
Discovering Similar Spike Patterns in High
Dimensional Biomedical Signals

Sikder Tahsin Al-Amin
Department of Computer Science

University of Houston
USA

Robin Varghese
Department of Computer Science

University of Houston
USA

David Lloyd
Department of Biomedical Engineering

University of Houston
USA

Maria A. Gonzalez-Gonzalez
Department of Biomedical Engineering

University of Houston
USA

Mario I. Romero-Ortega
Department of Biomedical Engineering

University of Houston
USA

Carlos Ordonez
Department of Computer Science

University of Houston
USA

Abstract—We discuss our progress towards solving a chal-
lenging biomedical problem: identifying similar patterns among
multiple physiological nerve signals hidden in high throughput
data, collected from micro electrical sensors implanted in sev-
eral animal organs. The problem is difficult because patterns
come as spikes within millisecond time-windows, data sets have
high dimensionality and there is background electrical noise.
A previous analytic system discovers patterns combining PCA
dimensionality reduction and K-means clustering, which is slow
and misses important patterns hidden by noise. Moreover, it
requires reading the data set several times and it requires
multiple languages and tools. With such limitations in mind, we
present an improved, integrated system that effectively allows the
discovery of more accurate patterns, with automated algorithm
parameter tuning, by learning model parameters incrementally
exploiting summarization. Our integrated solution combines
signal filtering, variable construction (feature engineering) and
multidimensional data summarization, for a tighter and more
effective integration of PCA and K-means clustering. We present
preliminary experiments on signals collected from key nerves in
a rat. We show our method discovers more patterns in larger
time-windows, with better noise filtering, taking less time. In the
future, we plan to link signal patterns to specific physiological
functions, paving the way for innovative medical treatment via
nerve stimulation.

I. INTRODUCTION

Analyzing noisy time series data and finding patterns within
them is a challenge in Big Data, especially when applied
in Health and Medicine. Data sets can come from multiple
sources (e.g. devices, sensors), and there is no explicit method
to analyze these data sets together. Data also may not come at
the same timestamp from each channel, creating unbalanced
time series data across sources. Finding patterns from these
data sets is also difficult as the signals include electrical
and motion noise that overlap between channels. Furthermore
these data sets can be huge (in the order of GB, TB) and
current approaches require reading the data set several times.
As a result, a major barrier in processing these data sets

is RAM limitations. By utilizing many significantly smaller
data summarizations, our incremental algorithm overcomes
the limitation of RAM capacity. Filtering out noise in the
data and detecting spikes from the filtered data requires 2
passes through the data set. Both steps are critical to achieve
an accurate model and interpretation of the model. Filtering
noise is necessary when working with animal neural signals
as many dimensions result in being highly correlated as
shown in Section IV. The noise can be best attributed to
overlapping electronic noise in the signal across channels
creating inaccurate correlations. Once noise is removed, spikes
can be detected more accurately. In our improved algorithm
because the data set is summarized incrementally, filtering
noise and detecting spikes is done together in one pass
and is further expanded on in Section III. Previous systems
and their implemented algorithms for discovering patterns in
biomedical signals, may require the use of different languages
and proprietary software. One system for detecting patterns in
neuron signals from animals [5] [17], is designed with many
different tools and programming languages such as Plexon,
MATLAB and Python.

We present a unified contemporary system completely de-
signed in Python. Python is the preferred language in Big Data
and Data Science because of it is general-purpose capabilities,
maintains a high level of abstraction, and is not proprietary.
Our system combines the improved algorithms for signal fil-
tering and spike detection, variable selection through Singular
Value Decomposition (SVD), and and data summarization,
for an overall more effective implementation of PCA and K-
means clustering, on patterns found in neural signals from
Normotensive Wistar-Kyoto (WKY) rats. We perform singular
value decomposition (SVD) on the correlation matrix to do
variable selection as a variant calculation of PCA dimension-
ality reduction. Therefore in keeping the original variables,
we can convey more accurate interpretations and meaningful
analysis than the principal components. Then on the reduced
dimensions, using a clustering algorithm such as K-means , k
spikes are classified for each channel.978-1-6654-8045-1/22/$31.00 ©2022 IEEE



The simultaneous activity of different organs is fundamental
to understanding the complex physiology of an individual as
a system and designing therapeutic strategies when detecting
failures of any component, are both prominent biomedical
challenges seen today. Finding signal patterns of activity from
different organs in physiology highly suggest their functional
connectivity. Conventional approaches read the data set several
times, testing different parameters to discover patterns using
a combination of dimensionality reduction and clustering
algorithms, which is time-consuming, is subject of bias, and
often do not provide with accurate results.

