning rate, ψ, impacts quality and performance. As we
observed, the proposed

√
n learning rate showed the best result

in most cases. However, the geometric and the logarithmic ψ
values represent good alternatives. Thus, practitioners could be
motivated to use the geometric and logarithmic ψ depending
on their performance needs and sensibility to cluster quality.

Similar to the Incremental KM, the Incremental Window
KM outperforms the time performance of the Standard Win-
dow KM. The results showed that the solution obtained by
the Incremental Window K-Means is similar to the Standard
Window KM. However, the Standard Window KM takes at
least two or three times longer than Incremental Window
KM. The multithreaded versions obtain a significant speed-
up between equivalent algorithms (e.g., IKM and IKM-MT).
However, multithreading in the window versions makes them
comparable to the non-window versions. Also, the window
size greatly impacts the quality of the results. A smaller
window allows the model to evolve faster and updates the
weights to reflect only the latest transactions. In contrast, a
larger window keeps the influence of older transactions in the
centroids, resulting in a less sensitive model to time decay.
A similar behavior was observed by tuning the number of
subwindows, where a larger number of subwindows allows
the sliding window algorithm to discard fewer transactions
at a time resulting in transactions having a longer impact on
centroid computation. Finally, many subwindows resulted in
significant overhead due to the time required to manage them.
On the bright side, our multithreading version significantly
reduces the cost of window management to the point that it
is almost negligible. Thus, allowing data analysts to tune this
granularity level to match their time decay modeling needs.

V. RELATED WORK

Traditional clustering algorithms have difficulty analyzing
high-velocity data [8]. The Scalable K-Means algorithm to
cluster large data sets is introduced in [2]. Scalable K-Means
accumulates the previous sufficient statistics, unlike the Stan-
dard Window K-Means, which only uses the transactions in
the current window for obtaining the model.

Faster CPUs and ample RAM have sparked a renewed
interest in pushing I/O intensive analytic computations in
Big Data Systems via SQL [7], [12], [14], [25]. Specialized
database systems, such as [4], [19], have been developed
to manage stream data. Nevertheless, these systems require
modifying the system model and creating a SQL extension to
monitor and manage data streams. In contrast, our research
relies on traditional DBMS, where we have implemented
and deployed our proposed algorithms with UDFs. Previous
research (see [18]) has proposed exploiting UDFs to compute
several machine learning models inside a DBMS. Likewise,
the authors of [17] and [20] propose optimization for distance
computations within the DBMS. Extending such algorithms
for stream processing is a challenging task.

VI. CONCLUSIONS

This article proposed several improvements for K-Means
clustering of binary data streams. These improvements include
the computation of sufficient statistics, efficient nearest cluster
computation, sparse operations, and multithreading. The near-
est cluster computation is accelerated by using a precomputed
distance vector for the Euclidean and Jaccard distances. We
show that sufficient statistics for binary data are simpler than
numeric data. The optimizations were incorporated into the
Incremental K-Means algorithm and the Incremental Win-
dow K-Means algorithm. These one-pass algorithms were
implemented within a traditional DBMS with UDFs (TVFs)
enabling in-database stream processing. Moreover, the distance
computation is optimized for sparse binary vectors. The pro-
posed improvements are relatively easy to incorporate into
the standard K-Means. An extensive experimental evaluation
showed the pros and cons of our proposed algorithms and
their speed. The proposed Incremental K-Means variant is
faster than the standard K-Means while returning solutions of
comparable quality. Also, the Euclidean and Jaccard distances
showed similar Entropy results when using the Incremental
approach. Similarly, the Incremental Window K-Means was
faster than the Standard Window K-Means with a similar qual-
ity in the results. Both incremental algorithms exhibited linear
scalability. We found that a smaller window size decreases the
quality of results because the centroids are updated with only
a few transactions. Despite these limitations, there is a trade-
off between the size of the window, the amount of memory
required for holding sufficient statistics, and the amount of
time the algorithm requires to manage the subwindows. We
studied several learning rates for Incremental K-Means, with√
n being the best for most data sets.
Our future work includes comparing against existing open

source K-Means implementations, exploring a variation of the



TABLE V
IKM AND INC.WINKM PERFORMANCE AND STREAM SPEED (IN SECONDS) WHEN VARYING k, d AND n.

k=5 k=10
IKM-MT Inc.WinKM-MT IKM-MT Inc.WinKM-MT

Data set n d T time in secs. transactions per sec. time in secs. transactions per sec. time in secs. transactions per sec. time in secs. transactions per sec.
1MD10 1M 10 4 8 89798 8 89798 8 89465 8 89798
1MD50 1M 50 2 6 128419 6 127709 6 128419 6 127709

1MD100 1M 100 4 10 73553 10 73222 10 73442 10 73332
10MD10 10M 10 4 85 89023 85 89023 85 88762 85 89023
10MD50 10M 50 2 57 127500 57 127045 57 127115 57 127150

10MD100 10M 100 4 105 72364 105 72795 105 72536 105 72471

TABLE VI
IKM-MT AND INC.WINKM-MT PERFORMANCE AND STREAM SPEED (IN SECONDS) WHEN VARYING THE WINDOW SIZE (m AND ω).

ω=1000 ω=10000
m=1000 m=10000 m=1000 m=10000

Data set n d WKM-MT Inc.WinKM-MT WKM-MT Inc.WinKM-MT WKM-MT Inc.WinKM-MT WKM-MT Inc.WinKM-MT
1MD10 1M 10 15 7 15 7 15 7 15 7
1MD50 1M 50 10 5 10 5 10 5 10 5

1MD100 1M 100 18 9 18 9 19 9 18 9
10MD10 10M 10 174 87 176 87 175 87 175 87
10MD50 10M 50 117 59 118 59 118 59 118 59

10MD100 10M 100 217 108 217 108 218 108 218 108

triangle inequality to speed up the selection of the nearest
cluster. Furthermore, we are looking at a mixed metric for
model evaluation and selection to improve the quality of
the selected models. Moreover, we are considering possible
variations of the incremental algorithm, including evaluating
different reseeding strategies for outlier transactions. A longer-
term goal is taking advantage of the distributed nature of
sufficient statistics to analyze streams in parallel in a cluster.
Further acceleration of Incremental K-Means seems possible
by using approximation, a mechanism that will introduce a
tradeoff between performance and cluster quality. Ultimately,
we are looking to apply to work to continuous data, which is
a more complicated and general problem.
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