A. Long-term Benefits in Biomedicine

Understanding the inter-organ communication will benefit
medical knowledge, biomedical technology, thereby improving
health care. One of the main aims in Biomedicine is the design
of bi-directional or closed-loop systems that allow the sensing
in real time of signal changes associated to pathologies. By
detecting and deciphering these signals, a modulatory action
can be applied as a response to provide with a therapeutic
effect. Our research will benefit the medical community in
many ways. The implementation of new technologies with
prophylactic benefits based on multi-organ state measurements
and dysfunctional patterns detection, is a matter of improving
the quality of new treatments and increase the life expectancy.
On the other hand, it will benefit patients, the end user of
biomedical technology. For instance, the pacemaker, invented
in 1958, has saved millions of lives since then, and has
extended the life expectancy for those patients suffering of
arrhythmias. On these times it is imperative to move to the
next step and implement integrative-multiorgan activity-based
technologies, which is promising to design patient-specific
therapies, instead of treating a disease that often presents
different medical signs among patients.

B. Contribution

This work aims to efficiently analyze multiple continuous
signals over time and detect signal patterns (spikes) across
them with a common timestamp. We use two fundamental
machine learning techniques: dimensionality reduction and
clustering. Dimensionality reduction is needed to make cluster-
ing work and clustering finds similar patterns. Our contribution
stems from combining clustering and PCA in a new way to
detect new patterns and more efficient processing for big data,
exploiting data summarization via sufficient statistics to filter
data and compute ML models more efficiently.

II. DEFINITIONS

A. General

We define {D1, D2, ..., DM} as M spliced raw data sets,
which can be intuitively understood as M streams with times-
tamped values. In our biomedical problem, they represent M
signals collected from M channels. Each Dj is a large data set
and N represents the maximum number of rows across chan-
nels. We assume |Dj | ≈ N rows. That is, Nj = |Dj | = O(N).
A signal measurement in each channel is represented by a pair,

(tji, vji), where tji is the collected timestamp and vji is its
measured signal value (for j = 1, ...,M and i = 1, .., N ).
Intuitively, the data set has about N rows and 2M columns,
where each row corresponds to one matched timestamp and
M real values.

B. Biomedical Pre-Processing

Since the raw, unfiltered, signals {D1, D2, ..., DM} include
noise, we need to filter the signals in each M channel and
detect n peaks (spikes) per channel with a window of size
d, resulting in a d-dimensional (transformed) data set. We
define the filtered data sets as X1, X2, ..., XM , represented as
matrices. Thereafter, these M matrices are used as the input to
machine learning algorithms. Each of these filtered data sets
will have nj rows (spikes), where nj = O(n) (n << N )
and d dimensions (window size). Therefore, n is the data set
size for ML analysis. These data sets (X1, X2, ..., XM ) will be
the input for our algorithm. The output will be M clustering
models, corresponding to the M channels, where each model
is a set of k clusters of the nj input vectors. To simplify
interpretation k is uniform across channels.

III. ALGORITHMS AND SYSTEMS

A. Background Of Algorithms

Real signal data sets, contain noise that will interfere with
the learning of machine learning models. The model will
falsely contribute this noise when generalizing to the data set,
resulting in an inaccurate classification of a pattern. In the case
of neural signals from WKY rats, overlapping patterns of noise
across channels create inaccurate correlations and difficulty
detecting spikes. This emphasizes the need of some dimen-
sionality reduction method to filter noise and detect spikes.
The most common and robust method being Principal Com-
ponent Analysis (PCA). In PCA, dimensionality is reduced
to principal components and computations are performed on
the respective components, losing original interpretation of the
data. We expand our improvement in dimensionality reduction
in further detail below.

Although a plethora of clustering algorithms exist and are
being improved upon daily in machine learning, K-means
remains to be the predominant or workhorse clustering algo-
rithm. K-means simplicity in algorithm, flexibility, and easy
visualization and interpretation of clusters is preferred over
possibly more accurate, outlier sensitive, slower algorithms.
Other than the assumption of spherical like clusters, K-means
is more robust than other clustering algorithms. Other algo-
rithms like DBSCAN, may require assumptions of statistical
properties of the data set, such as being dense or sparse.

B. Previous Algorithms and Systems

First, we discuss the previous algorithm and system [5], [17]
to detect patterns from neuron signals in animals. The main
steps of the algorithm are below:

1) Filtering Out Noise In Data. (Plexon)
2) Detecting Spikes From Filtered Data. (MATLAB)
3) Reduce Dimensions to k principal components. (Python)



(a) Step 1: Compute Correla-
tion Matrix

(b) Step 2: Filter Noise And
Detect Spikes

(c) Step 3: Reduce Di-
mensions (d) Cluster On Reduced Dimensions

Fig. 1: Steps of the new algorithm

4) Clustering Top k Principal Components. (Python)
The first step was to filter the noise in the raw data set

obtained from API’s accessible through Plexon, a propietary
software. However, it was assumed that there was only one
data set to hold the timestamp and their values for each
channel. The next step was to detect spikes from the filtered
data set and create M new data sets (X1...XM ), corresponding
to the M channels. Each M data sets are of size n×d , where
n corresponds to the number of spikes, and d is size of the
window capturing the pattern. A spike is represented as 1× d
row-vector of fixed window size. Then, the final steps were
applying PCA to reduce the dimensions of the spikes (vectors)
and running K-means clustering on the principal components
to detect the spikes.

In Section III-C, we propose a new algorithm in identifying
patterns from neuron signals in animals more efficiently,
while preserving interpretation by keeping the original values.
Our system is solely implemented in Python and is more
contemporary, optimized and efficient in finding new patterns
from raw signals while preserving the original signal values.
In the next part, we will discuss our solution in detail.

C. Our Improved Algorithms and Systems

Here, we discuss our proposed solution. The main steps of
the solution are given below.

1) Compute Correlation Matrix Amongst Channels.
(Python)

2) Filter Noise And Detect Spikes. (Python)
3) Reduce Dimensions to d̂ Dimensions. (Python)
4) Cluster d̂ Dimensions. (Python)
1) Computing correlations between channels: To get initial

exploratory analysis of the channels and how they are cor-
related, we compute the correlations based on the split raw
data sets ({D1, D2, ..., DM}). Raw data sets have a lot of

noise and it is important to get an idea of how correlated
they are, so we can eliminate the noise and analyze on the
signal spikes. As the raw data set size is extremely large
(Nj = O(N)), we can use our improved incremental algorithm
[3] to compute the correlation matrix efficiently. The main
idea is that we compute a summarization matrix based on
the combined raw data sets by multiplying the combined raw
data set (represented as a matrix) with its transpose for each
channel (e.g. D1D

T
1 , ..., DMD

T
M ). We compute this using sum

of vector outer products while reading the data set by blocks.
After our summarization matrix is computed, we compute the
correlation matrix on it. This way, even if the size of the raw
data is larger than the main memory, we can still compute it
accurately and efficiently using smaller summarizations. Since
our improved algorithm summarizes the data set incrementally,
it is necessary to read the raw data set only once, a significant
advantage over previous algorithms. Additionally, our system
has the advantage of being a unified and contemporary solu-
tion, in contrast to previous systems constructed of different
languages and proprietary software. The data pipeline from
reading the input data set, to outputting a machine learning
model, is programmed entirely in Python.

2) Filtering and detecting spikes: From the highly cor-
related channels from the previous step, we filter the noise
and detect the spikes (peaks). In comparison to the previous
approach, here filtering noise and detecting spikes are done
together in one pass. As mentioned in Section II, each signal
has a timestamp and a value (tji, vji) for each channel. We use
a threshold (ψ) to detect the spikes, meaning points above the
threshold are detected as spikes and the others are discarded
(vji >= ψ). Typically, we set the threshold at three standard
deviations (σ = 3) above the mean (µ) voltage. First, we find
the peaks for each channel j = 1..M and if it is too close
to the beginning or the ending of the recording, we discard it
as it can be mostly noise. Otherwise, we slice the peak based
on our window size (d) where the window size consists of
a continuous series of time points. That is, we are building
the vector for each spike as we read through the data set.
The output of the spike detection will be reduced data sets
X1, X2, ..., XM , each having a total of nj spikes/peaks at d
time points (window size). The number of rows (nj = O(n))
will represent the number of spikes that are detected above the
threshold and may vary across channels. However, the window
size d is fixed across all the channels. As mentioned before,
these detected spikes are stored in X1, ...Xd matrices and used
as an input for further analysis. As the number of detected
spikes (n) are much less than the raw data size (N ), they
easily fit in the main memory.

3) Reducing dimensionality and identifying dimensions:
As mentioned earlier, d represents the window size of time
points (vector). In the next step, we reduce the dimension of
d from the detected spikes. As the values are continuous, we
can use any standard dimensionality reduction algorithm like
PCA for this task. However, PCA will return the principal
components and it has already been explored before [5], [17].
Here, we perform singular value decomposition (SVD) on



the correlation matrix to do the variable selection. From d
variables, we select d̂ variables, where d̂ ⊂ d. Our idea
is to select the original variables rather than the principal
components and analyze further based on that. We believe
original variables convey more useful information and we can
get more meaningful analysis. From the SVD, we analyze
the Eigenvectors, and select the variables having the maximal
absolute variance. These variables are used for further analysis
in the next steps.

4) Clustering time window vectors representing spikes:
Based on the variables selected in the previous step (d̂), we
cluster the spikes. It is not a good idea to cluster based
on 46 variables and it often leads to poor performance.
However, to ensure we are not losing too much information
by reducing the dimensions, we only select the dimensions
having high variance. The clustering can be performed with
any standard clustering algorithm like K-means. We need to
run the clustering algorithm each time for all the selected
channels and select k clusters. The algorithm will then cluster
the k similar spikes for each channel.

D. System Designs

Prior systems may implement each step of their algorithm
in different proprietary software or programming language,
such as in the case of the system mentioned above utilizing
Plexon, MATLAB, and Python. The current preference in
Big Data and Data Science is to use Python. This is for its
properties of being general-purpose, ability to manipulate data
frames (pandas), efficient vectorized mathematical operations
(NumPy), and while being a high-level abstract programming
language. Our improved system appeases this demand by
providing a contemporary solution, completely programmed
in Python and avoids proprietary software like Plexon.

Rather than utilizing Plexon and MATLAB for noise fil-
tering and spike detection, we use only Python. To compute
the data summarizations and the correlation matrix NumPy is
used. To filter and detect spikes from the raw signals, SciPy
is used. As seen in Section IV, we noticed a significant speed
up in the system with this transition, in comparison to the
previous system.

E. Algorithmic and System Comparisons

A few differences in the overall algorithm between these two
systems are in step 1) and step 2). In our proposed system,
step 1), computes a correlation matrix using the raw input data
set and is read as a .csv. Furthermore, step 2) of our proposed
system, performs both step 1) and step 2) of the previous
system, simultaneously. This emphasizes the advantage that
our proposed system provides, in that only one pass of the
data set is required to perform filtering and spike detection. By
utilizing a threshold of σ = 3, we are able to accurately filter
noise and capture spikes . In step 3), in contrast to the previous
system, we retain the original d variable values rather than the
principal components. This is to provide a more meaningful
interpretation of the model and its results. As a result, step
4) in both systems compute a clustering algorithm, but in the

new system it is computed on the original reduced dimensions.
The raw data set contains high correlations amongst channels,
as seen in the correlation matrix of the raw data set in
Table II. These high correlations can be best attributed to the
overlapping noise patterns amongst all channels, resulting in
high correlations. However, this is not accurate. In the filtered
data set as seen in Table II, the channels actually yield little
correlations. Therefore as result, models reduce overfitting and
learn parameters more accurately. Additionally our system can
handle if raw data sets size are bigger than RAM capacity,
through incremental learning.

F. Time Complexity and I/O Analysis

To compute our summarization matrix on the raw data
(N ), the time complexity will be O(M2N), and the space
complexity is O(M2) [3], considering M as the number
of channels. So, even if the raw data sets are bigger than
the main memory, our summarization matrix can easily store
the summary in the main memory. Analyzing raw signals
would not have been possible with the previous approach even
the data set size exceeded the RAM capacity. We compute
correlation matrix from the summarization matrix. Then, we
need one pass to the raw data sets to filter and detect the spikes
together. However, we needed at least two passes (one to filter
first, and one to detect spikes) to detect the spikes. After spike
detection, the filtered data sets will have ≈ n rows, and we
need one pass per channel to reduce the dimensions.

IV. EXPERIMENTAL EVALUATION

TABLE I: Raw and Filtered Data sets. M = 4 channels. n =
number of rows and in the case of channels n = number of
spikes = number of rows

Ch.# data set n size
Input Signal Raw data set 31474451 8.2GB
Ch.1 (discard) CH1 NAME 18539 9MB
Ch.2 SP1 60138 34MB
Ch.3 SP3 59044 33MB
Ch.4 RN 59891 34MB
Ch.5 cVN 19804 11MB
Ch.6 (discard) CH6 NAME 28447 14MB

This section presents preliminary experimental results,
showing a modest, but important qualitative improvement,
over previous solutions (more patterns), but significantly more
efficient processing (less time).

A. Experimental Setup

Biomedical aspects:: This paragraph discusses our experi-
mental setup and data collection process from a biomedical
perspective. Normotensive Wistar-Kyoto (WKY) rats were
anesthetized with 2 % isoflurane vapor. The left femoral
artery was exposed and implanted with a cannula pressure
transducer connected to a wireless telemetry device (Data
Sciences International) transmitting heart rate (HR), systolic,
diastolic, and mean arterial pressure (MAP) every second. Via
midline abdmoninal incision, the spleen and right kidney were
exposed. Platinized graphene oxide electrodes (sutrodes) were



TABLE II: Correlation among channels on raw data vs filtered
data (Ch2: SP1, Ch3: SP3, Ch4: RN, Ch5: cVN)

Raw Data
Ch.# Ch. SP1 SP3 RN cVN
Ch.1 CH.1 NAME discard discard discard discard
Ch.2 SP1 1.00 0.98 0.97 0.73
Ch.3 SP3 0.98 1.00 0.97 0.70
Ch.4 RN 0.97 0.97 1.00 0.72
Ch.5 cVN 0.73 0.70 0.72 1.00
Ch.6 CH.6 NAME discard discard discard discard

Filtered Data
Ch.# Ch. SP1 SP3 RN cVN
Ch.1 CH.1 NAME discard discard discard discard
Ch.2 SP1 1.00 0.01 0.01 0.01
Ch.3 SP3 0.01 1.00 0.02 0.01
Ch.4 RN 0.01 0.02 1.00 0.01
Ch.5 cVN 0.01 0.01 0.01 1.00
Ch.6 CH.6 NAME discard discard discard discard

implanted on the right renal nerve (RN) and the splenic nerve
terminal branches 1 and 3 (SP1 and SP3) as described in [8].
A midline incision on the neck was used to access the left
cervical vagus nerve (cVN), and a sutrode was implanted on
the nerve. Neural signals were recorded with an OmniPlex
recording system (Plexon, inc.) at 40 kHz sampling rate.
Simultaneous recording of HR, MAP, and neural activity from
the RN, SP1, SP3, and cVN at rest, with saline control
injection, and with intravenous Phenyephrine (Phe, 10 µg/kg;
vasopressor; P6126, Sigma Aldrich) injection to increase blood
pressure. The connections were: Channel 2 - SP1, Channel 3
- SP3, Channel 4 - RN, and Channel 5 - cVN.

Signal Recording and Data Set: In our current lab setup,
we used M=4 channels, but this number will grow as more
electrodes can be inserted. Each channel has N ≈ 31M
(Million) data points with their corrsponding timestamps and
signal values. The data sets are stored in CSV files. The
continuous data files contain both raw and filtered columns for
each channel with 31M rows, resulting in an 31Mx8 matrix of
voltage signals from the nerves of an animal (mouse). When
exported to CSV format, this data set results in 6 to 8 Gb
of data per experiment, with a single subject for this study
undergoing 3-5 experiments. Thus the total amount of data
expands rapidly for even a modestly sized experimental design.

Hardware and Software: As for hardware setup, we con-
ducted our experiments on a server with Intel Pentium (R)
Quad-core CPU running at 1.60 GHz with 8 GB RAM, 1 TB
disk, and the Linux OS (Ubuntu).

We used Python as our choice of data science programming
language because it provides a signal processing library, many
math libraries (numpy,scipy) and computation time is fast.
We must mention the previous algorithm was programmed in
MATLAB, but both old and new algorithms were programmed
in Python.

B. Detecting High Correlations among Channels

As mentioned in Section 3, we filter and detect spikes from
raw signals. We do the filtering because the raw data captures
noise from the system. To prove our hypothesis, we compute
the correlation between the channels before and after detecting
the spikes. Table II shows the correlation computed on raw
data and on filtered data. We use our previous solution with
the summarization matrix [3] to compute the correlations.
However, compared to [3], we use only Python (NumPy
library) instead of C++ to compute the summarization matrix,
and for correlation matrix computation, we use Python as
before. We can see from Table II that all the channels are
extremely correlated on the raw data, but after removing noise,
there are no correlations at all (< 1%). Hence, it proves our
assumption that the high correlation on the raw data sets is
mostly based on overlapping noise and step 1 of our algorithm
to detects this.

C. Pre-processing: Filtering Noise and Detecting Spikes

As mentioned in Section 3, we threshold and detect the
spikes from each channel. After filtering and detecting we
end up n ≈ 60K spikes (peaks) for channel SP1, SP3, and
RN (channel 2,3,4 respectively), n ≈ 19K for channel cVN
(channel 5). Each channel has a window size of d = 46 time
points.

To filter and detect spikes (peaks) from the raw signals,
we use Python SciPy library which can detect spikes from a
1D array and finds all local maximum by simple comparison
of neighboring values. We set the threshold (ψ) to three
standard deviations (σ = 3) above the mean voltage. For
each channel, we repeat the same experiment to detect the
spikes (X1, ..., XM ). After detecting the spikes, as mentioned
in Section 3, we have spikes of a fixed window size with
d time points. We set d = 46 as the total number of time
points, meaning, each detected spike is a vector of size 46.
However, the total number of spikes (row size) vary across
channels. For our experiments, the number of detected spikes
are roughly n ≈ 60K for channel 2,3,4 and n ≈ 20K for
channel 5. Now, we reduce the dimension of the detected
spikes from each channel. As mentioned in Section 3, we
wanted to analyze the original signal voltages and we perform
SVD on the correlation matrix to select the variables with high
variance.

D. Quality Comparison: Clustering on Projections with Se-
lected Dimensions from PCA

After detecting spikes and reducing dimensionality, we
perform clustering on the reduced dimensions. We use K-
means as our choice of the clustering algorithm. Figures 3 and
4 show clusters obtained by the previous algorithm. We can
see that majority are just horizontal stripes. A key assumption
in K-means, is that the clusters are spherical and may not
work as efficient with clusters of other shapes. Especially in
discovering patterns across channels, clusters not achieving
this property will have much overlap and little interpretation.
In contrast, Figure 5 and Figure 6 show clusters discovered by



Fig. 2: Elbow method to select number of clusters (k) in K-
means

(a) Channel 2: SP1 (b) Channel 3: SP3

(c) Channel 4: RN (d) Channel 5: cVN

Fig. 3: Clustering spikes for each channel using the previous
algorithm (Top 2 PCs , k = 6)

our improved algorithm. These new clusters resemble more
closely to spherical clusters and as seen in Figure 6, when
k increases to 12, the clusters shape continues to improve
spherically. In our new algorithm we project onto the top
dimensions, which exhibit the highest correlation values in the
principal components. For our experiments, we select d̂ = 2
variables with the maximum variance for each channel. From
the 46 time points, we chose the 16th and 24th time points.
To determine k, the optimal number of clusters, we used the
popular ”elbow” visualization method and selected k = 6, 12.
Figure 2 shows the plot of the elbow method for channel
2 (SP1). Even though not shown, the other channels show
highly similar behavior in the elbow method as channel 2. The
clusters in channels 2, 3, 4 behave the same way also. Our
solution finds similar characteristics among these channels,
which was not possible from the previous solutions clusters.

(a) Channel 2: SP1 (b) Channel 3: SP3

(c) Channel 4: RN (d) Channel 5: cVN

Fig. 4: Clustering spikes for each channel using the previous
algorithm (Top 2 PCs , k = 12)

(a) Channel 2 (b) Channel 3

(c) Channel 4 (d) Channel 5

Fig. 5: Clustering spikes for each channel using our new
algorithm (d = 16, 24 , k = 6)



(a) Channel 2 (b) Channel 3

(c) Channel 4 (d) Channel 5

Fig. 6: Clustering spikes for each channel using our new
algorithm (d = 16, 24 , k = 12)

TABLE III: Computational time (in seconds) for different steps

Summarization Correlation Dim. reduction Clustering
233 1 2 2

E. Time Performance Analysis

Here, we give an overview of the computational time using
our solution. Table III shows the time needed by different
algorithm steps. We omit time from the previous solution,
which took more than 20 minutes and a more complicated
setup with manual inspection in a GUI, MATLAB and Python.
We can see that only the summarization matrix computation
is computationally expensive as it is analyzing 31M records
from each channel. However, we optimize the computation
using NumPy vectorized dot product which is faster than
performing the matrix multiplication using loops as shown in
[3]. Correlation matrix is computed from the summarization
matrix following the procedure in [2], which is done within
a second. The other steps involving machine learning model
computation is very fast and performed within seconds using
Python standard libraries.

F. Biomedical Significance

Discovering the underlying connections among various neu-
ronal hubs is extremely important to understand regulatory
and processing circuitry in the central nervous system (CNS).
In the cortex, electrically evoked potentials can define the
connection type and order between cortical circuits to map
function and structure [16]. By designing the experiment to
probe various neuronal network in response to a single stim-
ulus, machine learning techniques can be applied to identify
common features and thus connections between these brain

areas [10]. However, similar analysis has not been applied
within the peripheral nervous system (PNS). This is especially
relevant to autonomic regulatory circuits in the visceral organ,
such as those that regulate blood pressure. We have previously
explored the involvement of the spleen using advanced elec-
trodes, but the full neural activity among the organs involved
in BP regulation has not been fully explored [8]. By improving
the accuracy and efficiency of extracting and clustering neu-
ronal features, we can accelerate the development of neuronal
circuitry mapping in the neuroscience field.

V. RELATED WORK

Spike detection from a data stream has been used in many
application areas like security systems, fraud detection, neural
activity and so on. And a lot of research has been published
[13], [1], [7] addressing this issue and many are still going
on. However, most research focuses on improving efficiency
of the spike detection algorithm and/or the data collection
method from animals. Also, many of the analysis are done in
proprietary software which makes it hard for other researchers
to reproduce the analysis. In this paper, we have tried to tackle
the problem from a big data and data mining perspective while
maintaining the original pipeline. Our goal was to find the
similar spikes in each channel with minimal computational
complexity from the time series data. Our analysis on raw
data is based on an efficient summarization matrix which can
handle data sets bigger than the RAM both in a single machine
[3] and in a parallel manner [2]. Summarizing a time series
data has also been explored in [9] which finds top-k time series
snippets from a large data set. However, our summarization
matrix can be further used to compute basic statistics and
accurate machine learning models compared to this approach.

Spike detection and clustering are the standard methods
for analysis of neural signals recorded from both the central
and peripheral nervous system (CNS and PNS). Currently, the
gold standard is dimensionality reduction via PCA prior to
clustering and analyzing firing rates of clustered features [5].
PCA and wavelet based decomposition before clustering in
reduced dimensional space is still the gold standard [17]. By
using firing rate analysis and manual alignment with electrical
stimuli, underlying neural circuits can be probed, such as
those in the cortex [16]. In the last two decades, the emerging
of field of Bioelectronic Medicine (BM) as an alternative to
drug-based therapies has gained attention in medical research
[4], [6], [12]. BM is defined as the use of electrical signals
to modulate the neural component in an organ, and obtain
therapeutic outputs to treat medical conditions[11]. Developing
effective BM treatments involves not only the implementation
of new technologies on sensitive neural interfaces to deliver
electrical current and sense the activity for closed-loop system,
but the interpretation of the complex biological responses (i.e.
neural activity). The ideal picture in BM would be deciphering
electrophysiological patterns related to certain malfunctions
and pathologies to apply the precise therapy and recover a
health state. To achieve this, it is needed to identify biomark-
ers (patterned signals) and understand the output. This can



be achieved by data analysis, understanding the shape and
underlying geometric structures arising from high-dimensional
relations, and appears imminent the use of strong mathematical
framework and manageable quantitative tools [8].

Paper [14] analyzes multimodal signals in medical data,
which includes image, electrical and measurement data. We
currently use electrical and measurement (BP) data and are
likely to use images in future work. Furthermore, this paper
shows the potential for a larger more integrated system. By
utilizing many tools in Big Data such as natural language
processing (NLP), sentiment analysis, and classification, much
of a patients multi-modal health signals can be used to
together for a far more meaningful doctor-patient encounter.
Additionally, incorporating physiological nerve data and its
applications, also can only aid in improving doctor-patient
encounters. Research presented in [15] attempts to classify
level of disease based on EKG signals, whereas we attempt
to understand organ interactions via nerves (physiology). Our
goals are different: disease classification vs physiological
pattern identification. However, rather than using dimension-
ality reduction as in our experiments, here normalization and
augmentation were applied to the raw Phonocardiogram signal
data. It is evident that there is not a clear solution for the pre-
processing of signal data and in particular biomedical signal
data. As a long term goal, we hope our research will open
new medical treatment.

VI. CONCLUSIONS

In this work we presented an improved and more integrated
system, to detect similar spike patterns in high dimensional
biomedical signals, received from micro electrical sensors
in Normotensive Wistar-Kyot (WKY) rats, combining PCA
and K-means clustering. Our system provides better inter-
pretations of the model and data analysis. By identifying
highly correlated dimensions within the time window using
PCA and then computing clusters directly on the original
dimensions, we maintain the original meaningful values of
the data. On the contrary, instead of computing them on the
principal components (PCs), this allows for a more clearer
interpretation. We showed that the raw data sets from multiple
channels are highly correlated because of overlapping noise
and must be filtered out before detecting the patterns.

To efficiently filter noise, detect spikes, reduce dimensional-
ity, and compute a clustering model, we used a summarization
matrix. Biomedical data sets are often large and do not fit
in main memory. To overcome main memory limitations of
previous systems, we exploited the incremental property of
the summarization matrix. Our system yields the following
benefits: (1) We could discover new patterns, which were
not found before with the previous algorithm. (2) Easier
biomedical interpretation because identified dimensions point
to the actual specific time points in the detected spike. Rather
than the principal components which lose, interpretation. (3)
Fully integrated in Python. (4) Memory efficient, Incremental
Learning. (3) Faster processing.

A preliminary experimental evaluation on (WKY) rats,
presented promising results on recently collected lab data. Our
work opens new perspectives for future research on electrical
signals in the biomedical domain. Scaling our proposed system
to a growing number of channels, presents many solutions
to Big Data and Biomedical challenges. More channels will
introduce more overlapping noise and false correlations, hiding
valuable information that can be gained from biomedical
signals triggered from organ responses. We expect our system
to allow the study of smaller time windows in analyzing spike
shapes. We will develop evolving clustering models, to get
clusters at different time points. Moreover, we plan to com-
pute PCA and K-means at the same time, interleaving them,
instead of two phases, with a more general summarization via
sufficient statistics.

The previous system was built with a pipeline including
Windows and MATLAB. To match modern industry stan-
dards in Big Data and Data Science, the entire system was
reprogrammed completely in Python. Clusters formed in the
previous system using the top PCs, did not achieve the
spherical property required in k-means to perform well. In our
new algorithm we project onto the top dimensions, exhibiting
the highest correlation values in the PCs. For our experiments
we select d̂ = 2 variables, with the maximum variance for
each channel. Our system in comparison to the previous one,
achieved far better experimental results. The new clusters
formed from our system are more spherical and have less
overlap, producing better analysis in spike patterns.

Studying optimal storage for multiple signals will enable
more advanced correlation analysis. We anticipate that more
modern electronic technology will allow collecting signals at
a higher frequency. Therefore, producing signals with higher
resolution. As our solution is deployed to healthcare, clusters
can be linked to events with standard medical measurements
including blood pressure, heart rate, sugar and oxygen levels,
among others collected in real-time.
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